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Abstract

The global Markov property for Gaussian graphical models ensures graph separa-
tion implies conditional independence. Specifically if a node set S graph separates
nodes u and v then Xu is conditionally independent of Xv given XS . The oppo-
site direction need not be true, that is, Xu ⊥ Xv | XS need not imply S is a node
separator of u and v. When it does, the relation Xu ⊥ Xv | XS is called faithful.
In this paper we provide a characterization of faithful relations and then provide
an algorithm to test faithfulness based only on knowledge of other conditional
relations of the form Xi ⊥ Xj | XS .

1 Introduction

Graphical models [1, 2, 3] are a popular and important means of representing certain conditional
independence relations between random variables. In a Gaussian graphical model, each variable is
associated with a node in a graph, and any two nodes are connected by an undirected edge if and
only if their two corresponding variables are independent conditioned on the rest of the variables.
An edge between two nodes therefore corresponds directly to the non-zero entries of the precision
matrix Ω = Σ−1, where Σ is the covariance matrix of the multivariate Gaussian distribution in
question. With the graphical model defined in this way, the Gaussian distribution satisfies the global
Markov property: for any pair of nodes i and j, if all paths between the two pass through a set of
nodes S, then the variables associated with i and j are conditionally independent given the variables
associated with S.

The converse of the global Markov property does not always hold. When it does hold for a condi-
tional independence relation, that relation is called faithful. If it holds for all relations in a model,
that model is faithful. Faithfulness is important in structural estimation of graphical models, that is,
identifying the zeros of Ω. It can be challenging to simply invert Σ. With faithfulness, to determine
an edge between nodes i and j, one could run through all possible separator sets S and test for
conditional independence. If S is small, the computation becomes more accurate. In the work of
[4, 5, 6, 7], different assumptions are used to bound S to this end.

The main problem of faithfulness in graphical models is one of identifiability. Can we distinguish
between a faithful graphical model and an unfaithful one? The idea of faithfulness was first explored
for conditional independence relations that were satisfied in a family of graphs, using the notion of
θ-Markov perfectness [8, 9]. For Gaussian graphical models with a tree topology the the distribution
has been shown to be faithful [10, 11]. In directed graphical models, the class of unfaithful distribu-
tions has been studied in [12, 13]. In [14, 15], a notion of strong-faithfulness as a means of relaxing
the conditions of faithfulness is defined.

In this paper, we study the identifiability of a conditional independence relation. In [6], the authors
restrict their study of Gaussians to walk-summable ones. In [7], the authors restrict their class
of distributions to loosely connected Markov random fields. These restrictions are such that the
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local conditional independence relations imply something about the global structure of the graphical
model. In our discussion, we assume no such restrictions. We provide a testable condition for
the faithfulness of a conditional independence relation in a Gaussian undirected graphical model.
Checking this condition requires only using other conditional independence relations in the graph.
We can think of these conditional independence relations as local patches of the covariance matrix
Σ. To check if a local patch reflects the global graph (that is, a local path is faithful) we have to
make use of other local patches. Our algorithm is the first algorithm, to the best of our knowledge,
that is able to distinguish between faithful and unfaithful conditional independence relations without
any restrictions on the topology or assumptions on spatial mixing of the Gaussian graphical model.

This paper is structured as follows: In Section 2, we discuss some preliminaries. In Section 3, we
state our main theorem and proofs, as well as key lemmas used in the proofs. In Section 4, we lay out
an algorithm that detects unfaithful conditional independence relations in Gaussian graphical models
using only local patches of the covariance matrix. We also describe a graph learning algorithm for
unfaithful graphical models. In Section 5, we discuss possible future directions of research.

2 Preliminaries

We first define some linear algebra and graph notation. For a matrixM , letMT denote its transpose
and let |M | denote its determinant. If I is a subset of its row indices and J a subset of its column
indices, then we define the submatrixM IJ as the |I| × |J | matrix with elements with both row and
column indices from I and J respectively. If I = J , we use the notation M I for convenience. Let
M(−i,−j) be the submatrix of M with the i-th row and j-th column deleted. Let M(−I,−J)
be the submatrix with rows with indices from I and columns with indices from J removed. In the
same way, for a vector v, we define vI to be the subvector of v with indices from I . Similarly, we
define v(−I) to be the subvector of v with indices not from I . For two vectors v and w, we denote
the usual dot product by v ·w.

Let G = (W, E) be an undirected graph, whereW = {1, . . . , n} is the set of nodes and E is the set
of edges, namely, a subset of the set of all unordered pairs {(u, v) | u, v ∈ W}. In our paper we are
dealing with graphs that have no self-loops and no multiple edges between the same pair of nodes.
For I ⊆ W , we denote the induced subgraph on nodes I by GI . For any two distinct nodes u and v,
we say that the node set S ⊆ W \ {u, v} is a node separator of u and v if all paths from u to v must
pass through some node in S.

LetX = (X1, . . . , Xn) be a multivariate Gaussian distribution with mean µ and covariance matrix
Σ. Let Ω = Σ−1 be the precision or concentration matrix of the graph. For any set S ⊂ W , we
define XS = {Xi | i ∈ S}. We note here that Σuv = 0 if and only if Xu is independent of Xv ,
which we denote by Xu ⊥ Xv . If Xu is independent of Xv conditioned on some random variable
Z, we denote this independence relation by Xu ⊥ Xv | Z. Note that Ωuv = 0 if and only if
Xu ⊥ Xv |XW\{u,v}.
For any set S ⊆ W , the conditional distribution of XW\S given XS = xS follows a multivariate
Gaussian distribution with conditional mean µW\S − Σ(W\S)SΣ−1S (xS − µS) and conditional
covariance matrix ΣW\S − Σ(W\S)SΣ−1S ΣS(W\S). For distinct nodes u, v ∈ W and any set
S ⊆ W \ {u, v}, the following property easily follows.

Proposition 1 Xu ⊥ Xv |XS if and only if Σuv = ΣuSΣ−1S ΣSv.

The concentration graph GΣ = (W, E) of a multivariate Gaussian distribution X is defined as
follows: We have node setW = {1, . . . , n}, with random variable Xu associated with node u, and
edge set E where unordered pair (u, v) is in E if and only if Ωuv 6= 0. The multivariate Gaussian
distribution, along with its concentration graph, is also known as a Gaussian graphical model. Any
Gaussian graphical model satisfies the global Markov property, that is, if S is a node separator of
nodes u and v in GΣ, then Xu ⊥ Xv | XS . The converse is not necessarily true, and therefore, this
motivates us to define faithfulness in a graphical model.

Definition 1 The conditional independence relation Xu ⊥ Xv | XS is said to be faithful if S is a
node separator of u and v in the concentration graph GΣ. Otherwise, it is unfaithful. A multivari-
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Figure 1: Even though ΣS∪{u,v} is a submatrix of Σ, GΣS∪{u,v} need not be a subgraph of GΣ.
Edge properties do not translate as well. That means the local patch ΣS∪{u,v} need not reflect the
edge properties of the global graph structure of Σ.

ate Gaussian distribution is faithful if all its conditional independence relations are faithful. The
distribution is unfaithful if it is not faithful.

Example 1 (Example of an unfaithful Gaussian distribution) Consider the multivariate Gaus-
sian distribution X = (X1, X2, X3, X4) with zero mean and positive definite covariance matrix

Σ =

3 2 1 2
2 4 2 1
1 2 7 1
2 1 1 6

 . (1)

By Proposition 1, we haveX1 ⊥ X3 | X2 since Σ13 = Σ12Σ
−1
22 Σ23. However, the precision matrix

Ω = Σ−1 has no zero entries, so the concentration graph is a complete graph. This means that
node 2 is not a node separator of nodes 1 and 3. The independence relation X1 ⊥ X3 | X2 is thus
not faithful and the distributionX is not faithful as well.

We can think of the submatrix ΣS∪{u,v} as a local patch of the covariance matrix Σ. When Xu ⊥
Xv | XS , nodes u and v are not connected by an edge in the concentration graph of the local patch
ΣS∪{u,v}, that is, we have (Σ−1S∪{u,v})uv = 0. This does not imply that u and v are not connected
in the concentration graph GΣ. If Xu ⊥ Xv | XS is faithful, then the implication follows. If
Xu ⊥ Xv |XS is unfaithful, then u and v may be connected in GΣ (See Figure 1).

Faithfulness is important in structural estimation, especially in high-dimensional settings. If we as-
sume faithfulness, then finding a node set S such that Xu ⊥ Xv | XS would imply that there is no
edge between u and v in the concentration graph. When we have access only to the sample covari-
ance instead of the population covariance matrix, if the size of S is small compared to n, the error
of computing Xu ⊥ Xv | XS is much less than the error of inverting the entire covariance matrix.
This method of searching through all possible node separator sets of a certain size is employed in
[6, 7]. As mention before, these authors impose other restrictions on their models to overcome the
problem of unfaithfulness. We do not place any restriction on the Gaussian models. However, we
do not provide probabilistic bounds when dealing with samples, which they do.

3 Main Result

In this section, we will state our main theoretical result. This result is the backbone for our algorithm
that differentiates a faithful conditional independence relation from an unfaithful one. Our main
goal is to decide if a conditional independence relation Xu ⊥ Xv | XS is faithful or not. For
convenience, we will denote GΣ simply by G = (W, E) for the rest of this paper. Now let us
suppose that it is faithful; S is a node separator for u and v in G. Then we should not be able to find
a path from u to v in the induced subgraph GW\S . The main idea therefore is to search for a path
between u and v in GW\S . If this fails, then we know that the conditional independence relation is
faithful.

By the global Markov property, for any two distinct nodes i, j ∈ W \ S, if Xi 6⊥ Xj |XS , then we
know that there is a path between i and j in GW\S . Thus, if we find some w ∈ W \ (S∪{i, j}) such
that Xu 6⊥ Xw | XS and Xv 6⊥ Xw | XS , then a path exists from u to w and another exists from
v to w, so u and v are connected in GW\S . This would imply that Xu ⊥ Xv | XS is unfaithful.
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However, testing for paths this way does not necessarily rule out all possible paths in GW\S . The
problem is that some paths may be obscured by other unfaithful conditional independence relations.
There may be some w whereby Xu 6⊥ Xw | XS and Xv ⊥ Xw | XS , but the latter relation is
unfaithful. This path from u to v throughw is thus not detected by these two independence relations.

We will show however, that if there is no path from u to v in GW\S , then we cannot find a series of
distinct nodes w1, . . . , wt ∈ W \ (S∪{u, v}) for some natural number t > 0 such that Xu 6⊥ Xw1

|
XS ,Xw1

6⊥ Xw2
|XS , . . .,Xwt−1

6⊥ Xwt
|XS ,Xwk

6⊥ Xv |XS . This is to be expected because
of the global Markov property. What is more surprising about our result is that the converse is true.
If we cannot find such nodes w1, . . . , wt, then u and v are not connected by a path in GW\S . This
means that if there is a path from u to v in GW\S , even though it may be hidden by some unfaithful
conditional independence relations, ultimately there are enough conditional dependence relations
to reveal that u and v are connected by a path in GW\S . This gives us an equivalent condition for
faithfulness that is in terms of conditional independence relations.

Not being able to find a series of nodes w1, . . . , wt that form a string of conditional dependencies
from u to v as described in the previous paragraph is equivalent to the following: we can find a
partition (U, V ) of W \ S with u ∈ U and v ∈ V such that for all i ∈ U and j ∈ V , we have
Xi ⊥ Xj |XS . Our main result uses the existence of this partition as a test for faithfulness.

Theorem 1 Let X = (X1, . . . , Xn) be a Gaussian distribution with mean zero, covariance matrix
Σ and concentration matrix Ω. Let u, v be two distinct elements ofW and S ⊂ W \{i, j} such that
Xu ⊥ Xv |XS . Then Xu ⊥ Xv |XS is faithful if and only if there exists a partition ofW \S into
two disjoint sets U and V such that u ∈ U , v ∈ V , and Xi ⊥ Xj |XS for any i ∈ U and j ∈ V .

Proof of Theorem 1 . One direction is easy. Suppose Xu ⊥ Xv | XS is faithful and S separates
u and v in G. Let U be the set of all nodes reachable from u in GW\S including u. Let V =
{W \ S ∪ U}. Then v ∈ V since S separates u and v in G. Also, for any i ∈ U and j ∈ V , S
separates i and j in G, and by the global Markov property, Xi ⊥ Xj |XS .

Next, we prove the opposite direction. Suppose that there exists a partition ofW \ S into two sets
U and V such that u ∈ U , v ∈ V , and Xi ⊥ Xj | XS . for any i ∈ U and j ∈ V . Our goal
is to show that S separates u and v in the concentration graph G of X . Let ΩW\S = Ω′ where
the latter is the submatrix of the precision matrix Ω. Let the h-th column vector of Ω′ be ω(h), for
h = 1, . . . , |W \ S|.
Step 1: We first solve the trivial case where |U | = |V | = 1. If |U | = |V | = 1, then S =W \{u, v},
and trivially, Xu ⊥ Xv |XW\{u,v} implies S separates u and v, and we are done. Thus, we assume
for the rest of the proof that U and V cannot both be size one.

Step 2: We deal with a second trivial case in our proof, which is the case where ω(i)(−i) is identi-
cally zero for any i ∈ U . In the case where i = u, we have Ωuj = 0 for all j ∈ W \ (S ∪ {u}).
This implies that u is an isolated node in GW\S , and so trivially, S must separate u and v, and we
are done. In the case where i 6= u, we can manipulate the sets U and V so that ω(i)(−i) is not
identically zero for any i ∈ U, i 6= u. If there is some i′ ∈ U , i′ 6= u, such that X ′i ⊥ Xh | XS

for all h ∈ U , h 6= i′, then we can simply move i′ from U into V to form a new partition (U ′, V ′)
ofW \ S. This new partition still satisfies u ∈ U ′, v ∈ V ′, and Xi ⊥ Xj | XS for all i ∈ U ′ and
j ∈ V ′. We can therefore shift nodes one by one over from U to V until either |U | = 1, or for any
i ∈ U , i 6= u, there exists an h ∈ U such that Xi 6⊥ Xh | XS . By the global Markov property, this
assumption implies that every node i ∈ U , i 6= u is connected by a path to some node in U , which
means it must connected to some node inW \ (S ∪ {i}) by an edge. Thus, for all i ∈ U , i 6= u, the
vector ω(i)(−i) is non-zero.

Step 3: We can express the conditional independence relations in terms of elements in the precision
matrix Ω, since the topology of G can be read off the non-zero entries of Ω. The proof of the
following Lemma 1 uses the matrix block inversion formula and we omit the proof due to space.

Lemma 1 Xi ⊥ Xj |XS if and only if |Ω′(−i,−j)| = 0.

From Lemma 1, observe that the conditional independence relations Xi ⊥ Xj | XS are all state-
ments about the cofactors of the matrix Ω′. It follows immediately from Lemma 1 that the vector

4



sets {ω(h)(−i) : h ∈ W \ S, h 6= j} are linearly dependent for all i ∈ U and j ∈ V . Each of these
vector sets consists of the i-th entry truncated column vectors of Ω′, with the j-th column vector
excluded. Assume that the matrix Ω′ is partitioned as follows,

Ω′ =

[
ΩUU ΩUV

ΩV U ΩV V

]
. (2)

The strategy of this proof is to use these linear dependencies to show that the submatrix ΩV U has to
be zero. This would imply that for any node in U , it is not connected to any node in V by an edge.
Therefore, S is a node separator of u and v in G, which is our goal.

Step 4: Let us fix i ∈ U . Consider the vector sets of the form {ω(h)(−i) : h ∈ W \ S, h 6= j},
j ∈ V . There are |V | such sets. The intersection of these sets is the vector set {ω(h)(−i) : h ∈ U}.
We want to use the |V | linearly dependent vector sets to say something about the linear dependency
of {ω(h)(−i) : h ∈ U}. With that in mind, we have the following lemmas.

Lemma 2 The vector set {ω(h)(−i) : h ∈ U} is linearly dependent for any i ∈ U .

Step 5: Our final step is to show that these linear dependencies imply that ΩUV = 0. We now have
|U | vector sets {ω(h)(−i) : h ∈ U} that are linearly dependent. These sets are truncated versions
of the vector set {ω(h) : h ∈ U}, and they are specifically truncated by taking out entries only in U
and not in V . The set {ω(h) : h ∈ U} must be linearly independent since Ω′ is invertible. Observe
that the entries of ΩV U are contained in {ω(h)(−i) : h ∈ U} for all i ∈ U . We can now use these
vector sets to say something about the entries of ΩV U .

Lemma 3 The vector components ω(i)
j = Ωij are zero for all i ∈ U and j ∈ V .

This implies that any node in U is not connected to any node in V by an edge. Therefore, S separates
u and v in G and the relationXu ⊥Xv |XS is faithful. �

4 Algorithm for Testing Unfaithfulness

In this section, we will describe a novel algorithm for testing faithfulness of a conditional indepen-
dence relation Xu ⊥ Xv | XS . The algorithm tests the necessary and sufficient conditions for
faithfulness, namely, that we can find a partition (U, V ) of W \ S such that u ∈ U, v ∈ V , and
Xi ⊥ Xj |XS for all i ∈ U and j ∈ V .

Algorithm 1 (Testing Faithfulness) Input covariance matrix Σ.

1. Define new graph Ḡ = {W̄, Ē}, where W̄ = W \ S and Ē = {(i, j) : i, j ∈ W \ S,Xi 6⊥
Xj |XS , i 6= j}.

2. Generate set U to be the set of all nodes in W̄ that are connected to u by a path in Ḡ,
including u. (A breadth-first search could be used.)

3. If v ∈ U , there exists a path from u to v in Ḡ, output Xu ⊥ Xv |XS as unfaithful.

4. If v /∈ U , let V = W̄ \ U . Output Xu ⊥ Xv |XS as faithful.

If we consider each test of whether two nodes are conditionally independent given XS as one step,
the running time of the algorithm is the that of the algorithm used to determine set U . If a breadth-
first search is used, the running time is O(|W \ S|2|).

Theorem 2 Suppose Xu ⊥ Xv | XS . If S is a node separator of u and v in the concentration
graph, then Algorithm 1 will classify Xu ⊥ Xv | XS as faithful. Otherwise, Algorithm 1 will
classify Xu ⊥ Xv |XS as unfaithful.

Proof. If Algorithm 1 determines that Xu ⊥ Xv | XS is faithful, that means that it has found
a partition (U, V ) of W \ S such that u ∈ U , v ∈ V , and Xi ⊥ Xj | XS for any i ∈ U and
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Figure 2: The concentration graph of the distribution in Example 4.

j ∈ V . By Theorem 1, this implies that Xu ⊥ Xv | XS is faithful and so Algorithm 1 is correct.
If Algorithm 1 decides that Xu ⊥ Xv | XS is unfaithful, it does so by finding a series of nodes
w`1 , . . . , w`t ∈ W \ (S ∪ {u, v}) for some natural number t > 0 such that Xu 6⊥ Xw`1

| XS ,
Xw`1

6⊥ Xw`2
| XS , . . ., Xw`t−1

6⊥ Xw`t
| XS , Xwk

6⊥ Xv | XS , where `1, . . . , `t are t distinct
indices from R. By the global Markov property, this means that u is connected to v by a path in G,
so this implies that Xu ⊥ Xv |XS is unfaithful and Algorithm 1 is correct. �

Example 2 (Testing an Unfaithful Distribution (1)) Let us take a look again at the 4-dimensional
Gaussian distribution in Example 1. Suppose we want to test if X1 ⊥ X3 | X2 is faithful or not.
From its covariance matrix, we have Σ14 −Σ12Σ

−1
2 Σ24 = 2− 2 · 1/4 = 3/2 6= 0, so this implies

that X1 6⊥ X4 | X2. Similarly, X3 6⊥ X4 | X2. So there exists a path from X1 to X3 in G{1,3,4} (it
is trivially the edge (1, 3)), so the relation X1 ⊥ X3 | X2 is unfaithful.

Example 3 (Testing an Unfaithful Distribution (2)) Consider a 6-dimensional Gaussian distribu-
tionX = (X1, . . . , X6) that has the covariance matrix

Σ =


7 1 2 2 3 4
1 8 2 1 2.25 3
2 2 10 4 3 8
2 1 4 9 1 6
3 2.25 3 1 11 9
4 3 8 6 9 12

 . (3)

We want to test if the relation X1 ⊥ X2 | X6 is faithful or unfaithful. Working out the
necessary conditional independence relations to obtain Ḡ with S = {6}, we observed that
(1, 3), (3, 5), (5, 4), (4, 2) ∈ Ē This means that 2 is reachable from 1 in G, so the relation is un-
faithful. In fact, the concentration graph is the complete graph K6, and 6 is not a node separator of
1 and 2.

Example 4 (Testing a Faithful Distribution) We consider a 6-dimensional Gaussian distribution
X = (X1, . . . , X6) that has a covariance matrix which is similar to the distribution in Example 3,

Σ =


7 1 2 2 3 4
1 8 2 1 2.25 3
2 2 10 4 6 8
2 1 4 9 1 6
3 2.25 6 1 11 9
4 3 8 6 9 12

 . (4)

Observe that only Σ35 is changed. We again test the relationX1 ⊥ X2 | X6. Running the algorithm
produces a viable partition with U = {1, 3} and V = {2, 4, 5}. This agrees with the concentration
graph, as shown in Figure 2.

We include now an algorithm that learns the topology of a class of (possibly) unfaithful Gaussian
graphical models using local patches. Let us fix a natural numberK < n−2. We consider graphical
models that satisfy the following assumption: for any nodes i and j that are not connected by an
edge in G, there exists a vertex set S with |S| ≤ K such that S is a vertex separator of i and j.
Certain graphs have this property, including graphs with bounded degree and some random graphs
with high probability, like the Erdös-Renyi graph. The following algorithm learns the edges of a
graphical model that satisfies the above assumptions.

Algorithm 2 (Edge Learning) Input covariance matrix Σ. For each node pair (i, j),
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1. Let F = {S ⊂ W \ {i, j} : |S| = K,Xi ⊥ Xj |XS , and it is faithful}.

2. If F 6= φ, output (i, j) /∈ E . If F = φ, output (i, j) ∈ E .

3. Output E .

Again, considering a computation of a conditional independence relation as one step, the running
time of the algorithm is O(nK+4). This comes from exhaustively checking through all

(
n−2
K

)
possi-

ble separation sets S for each of the
(
n
2

)
(i, j) pairs. Each time there is a conditional independence

relation, we have to check for faithfulness using Algorithm 1, and the running time for that isO(n2).
The novelty of the algorithm is in its ability to learn graphical models that are unfaithful.

Theorem 3 Algorithm 2 recovers the concentration graph G.

Proof. If F 6= φ, F is non-empty so there exists an S such thatXi ⊥ Xj |XS is faithful. Therefore,
S separates i and j in G and (i, j) /∈ E . If F = φ, then for any S ⊆ W, |S| ≤ K, we have either
Xi 6⊥ Xj | XS or Xi ⊥ Xj | XS but it is unfaithful. In both cases, S does not separate i and j in
G, for any S ⊆ W, |S| ≤ K. By the assumption on the graphical model, (i, j) must be in E . This
shows that Algorithm 2 will correctly output the edges of G. �

5 Conclusion

We have presented an equivalence condition for faithfulness in Gaussian graphical models and an
algorithm to test whether a conditional independence relation is faithful or not. Gaussian distribu-
tions are special because its conditional independence relations depend on its covariance matrix,
whose inverse, the precision matrix, provides us with a graph structure. The question of faithfulness
in other Markov random fields, like Ising models, is an area of study that has much to be explored.
The same questions can be asked, such as when unfaithful conditional independence relations occur,
and whether they can be identified. In the future, we plan to extend some of these results to other
Markov random fields. Determining statistical guarantees is another important direction to explore.

6 Appendix

6.1 Proof of Lemma 2

Case 1: |V | = 1. In this case, |U | > 1 since |U | and |V | cannot both be one. the vector set
{ω(h)(−i) : h ∈ W \ S, h 6= j} is the vector set {ω(h)(−i) : h ∈ U}.

Case 2: |V | > 1. Let us fix i ∈ U . Note that ω(i)(−j) 6= 0 for all j ∈ W \ (S ∪ {i}), since the
diagonal entries of a positive definite matrix are non-zero, that is, ω(i)

i 6= 0. Also, ω(i)(−i) 6= 0
for all i ∈ U as well by Step 2 of the proof of Theorem 1. As such, the linear dependency of
{ω(h)(−i) : h ∈ W \ S, h 6= j} for any i ∈ U and j ∈ V implies that there exists scalars c(i,j)1 , . . .,
c
(i,j)
j−1 , c

(i,j)
j+1 , . . ., c(i,j)|W\S| such that ∑

1≤h≤|W\S|,h6=j

c
(i,j)
h ω(h)(−i) = 0. (5)

If c(i,j)i = 0, the vector set {ω(h)(−i) : 1 ≤ h ≤ |W \ S|, h 6= u, j} is linearly dependent. This
implies that the principal submatrix Ω′(−i,−i) has zero determinant, which contradicts Ω′ being
positive definite. Thus, we have c(i,j)i 6= 0 for all i ∈ U and j ∈ V . For each i ∈ U and j ∈ V , this
allows us to manipulate (5) such that w(i)(−i) is expressed in terms of the other vectors in (5).

More precisely, let c̄(i,j) = [c
(i,j)
i ]−1(c

(i,j)
1 , . . . , c

(i,j)
i−1 , c

(i,j)
i+1 , . . . , c

(i,j)
j−1 , c

(i,j)
j+1 , . . . , c

(i,j)
|W\S|), for i ∈

U and j ∈ V . Note that Ω′(−j,−{i, j}) has the form [ω(1)(−i), . . ., ω(i−1)(−i),ω(i+1)(−i), . . .,
ω(j−1)(−i),ω(j+1)(−i), . . ., ω(|W\S|)(−i)], where the vectors in the notation described above are
column vectors. From (5), for any distinct j1, j2 ∈ V , we can generate equations

ω(i)(−i) = Ω′(−j1,−{i.j1})c̄(i,j1) = Ω′(−j2,−{i, j2})c̄(i,j2), (6)
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or effectively,
Ω′(−j1,−{i.j1})c̄(i,j1) −Ω′(−j2,−{i, j2})c̄(i,j2) = 0. (7)

This is a linear equation in terms of the column vectors {ω(h)(−i) : h 6= i, h ∈ W}. These vectors
must be linear independent, otherwise |Ω′(−i,−i)| = 0. Therefore, the coefficient of each of the
vectors must be zero. Specifically, the coefficient of ω(j2)(−i) in 7 is c(i,j1)j2

/c
(i,j1)
i is zero, which

implies that c(i,j1)j2
is zero, as required. Similarly, c(i,j2)j1

is zero as well. Since this holds for any

j1, j2 ∈ V , this implies that for any j ∈ V , c(i,j)h = 0 for all h ∈ V, h 6= j.

There are now two cases to consider. The first is where |U | = 1. Here, i = u. Then, by (5),
c
(u,j)
h = 0 for all distinct j, h ∈ V implies that ωu(−u) = 0, which is a contradiction. Therefore
|U | 6= 1, so |U | must be greater than 1. We then substitute c(i,j)h = 0, for all distinct j, h ∈ V , into
(5) to deduce that {ω(h)(−i) : h ∈ U} is indeed linearly dependent for any i ∈ U .

�

6.2 Proof of Lemma 3

Let |U | = k > 1 We arrange the indices of the column vectors of Ω′ so that U = {1, . . . , k}. For
each i ∈ U , since {ω(h)(−i) : h ∈ U} is linearly dependent and {ω(h) : h ∈ U} is linearly indepen-
dent, there exists a non-zero vector d(i) = (d

(i)
1 , . . . , d

(i)
k ) ∈ Rk such that

∑k
h=1 d

(i)
i ω

(h)(−i) = 0.

Let y(i) = (ω
(1)
i , . . . ,ω

(k)
i ) ∈ Rk. Note that y(i) = ω

(i)
U , since Ω′ is symmetric, and so is a

non-zero vector for all i = 1, . . . , k. Because ω(1), . . . ,ω(k) are linearly independent, for each
i = 1, . . . , k, we have d(i) · y(h) = 0 for all h 6= i, h ∈ U and d(i) · y(i) 6= 0.

We next show that vectors d(1), . . . ,d(k) are linearly independent. Suppose that they are not. Then
there exists some index i ∈ U and scalars a1, . . . , ai−1, ai+1, . . . , ak not all zeros, such that d(i) =∑

1≤j≤k,j 6=i ajd
(j). We then have 0 6= d(i) · y(i) =

∑
1≤h≤k,j 6=i ahd

(j) · y(i) = 0, a contradiction.

Therefore, d(1), . . . ,d(k) are linearly independent.

For each j such that k+1 ≤ j ≤ |W\S| (that is, j ∈ V ), let us define yj = (ω
(1)
j , . . . ,ω

(k)
j ). Let us

fix j. Observe that d(h) · yj = 0 for all h = 1, . . . , k. Since d(1), . . . ,d(k) are linearly independent,
this implies that yj is the zero vector. Since this holds for all j such that k + 1 ≤ j ≤ |W \ S|,
therefore, ω(i)

j = 0 for all 1 ≤ i ≤ k and k + 1 ≤ j ≤ |W \ S|. �
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