
Supplementary material to the paper: “ How
hard is my MDP?” The distribution-norm to the
rescue.
A Proofs regarding the dual norm

In this section, we provide the detailed proofs of the results corresponding to the dual norm || · ||�,p,
in the case when X is a discrete space.

A.1 Proof of Lemma 1

Lemma 1 When X = {1, . . . , S} and supp(p) = {1, . . . ,K} with K � S, then the following
equality holds true

||�pn − p||�,p = sup
f∈Ep:||f ||p=1

�

x

f(x)�pn(x) =

����
K�

s=1

�p2n,s − p2s
ps

.

Proof: The first equality is by definition. Introducing two Lagrangian parameters α and β corre-
sponding to the two equality constraints ||f ||p = 1 and Epf = 0, an optimal solution f� satisfies
that α�(||f�||2p − 1) = 0 and β�Epf = 0. We write p = (p1, . . . , pK , 0, . . . , 0)

� ∈ ΔS and then it
holds by the KKT conditions that

∀s ∈ {1, . . . ,K}, �pn,s − ps = 2α�f�
s ps + β�ps ;

K�

s=1

f�
s
2ps = 1

K�

s=1

f�
s ps = 0 .

Thus, we deduce on the one hand that

∀s ∈ {1, . . . ,K}, f�
s =

�pn,s − (1 + β�)ps
2α�ps

, with
K�

s=1

�pn,s = (1 + β�) ,

but we must have also
�K

s=1 �pn,s = 1, thus β = 0. On the other hand, we have

α� =
1

2

����
K�

s=1

(�pn,s − ps)2

ps
.

Plugging-in back the expression of f� in the definition of the dual norm, we deduce that

||�pn − p||�,p =

K�

s=1

�
�pn,s − ps

�
�pn,s�/ps

�
�K

s=1

�
�pn,s − ps

�2

/ps

.

Let us simplify this expression. We have on the one hand
K�

s=1

�
�pn,s − ps

�
�pn,s�/ps =

� K�

s=1

�p2n,s
ps

�
− 1 ,

and on the other hand, it holds that
K�

s=1

�
�pn,s − ps

�2

/ps =

K�

s=1

�p2n,s
ps

+ ps − 2�pn,s =
� K�

s=1

�p2n,s
ps

�
− 1 .

Thus, we deduce the following simplified expression

||�pn − p||�,p =

����
K�

s=1

�p2n,s − p2s
ps

.

�
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A.2 Proof of Lemma 2

Lemma 2 V(X) satisfies Ep

�
V(X)

�
= K−1

n . Moreover, for all i ∈ {1, . . . , n} we have that

V(X)− inf
s∈S

V(Xi,s) � b , where b =
2n− 1

n2

�
1

p(K)
− 1

p(1)

�
.

Proof: We start by decomposing ||�pn − p||2�,2,p in terms of the random variables {Xi}i=∈[n]. We
get that

V(X) = ||�pn − p||2�,p =
� K�

s=1

n�

i=1

I{Xi = s}
n2ps

+

n�

i=1

n�

i� �=i=1

I{Xi = s}I{Xi� = s}
n2ps

�
− 1

=

n�

i=1

�
1

n2pXi

+

n�

i� �=i=1

I{Xi = Xi�}
n2pXi

�
− 1 . (5)

Note also that with this expression, we derive easily

Ep

�
V(X)

�
=

K�

s=1

�
1

n
+ ps

n(n− 1)

n2

�
− 1 =

K − 1

n
.

For s ∈ S , we have, from (5)

V(X)− V(Xi,s) =
1

n2pXi0

− 1

n2ps
+ 2

n�

i�=i0=1

� I{Xi = Xi0}
n2pXi0

− I{Xi = s}
n2ps

�
.

Thus, if we introduce p(1) to be the largest component of p and p(K) its smallest non-0 component,
we deduce that

V(X)−min
s∈S

V(Xi,s) � 1

n2

�
1

p(K)
− 1

p(1)
+ 2

(n− 1)

p(K)
− 2

(n− 1)

p(1)

=
2n− 1

n2

�
1

p(K)
− 1

p(1)

�
.

We thus set b = 2n−1
n2

�
1

p(K)
− 1

p(1)

�
. �

A.3 Proof of Lemma 3

Lemma 3 The quantity V(X) = ||�pn − p||2�,p satisfies

n�

i=1

�
V(X)− inf

s∈X
V(Xi,s)

�2

� 2bV (X) .

Proof: On the one hand, we have

V(X) =

n�

i=1

�
1

n2pXi

+

n�

i� �=i=1

I{Xi = Xi�}
n2pXi

�
− 1 .
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Now, on the other hand, since V(X)− V(Xi,si) � 0, the quantity we want to control satisfies
n�

i=1

�
V(X)− V(Xi,si)

�2

=

n�

i=1

�
1

n2pXi0

− 1

n2psi
+ 2

n�

i�=i0=1

� I{Xi = Xi0}
n2pXi0

− I{Xi = si}
n2psi

��2

� b
n�

i=1

�
1

n2pXi0

+ 2
n�

i�=i0=1

I{Xi = Xi0}
n2pXi0

− 2(n− 1)

n2p(1)
− 1

n2p(1)

�

� b

�
V(X) + 1 +

n�

i�=i0=1

I{Xi = Xi0}
n2pXi0

− 2

p(1)

�

� b

�
V(X) +

n�

i�=i0=1

I{Xi = Xi0}
n2pXi0

− 1

�

� 2bV(X) .

�

B Discounted MDP

In this section, we provide the detailed proofs of the results that correspond to the performance
analysis of algorithms that use the || · ||�,p confidence bounds instead of || · ||1 bounds in the case of
discounted MDPs.

Proposition 1: Let M be a γ-discounted MDP with deterministic rewards, and π be a policy,
with corresponding value V π . We denote by p the transition kernel of M , and for convenience
use the notation pπ(s�|s) for p(s�|s, π(s)). Now, let �p be some estimate transition kernel such that
maxs∈S ||pπ(·|s)− �pπ(·|s)||�,pπ(·|s) � ε and let us denote �V π its corresponding value in the MDP
with kernel �p. Then, the maximal expected error between the two values is bounded by

Eπ
rr

def
= max

s0∈S

�
Epπ(·|s0)

�
V π

�
− E�pπ(·|s0)

��V π
��

� εCπ

1− γ
.

Proof: Simple algebra shows that

Eπ
rr = max

s0∈S

�

s∈S

�
V π(s)pπ(s|s0)− V π(s)�pπ(s|s0)

�
+

�

s∈S

�
V π(s)�pπ(s|s0)− �V π(s)�pπ(s|s0)

�

= max
s0∈S

�

s∈S
V π(s)

�
pπ(s|s0)− �pπ(s|s0)

�
+

�

s∈S
�pπ(s|s0)

�
V π(s)− �V π(s)

�
.

Now, on the one hand, we have by property of the dual norm, and definition of ε and C that
�

s∈S
V π(s)

�
pπ(s|s0)− �pπ(s|s0)

�
� ||pπ(·|s0)− �pπ(·|s0)||�,pπ(·|s0)||V π −

�

s∈S
V π(s)pπ(s|s0)||pπ(·|s0)

� εC .

On the other hand, we use one step of the Bellman equation together with the fact that the reward is
deterministic to deduce that
�

s∈S
�pπ(s|s0)

�
V π(s)− �V π(s)

�
= γ

�

s∈S
�pπ(s|s0)

� �

s�∈S

�V π(s�)pπ(s�|s)− �V π(s�|s)�pπ(s�|s)
�

� γ
��

s∈S
�pπ(s|s0)

�
max
s∈S

� �

s�∈S

�V π(s�)pπ(s�|s)− �V π(s�|s)�pπ(s�|s)
�

= γEπ
rr ,

where the last equality is because
�

s∈S �pπ(s|s0) = 1. Thus, we obtain Eπ
rr � εC + γEπ

rr , that is

Eπ
rr � εC

1− γ
.

�
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C Undiscounted MDP

In this section, we provide detailed proofs of the results that correspond to the regret analysis of the
modified UCRL algorithm that uses the || · ||�,p confidence bounds instead of || · ||1 bounds. We
reused the notations from Jaksch (2010).

C.1 Proof of Proposition 2

Proposition 2 Let us consider a finite-state MDP with S states, low kernel varianceM ∈ MC and
diameter D. Assume moreover that the transition kernel that always puts at least p0 mass on each
point of its support. Then, the modified UCRL algorithm run with condition (4) is such that for all
δ, with probability higher than 1− δ, for all T , the regret after T steps is bounded by

RT = O

��
DC

√
SA

�� log(TSA/δ)

p0
+
√
S
�
+D

��
T

p0
log(TSA/δ)

�
,

We reuse most of the analysis of UCRL, and only change the steps corresponding to the use of
the modified confidence intervals (4) for admissible transition kernels. Since the original proof of
UCRL is quite long, we decided not to re-derive the whole proof in a self-contained way. The
corresponding modifications would have been lost in the details. Instead, we refer precisely to the
steps that need to modified in the original proof, and provide the corresponding modifications below.
We also use the same notations as that of Jaksch (2010) for clarity.

Proof: The proof follows exactly the same steps as the regret proof given by Jaksch (2010) for
UCRL, up to two differences. More precisely, the very same steps hold until Section 4.3.2 of Jaksch
(2010). In this step, we need to update equation (17) and deal with vk(P̃k − Pk)wk. Since the
rows of both P̃k and Pk sum to 1, this quantity is invariant under a translation of wk by a constant.
Remember that wk is defined from the value ui computed by the Extended Value Iteration algorithm
in episode k by

wk(s) = ui(s) +
mins ui(s) + maxs ui(s)

2
.

For our purpose, we now define for each s ∈ S, first wk,s(s
�) = ui(s

�) − Ep(·|s,π̃k(s))[ui] and then
w̃k,s(s

�) = ui(s
�)− Ep̃k(·|s,π̃k(s))[ui]. We then derive a replacement for (17) from Jaksch (2010)

vk(P̃k −Pk)wk =
�

s

�

s�

vk(s, π̃k(s)) ·
�
p̃k(s

�|s, π̃k(s))− p(s�|s, π̃k(s))
�
ui(s

�)

�
�

s

vk(s, π̃k(s))

�
||p̃k(·|s, π̃k(s))− �p(·|s, π̃k(s))||�,p̃k(·|s,π̃k(s)) · ||w̃k,s||p̃k(·|s,π̃k(s))

+||�p(·|s, π̃k(s))− p(·|s, π̃k(s))||�,p(·|s,π̃k(s)) · ||wk,s||p(·|s,π̃k(s))

�

�
�

s

vk(s, π̃k(s))Bk

�
s, π̃k(s)

��
||wk,s||p(·|s,π̃k(s)) + ||w̃k,s||p̃(·|s,π̃k(s))

�
. (6)

At this point, we now relate ||w̃k||p̃(·|s,π̃k(s)) = ||ui||p̃(·|s,π̃k(s)) to the definition of C. In Jaksch
(2010), one could simply use the diameter of the MDP. Here, we need to work a little more. The
following lemma establishes a relationship between ||w̃k||p̃(·|sπ̃k(s)) and C.

Lemma 5 Provided that the MDP M is admissible in episode k, then the approximated optimistic
value computed by Extended Value Iteration satisfies that

||ui||p̃(·|s,a) � ||h||p̃(·|s,π̃k(s)) + 2D(BkC +Br
k) +

D√
tk
,

where Bk = maxs,aBk(s, a) and Br
k = maxs,a min{1,

�
7 log(2SAtk/δ)
max{1,Nk(s,a)}} � 1.
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We then relate ||w̃k||p(·|s,π̃k(s)) = ||ui||p(·|s,π̃k(s)) to C as well, and ||h||p̃(·|s,π̃k(s)) to
||h||p(·|s,π̃k(s)) � C thanks to the following lemma

Lemma 6 Provided that the MDPM is admissible in episode k, then it holds that

||h||2p(·|s,a) � ||h||2p̃(·|s,a) + 2D2Bk(s, a) ,

where D is the diameter of the true MDP. Further, the same holds for all f with span(f) � D.

Thanks to these lemmas, we deduce that, provided that the true MDP is admissible in episode k,
then

vk(P̃k −Pk)wk �
�

s

vk(s, π̃k(s))Bk(s, π̃k(s))

�
2C + 4BkCD + 3

√
2D

�
Bk(s, π̃k(s))

+4D +
2D√
tk

�
.

Note that this a crude bound, since 2D(BkC + Br
k) +

D√
tk

is actually a second order term. We
believe it is possible to take advantage of this with a much trickier analysis (by controlling Br

k and
Bk for all t).

The second term in section 4.3.2 that needs to be controlled is Xt = �p(·|st, at) −
est+1

, wk(t)�I{M ∈ Mk(t)}, where M is the true MDP and Mk(t) denotes the set of plausible
MDPs computed in episode k(t).

Lemma 7 We have the property that ifM is admissible in episode k = k(t), then

|Xt| � 1√
2p0

min

�
D,C + 2C

� 1

p0
− 1

�1/2

+D
� 1

p0
− 1

�1/4

+
√
2 + 1

�
.

From this point on, one can use the same next steps of the analysis by Jaksch (2010) and conclude
similarly to their result. Denoting by m the number of episodes as in Jaksch (2010), equation (18)
in Jaksch (2010) is replaced with

m�

k=1

vk(Pk − I)wkI{M ∈ Mk}

�
T�

t=1

Xt +mD

� D

�
5T

4p0
log

�
8T

δ

�
+DSA log2

�
8T

SA

�
,

with probability higher than 1 − δ
12T 5/4 . We then deal with equation (17) in Jaksch (2010). First,

we bound Bk(s, a) by

Bk(s, a) � 2

�
(2Nk(s, a)− 1) ln(tkSA/δ)

max{1, Nk(s, a)}2
�

1

p0
− 1

�
+

�
K − 1

max{1, Nk(s, a)}

�
�
2

�
2 log(tkSA/δ)

p0
+

√
K − 1

�
1�

max{1, Nk(s, a)}
.

Then, we deduce that equation (17) in Jaksch (2010) is replaced with

vk(P̃k −Pk)wk �
�
2

�
2 log(tkSA/δ)

p0
+
√
K − 1

��
2
�
C + 2BkCD + 2D

�

×
�

s,a

vk(s, a)�
max{1, Nk(s, a)}

+O

��

s,a

vk(s, a)

N
3/4
k (s, a)

D

p
1/4
0

��
.

14



As a result, we obtain a bound on the sum of the regret in each episode Δk, summing over all
episodes k � m such that M is admissible. We get with probability higher than 1− δ

12T 5/4 that
m�

k=1

ΔkI{M ∈ Mk} �

2
�
C + 2BkCD + 2D

��
2

�
2 log(TSA/δ)

p0
+
√
K − 1

� m�

k=1

�

s,a

vk(s, a)�
Nk(s, a)

+D

�
5T

4p0
log

�
8T

δ

�
+DSA log2

�
8T

SA

�
+O

�� T
p0

�1/4

DSA log2

�
8T

SA

��

+
��

14 log(
2SAT

δ
) + 2

� m�

k=1

�

s,a

vk(s, a)�
Nk(s, a)

.

Let us now introduce he notation C̃ = C + 2DC

�
2
�

2 log(TSA/δ)
p0

+
√
K − 1

�
+ 2D. Using the

same simplifying arguments as in Jaksch (2010), we can replace equation (21) in Jaksch (2010) with
m�

k=1

ΔkI{M ∈ Mk} �
��4

√
2C̃√
p0

+ 2
√
14
��

log(2TSA/δ) + 2C̃
√
S − 1

���√
2 + 1

�√
SAT

+D

�
5T log (8T/δ)

4p0
+O

�� T
p0

�1/4

DSA log2

�
8T

SA

��
.

The regret of the modified UCRL algorithm is thus given by the following bound, with probability
higher than 1− δ

12T 5/4 − δ
12T 5/4 − δ

12T 5/4 .

RT �
�

5

8
T log(

8T

δ
) +

√
T +D

�
5T

4p0
log

�
8T

δ

�
+O

�� T
p0

�1/4

DSA log2

�
8T

SA

��

��4
√
2C̃√
p0

+ 2
√
14
��

log(TSA/δ) + 2C̃
√
S − 1

��√
2 + 1

�√
SAT .

Since
�∞

T=2
δ

4T 5/4 < δ, we deduce that with probability higher than 1− δ, uniformly for all T , then

RT = O

��
C̃
√
SA+D

��
T
p0

log(TSA/δ) + C̃S
√
AT

�
. �

C.2 Proof of Lemma 5

Lemma 5 Provided that the MDP M is admissible in episode k, then the approximated optimistic
value computed by Extended Value Iteration satisfies that

||ui||p̃(·|s,π̃k(s)) � ||h̃||p̃(·|s,π̃k(s)) +
D√
tk

� ||h||p̃(·|s,π̃k(s)) + 2(BkC +Br
k)D +

D√
tk
,

where Bk = maxs,aBk(s, a) and Br
k = maxs,a

�
7 log(2SAtk/δ)
max{1,Nk(s,a)} .

Proof: Let us denote for convenience p̃ for p̃(·|s, π̃k(s)). We first relate ||ui||2p̃ to ||h̃π̃||2p̃.

First, following our analysis one can easily derive the following adaptation of Lemma 8 from Ortner
et al. (2014).

Lemma 8 Consider a communicating MDPM = (S,A, r, p), and another MDP M̃ = (S,A, r̃, p̃)
over the same state-action space which is an (ε, ε�)-approximation of M , in the sense that for all
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s, a |r(s, a)− r̃(s, a)| � ε| and ||p̃(·|s, a)− p(·|s, a)||�,p(·|s,a) � ε�. Assume that an optimal policy
π� forM is performed on M̃ for � steps, and let ṽ�(s) be the number of times state s is visited state
among these � steps. Then

�ρ�(M)−
�

s

ṽ�(s)r̃(s, π�(s)) < �
�
ε�C + ε

�
+D +D

�
� log(1/δ)

p0
.

An immediate corollary, that is the analogue of Lemma 9 from Ortner et al. (2014) is the following

Lemma 9 LetM , M̃ be two communicating MDPs over the same state-action space such that one
is an (ε, ε�)-approximation of the other. Then,

|ρ�(M)− ρ�(M̃)| � ε� min{CM , CM̃}+ ε .

Now, we use the fact that the Poisson equation that defines the optimal bias function h in M and h̃
in M̃ in involves ρ, r, p, such that

ρ� + h(s) = max
a∈A

�
r(s, a) +

�

s�∈S
p(s�|s, a)h(s�)

�
.

Thus, we deduce from Lemma 9 a similar result for the span

Lemma 10 Let M , M̃ be two communicating MDPs over the same state-action space such that
one is an (ε, ε�)-approximation of the other. Then,

||h(M)− h(M̃)||p � 2
�
ε� min{CM , CM̃}+ ε)min{DM , DM̃} .

The proof follows by using the Poisson equation for h and h̃, then using the ε approximation of r,
the ε approximation of p that gives a term εmin{CM , CM̃}, and the approximation of ρ that gives
the last ε(min{CM , CM̃} + 1). We also use that h and h̃ are defined up to a constant. Finally, one
needs to propagate the approximation error, which adds a factor D.

Indeed, by the Poisson equation, writing h = h(M) and h̃ = h(M̃), it holds that

h̃(s) = max
a∈A

� �

s�∈S
p̃(s�|s, a)h̃(s�) + r̃(s, a)

�
− ρ(M̃)

= max
a∈A

� �

s�∈S
p(s�|s, a)h(s�) + r(s, a) +

�

s�∈S
p(s�|s, a)(h̃(s�)− h(s�))

+
�

s�∈S
(p̃(s�|s, a)− p(s�|s, a))h̃(s�) +

�
r̃(s, a)− r(s, a)

��

−ρ(M) +
�
ρ(M)− ρ(M̃)

�
.

Thus, we deduce that
|h̃(s)− h(s)| �

��ρ(M)− ρ(M̃)
��+ ε+ ε�CM̃ + |max

a∈A
Ep(·|s,a)(h̃− h)| .

Now, since h and h̃ are defined up to a constant, it is always possible to make sure that
maxa∈A Ep(·|s,a)(h̃− h) for one state s. For the other states, we need to propagate the error bound.
Since the diameter of the MDP is less than D, then we deduce that for all s ∈ S

|h̃(s)− h(s)| �
���ρ(M)− ρ(M̃)

��+ ε+ ε� min{CM , CM̃}
�
D

� 2
�
ε� min{CM , CM̃}+ ε)D ,

where we applied the result of Lemma 9. We conclude by symmetry.

We then apply this to the optimistic MDP, and get that ε� = maxs,aBk(s, a) and ε =
maxs,aB

r
k(s, a). Finally, in order to go from ui to h, we use the fact that ui satisfies an approximate

Poisson equation, up to an error term that is controlled by 1√
tk

by equation (13) from Jaksch (2010).

After propagation, this gives a D√
tk

term. �
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C.3 Proof of Lemma 6

Lemma 6 Provided that the MDP M is admissible in episode k, then it holds that

||h||2p̃(·|s,a) � ||h||2p(·|s,a) + 2D2Bk(s, a) ,

where D is the diameter of the true MDP, for any h such that span(h) � D.

Proof: The proof is in two steps. First, using the short-hand notation p = p(·|s, a) and p̃ = p̃(·|s, a),
it holds that

||h||2p − ||h||2p̃ =
�

s�∈S
(h(s�)−

�

s��

h(s��)ps��)
2ps� −

�

s�∈S
(h(s�)−

�

s��

h(s��)p̃s��)
2p̃s�

=
�

s�∈S
h2(s�)

�
ps� − p̃s�

�
+

� �

s�∈S
h(s�)

�
p̃s� − ps�

��� �

s�∈S
h(s�)

�
p̃s� + ps�

��
.

Now, since both || · ||2p̃ and || · ||2p are invariant if we translate the operand by a constant c, let us
replace h with h− Ep̃[h]. In that case, we get

||h||2p − ||h||2p̃ =
�

s�∈S
(h(s�)− Ep̃[h])

2
�
ps� − p̃s�

�
−
� �

s�∈S
(h(s�)− Ep̃[h])ps�

�2

�
�

s�∈S
(h(s�)− Ep̃[h])

2
�
ps� − �pn,s�

�
+

�

s�∈S
(h(s�)− Ep̃[h])

2
�
�pn,s� − p̃s�

�

� ||(h(·)− Ep̃[h])
2||p||p− �pn||�,p + ||(h(·)− Ep̃[h])

2||p̃||�pn − p̃||�,p̃ .

Now, we use the fact that ||(h(·) − Ep̃[h])
2||q � span(h)2, for q = p and q = p̃, and then that

span(h) is upper bounded by the diameter D of the true MDP. This is proved by a similar argument
to that in Jaksch (2010), since we consider the same extended-action MDP. Thus, we deduce the
bound

||h||2p � ||h||2p̃ +D2
�
||p− �pn||�,p + ||�pn − p̃||�,p̃

�
.

�

C.4 Proof of Lemma 7

Lemma 7 Let Xt = �p(·|st, at) − est+1
, wk(t)�I{M ∈ Mk(t)}. We have the property that if

M ∈ Mk(t) (that is, the true MDP M is admissible in episode k = k(t)), then

|Xt| � 1√
2p0

min

�
D,C + 2C

� 1

p0
− 1

�1/2

+D
� 1

p0
− 1

�1/4

+
√
2 + 1

�
.

Proof: Indeed, Xt satisfies, if M ∈ Mk(t)

|Xt| =
���p(·|st, at)− est+1

, wk(t) − Ep(·|st,at)wk(t)�
��

=
���est+1 , wk(t) − Ep(·|st,at)wk(t)�

��
� ||est+1

||�,p̃(·|st,at)||wk(t)||p̃(·|st,at)

= ||est+1
||�,p̃(·|st,at)||ui||p̃(·|st,at)

Now, we deduce, from the following rewriting

||est+1 ||�,p̃(·|st,at) = sup{f(st+1) :
�

s∈S
f(s)p̃(s|st, at) = 0 and

�

s∈S
f2(s)p̃(s|st, at) = 1} ,
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that we must have f(st+1) � 1√
2
√

p̃(st+1|st,at)
. Thus, using the assumption that either p(s|st, at) >

p0 or p(s|st, at) = 0 for all s, that p̃ must satisfy the same constraint, and using the result of
Lemma 5, we deduce that (since we must have p(st+1|st, at) > 0)

|Xt| �
C + 2(BkC + 1) + 1√

tk
+ 2D

�
Bk(st, at)√

2p0

=
C(1 + 2Bk)√

2p0
+

D√
2p0

�
Bk(st, at) +

�
2

p0
+

1√
2p0tk

.

Now, we need a deterministic upper bound in order to be able to apply the result from Azuma’s
inequality. Thus, we use that Bk(st, at) �

�
1
p0

− 1, and get that

|Xt| � 1√
2p0

�
C + 2C

� 1

p0
− 1

�1/2

+D
� 1

p0
− 1

�1/4

+
√
2 + 1

�
.

�

D Additional Experimental Details & Results

Normalizing & Discounting: For all the benchmark MDPs, we normalized the reward functions
so that all rewards were within the range [0, 1]. The inventory management task (Mankowitz et al.,
2014) was originally a cost minization problem, so we negated the rewards before normalization to
obtain a maximization problem. For all MDPs, we used a discount factor γ = 0.95.

State Discretization: The Mountain Car task and the Pinball domain both have continuous state-
spaces. Thus, we needed to discretize them to obtain a finite-state MDP. States for the Mountain
Car task are described by a position and velocity. The discretization used for the Mountain Car task
was a grid where the cars position was divided into 15 bins and the velocity was devided into 10
bins. States for the Pinball domain are described by a 2-dimensional position and velocity. The
discretization for the Pinball domain was 12 bins for the x-coordinate, 12 bins for the y-coordinate,
4 bins for the x-velocity, and 4 bins for the y-velocity.

Policy Iteration: For each benchmark MDP, we executed policy iteration for 100 iterations. Initial
policies were generated by randomly selecting actions for each state according to a uniform distri-
bution. During each iteration, we evaluated the current policy by executing the policy evaluation
algorithm for 500 iterations.
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