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Abstract

In this paper, we propose a learning approach for the Mixture of Hidden Markov
Models (MHMM) based on the Method of Moments (MoM). Computational ad-
vantages of MoM make MHMM learning amenable for large data sets. It is not
possible to directly learn an MHMM with existing learning approaches, mainly
due to a permutation ambiguity in the estimation process. We show that it is pos-
sible to resolve this ambiguity using the spectral properties of a global transition
matrix even in the presence of estimation noise. We demonstrate the validity of
our approach on synthetic and real data.

1 Introduction

Method of Moments (MoM) based algorithms [} 2 3] for learning latent variable models have
recently become popular in the machine learning community. They provide uniqueness guarantees
in parameter estimation and are a computationally lighter alternative compared to more traditional
maximum likelihood approaches. The main reason behind the computational advantage is that once
the moment expressions are acquired, the rest of the learning work amounts to factorizing a moment
matrix whose size is independent of the number of data items. However, it is unclear how to use these
algorithms for more complicated models such as Mixture of Hidden Markov Models (MHMM).

MHMM [4] is a useful model for clustering sequences, and has various applications [3, 16} [7]]. The
E-step of the Expectation Maximization (EM) algorithm for an MHMM requires running forward-
backward message passing along the latent state chain for each sequence in the dataset in every EM
iteration. For this reason, if the number of sequences in the dataset is large, EM can be computa-
tionally prohibitive.

In this paper, we propose a learning algorithm based on the method of moments for MHMM. We
use the fact that an MHMM can be expressed as an HMM with block diagonal transition matrix.
Having made that observation, we use an existing MoM algorithm to learn the parameters up to a
permutation ambiguity. However, this doesn’t recover the parameters of the individual HMMs. We
exploit the spectral properties of the global transition matrix to estimate a de-permutation mapping
that enables us to recover the parameters of the individual HMMs. We also specify a method that
can recover the number of HMMs under several spectral conditions.

2 Model Definitions

2.1 Hidden Markov Model

In a Hidden Markov Model (HMM), an observed sequence x = 1.7 = {21,...,%¢,..., 27} with
x; € RL is generated conditioned on a latent Markov chain r = 7.7 = {ry,...,7¢, ..., 77}, with



r¢ € {1,... M}. The HMM is parameterized by an emission matrix O € RY*M a transition matrix
A € RM*M and an initial state distribution v € R . Given the model parameters § = (O, A, v),
the likelihood of an observation sequence x1.7 is defined as follows:

plarrl0) = plerr, r1.|0) = ZHP zi|re, O) p(relre—1, A)
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where 1;; € RM is a column vector of ones, we have switched from index notation to matrix
notation in the second line such that summations are embedded in matrix multiplications, and we
use the MATLAB colon notation to pick a row/column of a matrix. Note that O(z;) := p(x4| :, O).
The model parameters are defined as follows:

o v(u) =p(ry =ulrg) =p(r =u) initial latent state distribution
o A(u,v) =p(ri =ulrie1 =v), t > 2 latent state transition matrix
o O(:,u) = Elxg|ry = u) emission matrix

The choice of the observation model p(x|r;) determines what the columns of O correspond to:

o Gaussian: p(z4|ry = u) = N (245 fiu, 02) = 0O(,u) =E[zr = u] = py.
e Poisson: p(z¢|r: = u) = PO(z4; A\y) =  0O(,u) =E[zr: = u] = Ay
e Multinomial: p(x¢|ry = uw) = Mult(xy;py,S) =  O(,u) = Elzr: = u] = pa.

The first model is a multivariate, isotropic Gaussian with mean y,, € R and covariance 01 €
RE*L, The second distribution is Poisson with intensity parameter \,, € RZ. This choice is partic-
ularly useful for counts data. The last density is a multinomial distribution with parameter p, € R
and number of draws S.

2.2 Mixture of HMMs

The Mixture of HMMs (MHMM) is a useful model for clustering sequences where each sequence
is modeled by one of K HMMs. It is parameterized by K emission matrices Oy € REXM K
transition matriced| A, € RM*M  and K initial state distributions 1, € R™ as well as a cluster
prior probability distribution 7 € RK Given the model parameters 01.x = (O1.x, A1.k,V1.K,T),
the likelihood of an observation sequence x,, = {%1 n,%2.n,.-.,ZT, n} is computed as a convex
combination of the likelihood of K HMMs:
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where h,, € {1,2,..., K} is the latent cluster indicator, r,, = {r1,,72,n,--., 71, n} is the latent
state sequence for the observed sequence x,,, and Oy, (5, ) is a shorthand for p(x¢ .| :, hn, = k, Ok).
Note that if a sequence is assigned to the k" cluster (h,, = k), the corresponding HMM parameters
0k = (Ag, Oy, Vi) are used to generate it.

"Without loss of generality, the number of hidden states for each HMM is taken to be M to keep the notation
uncluttered.



3 Spectral Learning for MHMMs

Traditionally, the parameters of an MHMM are learned with the Expectation-Maximization (EM)
algorithm. One drawback of EM is that it requires a good initialization. Another issue is its com-
putational requirements. In every iteration, one has to perform forward-backward message passing
for every sequence, resulting in a computationally expensive process, especially when dealing with
large datasets.

The proposed MoM approach avoids the issues associated with EM by leveraging the information in
various moments computed from the data. Given these moments, which can be computed efficiently,
the computation time of the learning algorithm is independent of the amount of data (number of
sequences and their lengths).

Our approach is mainly based on the observation that an MHMM can be seen as a single HMM with a
block-diagonal transition matrix. We will first establish this proposition and discuss its implications.
Then, we will describe the proposed learning algorithm.

3.1 MHMM as an HMM with a special structure

Lemma 1:

An MHMM with local parameters 6.5 = (O1.x, A1:x, V1.x, ) is an HMM with global parame-
ters § = (O, A, 7), where:

A1 0o ... 0 T

_ _ 0 A2 0 TolVg

O=[0, Oy ... Ox] , A= , Cov=1 3)
o 0 ... AK 7TK'VK

Proof: Consider the MHMM likelihood for a sequence x,,:
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where [O1 Oz ... Ok](x4) := O(z¢). We conclude that the MHMM and an HMM with param-
eters @ describe equivalent probabilistic models. (]

We see that the state space of an MHMM consists of K disconnected regimes. For each sequence
sampled from the MHMM, the first latent state r; determines what region the entire latent state
sequence lies in.

3.2 Learning an MHMM by learning an HMM

In the previous section, we showed the equivalence between the MHMM and an HMM with a block-
diagonal transition matrix. Therefore, it should be possible to use an HMM learning algorithm such
as spectral learning for HMMs [1} 2] to find the parameters of an MHMM. However, the true global
parameters 6 are recovered inexactly due to noise e¢: 0 — 9 and state indexing ambiguity via a
permutation mapping P: 6. — 0F. Consequently, the parameters 67 = (OF, AP ©F) obtained
from the learning algorithm are in the following form:

OF =0.pP", AP =PA.P", P =Pp (5)



where P is the permutation matrix corresponding to the permutation mapping P.

The presence of the permutation is a fundamental nuisance for MHMM learning since it causes
parameter mixing between the individual HMMs. The global parameters are permuted such that it
becomes impossible to identify individual cluster parameters. A brute force search to find P requires
(M K)! trials, which is infeasible for anything but very small M K. Nevertheless, it is possible to

efficiently find a depermutation mapping P using the spectral properties of the global transition

matrix A. Our ultimate goal in this section is to undo the effect of P by estimating a P that makes
AP block diagonal despite the presence of the estimation noise .

3.2.1 Spectral properties of the global transition matrix

Lemma 2:

Assuming that each of the local transition matrices A;.x has only one eigenvalue which is 1, the
global transition matrix A has K eigenvalues which are 1.

Proof:
VIALVT L 0 Vi oo 071 [Ar ... 01 [vi ... 01"
A=1 o 0 =lo . ollo ~ ollo ~ o -
0 0 VirAgVi! 0 0 Vk| |0 0 Ag| |0 0 Vg
VAV-?

where VA kal is the eigenvalue decomposition of A; with Vj as eigenvectors, and Ay as a di-
agonal matrix with eigenvalues on the diagonal. The eigenvalues of A;.x appear unaltered in the
eigenvalue decomposition of A, and consequently A has K eigenvalues which are 1. ]

Corollary 1:

llm A®=[v1ly, ... ply, ... Uk, (6)
where o, = [07 ... v ... 0] and vy is the stationary distribution of Ay, Vk € {1,..., K}.
10...0
Proof: lim (ViApVi e = lim ViASY =V 00 Uyt
: e— 00 Rk Yk e— o0 Rk Yk k k kar-
00...0

The third step follows because there is only one eigenvalue with magnitude 1. Since multiplying A
by itself amounts to multiplying the corresponding diagonal blocks, we have the structure in (6). O

Note that equation (6 points out that the matrix lim,_, 0 A¢€ consists of K blocks of size M x M
where the k’th block is v1],. A straightforward algorithm can now be developed for making
AP block diagonal. Since the eigenvalue decomposition is invariant under permutation, A and
AP have the same eigenvalues and eigenvectors. As e — oo, K clusters of columns appear in
(AP)e. Thus, A” can be made block-diagonal by clustering the columns of (A%)>. This idea
is illustrated in the middle row of Figure Note that, in an actual implementation, one would
use a low-rank reconstruction by zeroing-out the eigenvalues that are not equal to 1 in A to form
(APY .= VP(AP)"(VP)~t = (AP)>, where (A7) € RMEXME jg 3 diagonal matrix with only
K non-zero entries, corresponding to the eigenvalues which are 1.

This algorithm corresponds to the noiseless case A” . In practice, the output of the learning algorithm
is A” and the clear structure in Equation (6) no longer holds in (A”)¢, as ¢ — oo, as illustrated in

the bottom row of Figure[I] We can see that the three-cluster structure no longer holds for large e.
Instead, the columns of the transition matrix converge to a global stationary distribution.

3.2.2 Estimating the permutation in the presence of noise

In the general case with noise €, we lose the spectral property that the global transition matrix
has K eigenvalues which are 1. Consequently, the algorithm described in Section cannot be
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Figure 1: (Top left) Block-diagonal transition matrix after e-fold exponentiation. Each block con-
verge to its own stationary distribution. (Top right) Same as above with permutation. (Bottom)
Corrupted and permuted transition matrix after exponentiation. The true number K = 3 of HMMs

is clear for intermediate values of e, but as e — oo, the columns of the matrix converge to a global
stationary distribution.

applied directly to make A” block diagonal. In practice, the estimated transition matrix has only
one eigenvalue with unit magnitude and lim._, . (A7 )¢ converges to a global stationary distribution.

However, if the noise e is sufficiently small, a depermutation mapping P and the number of HMM
clusters K can be successfully estimated. We now specify the spectral conditions for this.

Definition 1: We denote )\g = agA for k € {1,..., K} as the global, noisy eigenvalues with
A7 > ‘)‘gﬂl’ Vk € {1,...,K — 1}, where A is the original eigenvalue of the k™ cluster
with magnitude 1 and oy is the noise that acts on that eigenvalue (note that «; = 1). We denote
)\fk = BNk for j € {2,...,M} and k € {1,..., K} as the local, noisy eigenvalues with
|)\j[fk > |)\J4+1’k Vke{l,...,K}andVj € {1,..., M — 1}, where \; ;, is the original eigenvalue
with the j™ largest magnitude in the k™ cluster, and 3, j, is the noise that acts on that eigenvalue.

Definition 2: The low-rank eigendecomposition of the estimated transition matrix A” is defined as
Ar := VA"V~ where V is a matrix with eigenvectors in the columns and A" is a diagonal matrix
with eigenvalues \{ ;. in the first K entries.

Conjecture 1:

yeuay

If [AS.| > X gnaxK} |\, |, then A" can be formed using the eigen-decomposition of A”. Then,
ef1 :

with high probability, ||AT — A"||r < O(1/VTN), where T'N is the total number of observed
vectors.

Justification:
AT = ATllp = [[AL — A+ A—A"||p <[|AL = Allp + [A = A"
=[|A = A"[[r + [|A - Ac + Al F
<|A=A"|lr + [|ALllF + |A = AcllF
<2KM + O(1/VTN) = O(1/VTN), w.h.p.,

where A is used for A" to reduce the notation clutter (and similarly A" for (A%)" and so on), we
used the triangle inequality for the first and second inequalities and AT = VA"V =1, where A is a
diagonal matrix of eigenvalues with the first K diagonal entries equal to zero (complement of A™).
For the last inequality, we used the fact that A € RMEXMEK hag entries in the interval [0, 1] and we
used the sample complexity result from [[1]. The bound specified in [1] is for a mixture model, but
since the two models are similar and the estimation procedure is almost identical, we are reusing it.
We believe that further analysis of the spectral learning algorithm is out of the scope of this paper,
so we leave this proposition as a conjecture. ([

Conjecture 1 asserts that, if we have enough data we should obtain an estimate A7 close to A" in the
squared error sense. Furthermore, if the following mixing rate condition is satisfied, we will be able
to identify the number of clusters K from the data.
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Figure 2: (Left) Number of significant eigenvalues across exponentiations. (Right) Spectral
Longevity SXK, with respect to the eigenvalue index K.

Definition 3: Let i denote the k™ largest eigenvalue (in decreasing order) of the estimated transi-
tion matrix A”. We define the quantity,

oo K' |5 K'—1,%
Al¢ Ar]®
PP o | o oA [ b bl >1_7>, -

e o A le o Avle

as the spectral longevity of M. The square brackets [.] denote an indicator function which outputs
1 if the argument is true and O otherwise, and ~y is a small number such as machine epsilon.

Y 2
Lemma 3: If [\ > max  |\f,| and argmaxy, ~ sl — K, for K' €
‘ K| ke{l,...,K}l 2’k| & K sl A ks -1l

{2,3,..., MK — 1}, then arg max ., SS\K/ - K.

Proof: The first condition ensures that the top K eigenvalues are global eigenvalues. The second
condition is about the convergence rates of the two ratios in equation (7). The first indicator function
has the following summation inside:

K/ ~ K/_ ~ ~
Do Nle =1 ! IN|€ + [ Are|©

MK ‘Xl,|€ o ll’(;;l ‘5\1/|8 + |5\K/|e + |5\K/+1|e + Zﬁ{:ﬁ(’—f& |5\l/‘e

I'=1

The rate at which this term goes to 1 is determined by the spectral gap |Ax|/| Ak +1]- The smaller
this ratio is, the faster the term (it is non-decreasing w.r.t. e€) converges to 1. For the second indi-
cator function inside ’SS\K/’ we can do the same analysis and see that the convergence rate is again
determined by the gap |Ax/—_1|/|A\k|. The ratio of the two spectral gaps determines the spectral
IXK’ |2

longevity. Hence, for the K’ with largest ratio ——“K2——
|)‘K’+1H)‘K’—1|

we have arg max 25\}(, =K. O
Lemma 3 tells us the following. If the estimated transition matrix Af is not foo noisy, we can
determine the number of clusters by choosing the value of K’ such that it maximizes 2;\1«' This
corresponds to exponentiating the sorted eigenvalues in a finite range, and recording the number of
non-negligible eigenvalues. This is depicted in Figure[2]

3.3 Proposed Algorithm

In previous sections, we have shown that the permutation caused by the MoM estimation procedure
can be undone, and we have proposed a way to estimate the number of clusters K. We summarize
the whole procedure in Algorithm [I]

4 Experiments

4.1 Effect of noise on depermutation algorithm

We have tested the algorithm’s performance with respect to amount of data. We used the parameters
K =3, M =4, L = 20, and we have 2 sequences with length T" for each cluster. We used a
Gaussian observation model with unit observation variance and the columns of the emission matrices
O1.x were drawn from zero mean spherical Gaussian with variance 2. Results for 10 uniformly



Algorithm 1 Spectral Learning for Mixture of Hidden Markov Models
Inputs: x;.5 : Sequences, M K : total number of states of global HMM.
QOutput: o= (51: 2 A\L f{) : MHMM parameters
Method of Moments Parameter Estimation

(OF, A7) = HMM _MethodofMoments (x1.n, M K)
Depermutation
Find eigenvalues of A”

Exponentiate eigenvalues for each discrete value e in a sufficiently large range.
Identify K as the eigenvalue with largest longevity.
Compute rank-K reconstruction A7 via eigendecomposition.
Cluster the columns of A7 with K clusters to find a depermutation mapping P via cluster labels.
Depermute OF and A” according to P.
Form by choosing corresponding blocks from depermuted O and A”.
Return 6.

Euclidean Distance vs Sequence Length
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Figure 3: Top row: Euclidean distance vs 7. Second row: Noisy input matrix. Third row: Noisy
reconstruction A7. Bottom row: Depermuted matrix, numbers at the bottom indicate the estimated
number of clusters.

spaced sequence lengths from 10 to 1000 are shown in Figure[3] On the top row, we plot the total
error (from centroid to point) obtained after fitting k-means with true number of HMM clusters. We
can see that the correct number of clusters X' = 3 as well as the block-diagonal structure of the
transition matrix is correctly recovered even in the case where 7' = 20.

4.2 Amount of data vs accuracy and speed

We have compared clustering accuracies of EM and our approach on data sampled from a Gaussian
emission MHMM. Means of each state of each cluster is drawn from a zero mean unit variance
Gaussian, and observation covariance is spherical with variance 2. We set L = 20, K = 5, M =
3. We used uniform mixing proportions and uniform initial state distribution. We evaluated the
clustering accuracies for 10 uniformly spaced sequence lengths (every sequence has the same length)
between 20 and 200, and 10 uniformly spaced number of sequences between 1 and 100 for each
cluster. The results are shown in Figure @] Although EM seems to provide higher accuracy on
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Figure 4: Clustering accuracy and run time results for synthetic data experiments.

Table 1: Clustering accuracies for handwritten digit dataset.

Algorithm [ 1v2 [ 1v3 | 1v4 [ 2v3 | 2v4 | 2v5 |
Spectral 100 | 70 | 54 | 83 | 99 | 99
EM init. w/ Spectral || 100 | 99 | 100 | 96 | 100 | 100
EM init. at Random || 96 | 99 | 98 | 83 [ 100 | 100

regions where we have less data, spectral algorithm is much faster. Note that, in spectral algorithm
we include the time spent in moment computation. We used four restarts for EM, and take the result
with highest likelihood, and used an automatic stopping criterion.

4.3 Real data experiment

We ran an experiment on the handwritten character trajectory dataset from the UCI machine learn-
ing repository [8]. We formed pairs of characters and compared the clustering results for three
algorithms: the proposed spectral learning approach, EM initialized at random, and EM initialized
with MoM algorithm as explored in [9]. We take the maximum accuracy of EM over 5 random ini-
tializations in the third row. We set the algorithm parameters to K = 2 and M = 4. There are 140
sequences of average length 100 per class. In the original data, L = 3, but to apply MoM learning,
we require that M K < L. To achieve this, we transformed the data vectors with a cubic polyno-
mial feature transformation such that L = 10 (this is the same transformation that corresponds to
a polynomial kernel). The results from these trials are shown in Table[I] We can see that although
spectral learning doesn’t always surpass randomly initialized EM on its own, it does serve as a very
good initialization scheme.

5 Conclusions and future work

We have developed a method of moments based algorithm for learning mixture of HMMs. Our
experimental results show that our approach is computationally much cheaper than EM, while being
comparable in accuracy. Our real data experiment also show that our approach can be used as a
good initialization scheme for EM. As future work, it would be interesting to apply the proposed
approach on other hierarchical latent variable models.
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