
A Proofs of Theorems

In this section, we give proofs of theorems.

A.1 Decomposition of generalization error in PU classification

Assume that π∗ := p(y = 1) is the true class prior of the positive class. Subsequently,

Ep(x,y)[ℓ0-1(yf(x))] =

∫
Rd

∑
y
ℓ0-1(yf(x))p(x, y)dx

=

∫
Rd

∑
y
ℓ̃(yf(x))

(
y + 3

2

)
p(x, y)dx

=

∫
Rd

∑
y
ℓ̃(yf(x))(2p(x, y = +1) + p(x, y = −1))dx

= π∗
∫
Rd

ℓ̃(f(x))p(x | y = +1)dx+

∫
Rd

∑
y
ℓ̃(yf(x))p(x, y)dx

= π∗Ep(x|y=+1)

[
ℓ̃(f(x))

]
+Ep(x,y)

[
ℓ̃(yf(x))

]
. (14)

This decomposition is the key idea of our error bounds.

A.2 Proof of Theorem 1

Note that ℓ̃ maps to [0, 1], but if y = +1 it maps to [0, 1/2]. We apply McDiarmid’s inequality and
obtain

Pr

{
Ep(x|y=+1)

[
ℓ̃(f(x))

]
− 1

n

n∑
i=1

ℓ̃(f(xi)) ≥ ϵ

}
≤ exp

(
− 2ϵ2

n(1/2n)2

)
.

Equating the right-hand side of the above inequality to δ/2 gives us that with probability at least
1− δ/2,

Ep(x|y=+1)

[
ℓ̃(f(x))

]
− 1

n

n∑
i=1

ℓ̃(f(xi)) ≤
√

ln(2/δ)

8n
.

Apply McDiarmid’s inequality again and obtain that with probability at least 1− δ/2,

Ep(x,y)

[
ℓ̃(yf(x))

]
− 1

n′

n′∑
j=1

ℓ̃(y′jf(x
′
j)) ≤

√
ln(2/δ)

2n′ .

Combining these two concentration inequalities and Eq. (14) completes the proof.

A.3 Proof of Theorem 2

Definition 3 ([15], Definitions 3.1 and 3.2). Let F be a class of functions. Let x1, . . . ,xn be in-
dependent observations drawn according to p(x), and σ1, . . . , σn be independent uniformly {±1}-
valued random variables, i.e., Rademacher variables. The empirical Rademacher complexity of F
conditioned on x1, . . . ,xn is defined by

R̂n(F) := Eσ1,...,σn

{
sup
f∈F

1

n

n∑
i=1

σif(xi)

}
,

and the Rademacher complexity of F is defined by

Rn(F) := Ex1,...,xn

{
R̂n(F)

}
.
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Denote by Rn(F) the Rademacher complexity w.r.t. p(x | y = +1), and R′
n′(F) the Rademacher

complexity w.r.t. p(x). By Theorem 5.5 of [15] and the condition that Ck = supx∈Rd

√
k(x,x),

we get

Rn(F) ≤ CαCk√
n

,

R′
n′(F) ≤ CαCk√

n′
.

(15)

Next, we need the following lemmas.
Lemma 4. Fix η > 0, then, for any 0 < δ < 1 with probability at least 1 − δ over the repeated
sampling of {(x′

1, y
′
1), . . . , (x

′
n′ , y′n′)} for evaluating the empirical error, every f ∈ F satisfies

Ep(x,y)

[
ℓ̃(yf(x))

]
− 1

n′

n′∑
j=1

ℓ̃η(y
′
jf(x

′
j)) ≤

2

η
R′

n′(F) +

√
ln(1/δ)

2n
.

Proof. Note that both ℓ̃ and ℓ̃η map to [0, 1], ℓ̃ is lower bounded by ℓ̃η , and the Lipschitz constant of
ℓ̃η is 1/η. Hence, this lemma is essentially same as the first half of Theorem 4.4 in [15].

Lemma 5. Fix η > 0, then, for any 0 < δ < 1 with probability at least 1 − δ over the repeated
sampling of {x1, . . . ,xn} for evaluating the empirical error, every f ∈ F satisfies

Ep(x|y=+1)

[
ℓ̃(f(x))

]
− 1

n

n∑
i=1

ℓ̃η(f(xi)) ≤
1

η
Rn(F) +

√
ln(1/δ)

8n
.

Proof. If we fix y = +1, both ℓ̃ and ℓ̃η map to [0, 1/2], and the Lipschitz constant of ℓ̃η is 1/(2η).
Then, the proof of this lemma is analogous with the proof of the first half of Theorem 4.4 in [15],
while there are two difference points:

• When applying Theorem 3.1 of [15], note that both ℓ̃ and ℓ̃η map to [0, 1/2], and conse-
quently McDiarmid’s inequality results in a tighter bound;

• When applying Lemma 4.2 of [15], note that ℓ̃η is (1/(2η))-Lipschitz continuous, and thus
the contraction of Rademacher averages results in a tighter bound.

By Lemma 5 and (15), with probability at least 1−δ/2 over the repeated sampling of {x1, . . . ,xn},

Ep(x|y=+1)

[
ℓ̃(f(x))

]
− 1

n

n∑
i=1

ℓ̃η(f(xi)) ≤
CαCk

η
√
n

+

√
ln(2/δ)

8n
.

Similarly, by Lemma 4 and (15), with probability at least 1 − δ/2 over the repeated sampling of
{(x′

1, y
′
1), . . . , (x

′
n′ , y′n′)},

Ep(x,y)

[
ℓ̃(yf(x))

]
− 1

n′

n′∑
j=1

ℓ̃η(y
′
jf(x

′
j)) ≤

2CαCk

η
√
n′

+

√
ln(2/δ)

2n′ .

Combining these two concentration inequalities and Eq. (14) completes the proof.
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