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Abstract

We consider the problem of learning the canonical parameters specifying an undi-
rected graphical model (Markov random field) from the mean parameters. For
graphical models representing a minimal exponential family, the canonical param-
eters are uniquely determined by the mean parameters, so the problem is feasible
in principle. The goal of this paper is to investigate the computational feasibil-
ity of this statistical task. Our main result shows that parameter estimation is in
general intractable: no algorithm can learn the canonical parameters of a generic
pair-wise binary graphical model from the mean parameters in time bounded by a
polynomial in the number of variables (unless RP = NP). Indeed, such a result has
been believed to be true (see [1]) but no proof was known.
Our proof gives a polynomial time reduction from approximating the partition
function of the hard-core model, known to be hard, to learning approximate pa-
rameters. Our reduction entails showing that the marginal polytope boundary has
an inherent repulsive property, which validates an optimization procedure over
the polytope that does not use any knowledge of its structure (as required by the
ellipsoid method and others).

1 Introduction

Graphical models are a powerful framework for succinct representation of complex high-
dimensional distributions. As such, they are at the core of machine learning and artificial intelli-
gence, and are used in a variety of applied fields including finance, signal processing, communica-
tions, biology, as well as the modeling of social and other complex networks. In this paper we focus
on binary pairwise undirected graphical models, a rich class of models with wide applicability. This
is a parametric family of probability distributions, and for the models we consider, the canonical
parameters ✓ are uniquely determined by the vector µ of mean parameters, which consist of the
node-wise and pairwise marginals.

Two primary statistical tasks pertaining to graphical models are inference and parameter estimation.
A basic inference problem is the computation of marginals (or conditional probabilities) given the
model, that is, the forward mapping ✓ 7! µ. Conversely, the backward mapping µ 7! ✓ corresponds
to learning the canonical parameters from the mean parameters. The backward mapping is defined
only for µ in the marginal polytope M of realizable mean parameters, and this is important in what
follows. The backward mapping captures maximum likelihood estimation of parameters; the study
of the statistical properties of maximum likelihood estimation for exponential families is a classical
and important subject.

In this paper we are interested in the computational tractability of these statistical tasks. A basic
question is whether or not these maps can be computed efficiently (namely in time polynomial in
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the problem size). As far as inference goes, it is well known that approximating the forward map
(inference) is computational hard in general. This was shown by Luby and Vigoda [2] for the hard-
core model, a simple pairwise binary graphical model (defined in (2.1)). More recently, remarkably
sharp results have been obtained, showing that computing the forward map for the hard-core model
is tractable if and only if the system exhibits the correlation decay property [3, 4]. In contrast, to the
best of our knowledge, no analogous hardness result exists for the backward mapping (parameter
estimation), despite its seeming intractability [1].

Tangentially related hardness results have been previously obtained for the problem of learning the
graph structure underlying an undirected graphical model. Bogdanov et al. [5] showed hardness
of determining graph structure when there are hidden nodes, and Karger and Srebro [6] showed
hardness of finding the maximum likelihood graph with a given treewidth. Computing the backward
mapping, in comparison, requires estimation of the parameters when the graph is known.

Our main result, stated precisely in the next section, establishes hardness of approximating the
backward mapping for the hard-core model. Thus, despite the problem being statistically feasible,
it is computationally intractable.

The proof is by reduction, showing that the backward map can be used as a black box to efficiently
estimate the partition function of the hard-core model. The reduction, described in Section 4, uses
the variational characterization of the log-partition function as a constrained convex optimization
over the marginal polytope of realizable mean parameters. The gradient of the function to be min-
imized is given by the backward mapping, and we use a projected gradient optimization method.
Since approximating the partition function of the hard-core model is known to be computationally
hard, the reduction implies hardness of approximating the backward map.

The main technical difficulty in carrying out the argument arises because the convex optimization
is constrained to the marginal polytope, an intrinsically complicated object. Indeed, even deter-
mining membership (or evaluating the projection) to within a crude approximation of the polytope
is NP-hard [7]. Nevertheless, we show that it is possible to do the optimization without using any
knowledge of the polytope structure, as is normally required by ellipsoid, barrier, or projection meth-
ods. To this end, we prove that the polytope boundary has an inherent repulsive property that keeps
the iterates inside the polytope without actually enforcing the constraint. The consequence of the
boundary repulsion property is stated in Proposition 4.6 of Section 4, which is proved in Section 5.

Our reduction has a close connection to the variational approach to approximate inference [1]. There,
the conjugate-dual representation of the log-partition function leads to a relaxed optimization prob-
lem defined over a tractable bound for the marginal polytope and with a simple surrogate to the
entropy function. What our proof shows is that accurate approximation of the gradient of the en-
tropy obviates the need to relax the marginal polytope.

We mention a related work of Kearns and Roughgarden [8] showing a polynomial-time reduction
from inference to determining membership in the marginal polytope. Note that such a reduction
does not establish hardness of parameter estimation: the empirical marginals obtained from samples
are guaranteed to be in the marginal polytope, so an efficient algorithm could hypothetically exist
for parameter estimation without contradicting the hardness of marginal polytope membership.

After completion of our manuscript, we learned that Montanari [9] has independently and simulta-
neously obtained similar results showing hardness of parameter estimation in graphical models from
the mean parameters. His high-level approach is similar to ours, but the details differ substantially.

2 Main result

In order to establish hardness of learning parameters from marginals for pairwise binary graphical
models, we focus on a specific instance of this class of graphical models, the hard-core model.
Given a graph G = (V,E) (where V = {1, . . . , p}), the collection of independent set vectors
I(G) ✓ {0, 1}V consist of vectors � such that �

i

= 0 or �
j

= 0 (or both) for every edge {i, j} 2 E.
Each vector � 2 I(G) is the indicator vector of an independent set. The hard-core model assigns
nonzero probability only to independent set vectors, with

P
✓

(�) = exp

✓

X

i2V

✓
i

�
i

� �(✓)

◆

for each � 2 I(G) . (2.1)
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This is an exponential family with vector of sufficient statistics �(�) = (�
i

)

i2V

2 {0, 1}p and
vector of canonical parameters ✓ = (✓

i

)

i2V

2 Rp. In the statistical physics literature the model
is usually parameterized in terms of node-wise fugacity (or activity) �

i

= e✓i . The log-partition
function

�(✓) = log

 

X

�2I(G)

exp

✓

X

i2V

✓
i

�
i

◆

!

serves to normalize the distribution; note that �(✓) is finite for all ✓ 2 Rp. Here and throughout, all
logarithms are to the natural base.

The set M of realizable mean parameters plays a major role in the paper, and is defined as

M = {µ 2 Rp| there exists a ✓ such that E
✓

[�(�)] = µ} .

For the hard-core model (2.1), the set M is a polytope equal to the convex hull of independent set
vectors I(G) and is called the marginal polytope. The marginal polytope’s structure can be rather
complex, and one indication of this is that the number of half-space inequalities needed to represent
M can be very large, depending on the structure of the graph G underlying the model [10, 11].

The model (2.1) is a regular minimal exponential family, so for each µ in the interior M� of the
marginal polytope there corresponds a unique ✓(µ) satisfying the dual matching condition

E
✓

[�(�)] = µ .

We are concerned with approximation of the backward mapping µ 7! ✓, and we use the following
notion of approximation.
Definition 2.1. We say that ŷ 2 R is a �-approximation to y 2 R if y(1 � �)  ŷ  (1 + �). A
vector v̂ 2 Rp is a �-approximation to v 2 Rp if each entry v̂

i

is a �-approximation to v
i

.

We next define the appropriate notion of efficient approximation algorithm.
Definition 2.2. A fully polynomial randomized approximation scheme (FPRAS) for a mapping f

p

:

X
p

! R is a randomized algorithm that for each � > 0 and input x 2 X
p

, with probability at
least 3/4 outputs a �-approximation ˆf

p

(x) to f
p

(x) and moreover the running time is bounded by a
polynomial Q(p, ��1

).

Our result uses the complexity classes RP and NP, defined precisely in any complexity text (such
as [12]). The class RP consists of problems solvable by efficient (randomized polynomial) algo-
rithms, and NP consists of many seemingly difficult problems with no known efficient algorithms.
It is widely believed that NP 6= RP. Assuming this, our result says that there cannot be an efficient
approximation algorithm for the backward mapping in the hard-core model (and thus also for the
more general class of binary pairwise graphical models).

We recall that approximating the backward mapping entails taking a vector µ as input and producing
an approximation of the corresponding vector of canonical parameters ✓ as output. It should be noted
that even determining whether a given vector µ belongs to the marginal polytope M is known to be
an NP-hard problem [7]. However, our result shows that the problem is NP-hard even if the input
vector µ is known a priori to be an element of the marginal polytope M.
Theorem 2.3. Assuming NP 6= RP, there does not exist an FPRAS for the backward mapping
µ 7! ✓.

As discussed in the introduction, Theorem 2.3 is proved by showing that the backward mapping
can be used as a black-box to efficiently estimate the partition function of the hard core model,
known to be hard. This uses the variational characterization of the log-partition function as well as a
projected gradient optimization method. Proving validity of the projected gradient method requires
overcoming a substantial technical challenge: we show that the iterates remain within the marginal
polytope without explicitly enforcing this (in particular, we do not project onto the polytope). The
bulk of the paper is devoted to establishing this fact, which may be of independent interest.

In the next section we give necessary background on conjugate-duality and the variational character-
ization as well as review the result we will use on hardness of computing the log-partition function.
The proof of Theorem 2.3 is then given in Section 4.
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3 Background

3.1 Exponential families and conjugate duality

We now provide background on exponential families (as can be found in the monograph by Wain-
wright and Jordan [1]) specialized to the hard-core model (2.1) on a fixed graph G = (V,E).
General theory on conjugate duality justifying the statements of this subsection can be found in
Rockafellar’s book [13].

The basic relationship between the canonical and mean parameters is expressed via conjugate (or
Fenchel) duality. The conjugate dual of the log-partition function �(✓) is

�

⇤
(µ) := sup

✓2Rd

n

hµ, ✓i � �(✓)
o

.

Note that for our model �(✓) is finite for all ✓ 2 Rp and furthermore the supremum is uniquely
attained. On the interior M� of the marginal polytope, ��

⇤ is the entropy function. The log-
partition function can then be expressed as

�(✓) = sup

µ2M

n

h✓, µi � �

⇤
(µ)
o

, (3.1)

with
µ(✓) = argmax

µ2M

n

h✓, µi � �

⇤
(µ)
o

. (3.2)

The forward mapping ✓ 7! µ is specified by the variational characterization (3.2) or alternatively by
the gradient map r� : Rp ! M.

As mentioned earlier, for each µ in the interior M� there is a unique ✓(µ) satisfying the dual match-
ing condition E

✓(µ)[�(�)] = (r�)(✓(µ)) = µ.

For mean parameters µ 2 M�, the backward mapping µ 7! ✓(µ) to the canonical parameters is
given by

✓(µ) = argmax

✓2Rp

n

hµ, ✓i � �(✓)
o

or by the gradient
r�

⇤
(µ) = ✓(µ) .

The latter representation will be the more useful one for us.

3.2 Hardness of inference

We describe an existing result on the hardness of inference and state the corollary we will use. The
result says that, subject to widely believed conjectures in computational complexity, no efficient
algorithm exists for approximating the partition function of certain hard-core models. Recall that
the hard-core model with fugacity � is given by (2.1) with ✓

i

= ln� for each i 2 V .

Theorem 3.1 ([3, 4]). Suppose d � 3 and � > �
c

(d) = (d�1)d�1

(d�2)d . Assuming NP 6= RP, there exists
no FPRAS for computing the partition function of the hard-core model with fugacity � on regular
graphs of degree d. In particular, no FPRAS exists when � = 1 and d � 5.

We remark that the source of hardness is the long-range dependence property of the hard-core model
for � > �

c

(d). It was shown in [14] that for � < �
c

(d) the model exhibits decay of correlations
and there is an FPRAS for the log-partition function (in fact there is a deterministic approximation
scheme as well). We note that a number of hardness results are known for the hardcore and Ising
models, including [15, 16, 3, 2, 4, 17, 18, 19]. The result stated in Theorem 3.1 suffices for our
purposes.

From this section we will need only the following corollary, proved in the Appendix. The proof,
standard in the literature, uses the self-reducibility of the hard-core model to express the partition
function in terms of marginals computed on subgraphs.
Corollary 3.2. Consider the hard-core model (2.1) on graphs of degree most d with parameters
✓
i

= 0 for all i 2 V . Assuming NP 6= RP, there exists no FPRAS µ̂(0) for the vector of marginal
probabilities µ(0), where error is measured entry-wise as per Definition 2.1.
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4 Reduction by optimizing over the marginal polytope

In this section we describe our reduction and prove Theorem 2.3. We define polynomial constants

✏ = p�8 , q = p5 , and s =
� ✏

2p

�2
, (4.1)

which we will leave as ✏, q, and s to clarify the calculations. Also, given the asymptotic nature of the
results, we assume that p is larger than a universal constant so that certain inequalities are satisfied.
Proposition 4.1. Fix a graph G on p nodes. Let ˆ✓ : M� ! Rp be a black box giving a �-
approximation for the backward mapping µ 7! ✓ for the hard-core model (2.1). Using 1/✏�2 calls
to ˆ✓, and computation bounded by a polynomial in p, 1/�, it is possible to produce a 4�p7/2/q✏2-
approximation µ̂(0) to the marginals µ(0) corresponding to all zero parameters.

We first observe that Theorem 2.3 follows almost immediately.

Proof of Theorem 2.3. A standard median amplification trick (see e.g. [20]) allows to decrease the
probability 1/4 of erroneous output by a FPRAS to below 1/p✏�2 using O(log(p✏�2

)) function calls.
Thus the assumed FPRAS for the backward mapping can be made to give a �-approximation ˆ✓ to ✓
on 1/✏�2 successive calls, with probability of no erroneous outputs equal to at least 3/4. By taking
� = �̃q✏2p�7/2/2 in Proposition 4.1 we get a �̃-approximation to µ(0) with computation bounded
by a polynomial in p, 1/�̃. In other words, the existence of an FPRAS for the mapping µ 7! ✓ gives
an FPRAS for the marginals µ(0), and by Corollary 3.2 this is not possible if NP 6= RP.

We now work towards proving Proposition 4.1, the goal being to estimate the vector of marginals
µ(0) for some fixed graph G. The desired marginals are given by the solution to the optimiza-
tion (3.2) with ✓ = 0:

µ(0) = � argmin

µ2M
�

⇤
(µ) . (4.2)

We know from Section 3 that for x 2 M� the gradient r�

⇤
(x) = ✓(x), that is, the backward

mapping amounts to a gradient first order (gradient) oracle. A natural approach to solving the
optimization problem (4.2) is to use a projected gradient method. For reasons that will be come clear
later, instead of projecting onto the marginal polytope M, we project onto the shrunken marginal
polytope M1 ⇢ M defined as

M1 = {µ 2 M \ [q✏,1)

p

: µ+ ✏ · e
i

2 M for all i} , (4.3)
where e

i

is the ith standard basis vector.

As mentioned before, projecting onto M1 is NP-hard, and this must therefore be avoided if we
are to obtain a polynomial-time reduction. Nevertheless, we temporarily assume that it is possible
to do the projection and address this difficulty later. With this in mind, we propose to solve the
optimization (4.2) by a projected gradient method with fixed step size s,

xt+1
= PM1(x

t � sr�

⇤
(xt

)) = PM1(x
t � s✓(xt

)) , (4.4)

In order for the method (4.4) to succeed a first requirement is that the optimum is inside M1. The
following lemma is proved in the Appendix.
Lemma 4.2. Consider the hard core model (2.1) on a graph G with maximum degree d on p � 2

d+1

nodes and canonical parameters ✓ = 0. Then the corresponding vector of mean parameters µ(0) is
in M1.

One of the benefits of operating within M1 is that the gradient is bounded by a polynomial in p,
and this will allow the optimization procedure to converge in a polynomial number of steps. The
following lemma amounts to a rephrasing of Lemmas 5.3 and 5.4 in Section 5 and the proof is
omitted.
Lemma 4.3. We have the gradient bound kr�

⇤
(x)k1 = k✓(x)k1  p/✏ = p9 for any x 2 M1.

Next, we state general conditions under which an approximate projected gradient algorithm con-
verges quickly. Better convergence rates are possible using the strong convexity of �⇤ (shown in
Lemma 4.5 below), but this lemma suffices for our purposes. The proof is standard (see [21] or
Theorem 3.1 in [22] for a similar statement) and is given in the Appendix for completeness.
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Lemma 4.4 (Projected gradient method). Let G : C ! R be a convex function defined over a com-
pact convex set C with minimizer x⇤ 2 argmin

x2C

G(x). Suppose we have access to an approxi-
mate gradient oracle drG(x) for x 2 C with error bounded as sup

x2C

kdrG(x)�rG(x)k1  �/2.
Let L = sup

x2C

kdrG(x)k. Consider the projected gradient method xt+1
= P

C

(xt � sdrG(xt

))

starting at x1 2 C and with fixed step size s = �/2L2. After T = 4kx1 � x⇤k2L2/�2 iterations the
average x̄T

=

1
T

P

T

t=1 x
t satisfies G(x̄T

)�G(x⇤
)  �.

To translate accuracy in approximating the function �

⇤
(x⇤

) to approximating x⇤, we use the fact that
�

⇤ is strongly convex. The proof (in the Appendix) uses the equivalence between strong convexity
of �

⇤ and strong smoothness of the Fenchel dual �, the latter being easy to check. Since we
only require the implication of the lemma, we defer the definitions of strong convexity and strong
smoothness to the appendix where they are used.

Lemma 4.5. The function �

⇤
: M� ! R is p�

3
2 -strongly convex. As a consequence, if �⇤

(x) �
�

⇤
(x⇤

)  � for x 2 M� and x⇤
= argmin

y2M� �
⇤
(y), then kx� x⇤k  2p

3
2 �.

At this point all the ingredients are in place to show that the updates (4.4) rapidly approach µ(0),
but a crucial difficulty remains to be overcome. The assumed black box ˆ✓ for approximating the
mapping µ 7! ✓ is only defined for µ inside M, and thus it is not at all obvious how to evaluate
the projection onto the closely related polytope M1. Indeed, as shown in [7], even approximate
projection onto M is NP-hard, and no polynomial time reduction can require projecting onto M1

(assuming P 6= NP).

The goal of the subsequent Section 5 is to prove Proposition 4.6 below, which states that the opti-
mization procedure can be carried out without any knowledge about M or M1. Specifically, we
show that thresholding coordinates suffices, that is, instead of projecting onto M1 we may project
onto the translated non-negative orthant [q✏,1)

p. Writing P� for this projection, we show that the
original projected gradient method (4.4) has identical iterates xt as the much simpler update rule

xt+1
= P�(x

t � s✓(xt

)) . (4.5)

Proposition 4.6. Choose constants as per (4.1). Suppose x1 2 M1, and consider the iterates
xt+1

= P�(xt � sˆ✓(xt

)) for t � 1, where ˆ✓(xt

) is a �-approximation of ✓(xt

) for all t � 1. Then
xt 2 M1, for all t � 1, and thus the iterates are the same using either P� or PM1 .

The next section is devoted to the proof of Proposition 4.6. We now complete the reduction.

Proof of Proposition 4.1. We start the gradient update procedure xt+1
= P�(xt � sˆ✓(xt

)) at the
point x1

= (

1
2p ,

1
2p , . . . ,

1
2p ), which we claim is within M1 for any graph G for p = |V | large

enough. To see this, note that ( 1
p

, 1
p

, . . . , 1
p

) is in M, because it is a convex combination (with
weight 1/p each) of the independent set vectors e1, . . . , ep. Hence x1

+

1
2p ·ei 2 M, and additionally

x1
i

=

1
2p � q✏, for all i.

We establish that xt 2 M1 for each t � 1 by induction, having verified the base case t = 1 in
the preceding paragraph. Let xt 2 M1 for some t � 1. At iteration t of the update rule we make
a call to the black box ˆ✓(xt

) giving a �-approximation to the backward mapping ✓(xt

), compute
xt � sˆ✓(xt

), and then project onto [q✏,1)

p. Proposition 4.6 ensures that xt+1 2 M1. Therefore,
the update xt+1

= P�(xt � sˆ✓(xt

)) is the same as xt+1
= PM1(x

t � sˆ✓(xt

)).

Now we can now apply Lemma 4.4 with G = �

⇤, C = M1, � = 2�p2/✏ and L =

sup

x2C

kdrG(x)k2 
p

p(p/✏)2 = p3/2/✏. After

T = 4kx1 � x⇤k2L2/�2  4p(p3/✏2)/(4�2p4/✏2) = 1/�2

iterations the average x̄T

=

1
T

P

T

t=1 x
t satisfies G(x̄T

)�G(x⇤
)  �.

Lemma 4.5 implies that kx̄T � x⇤k2  2�p
3
2 , and since x⇤

i

� q✏, we get the entry-wise bound
|x̄T

i

� x⇤
i

|  2�p
3
2x⇤

i

/q✏ for each i 2 V . Hence x̄T is a 4�p7/2/q✏2-approximation for x⇤.
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5 Proof of Proposition 4.6

In Subsection 5.1 we prove estimates on the parameters ✓ corresponding to µ close to the boundary
of M1, and then in Subsection 5.2 we use these estimates to show that the boundary of M1 has a
certain repulsive property that keeps the iterates inside.

5.1 Bounds on gradient

We start by introducing some helpful notation. For a node i, let N (i) = {j 2 [p] : (i, j) 2 E}
denote its neighbors. We partition the collection of independent set vectors as

I = S
i

[ S�
i

[ S↵
i

,

where

S
i

= {� 2 I : �
i

= 1} = {Ind sets containing i}
S�
i

= {� � e
i

: � 2 S
i

} = {Ind sets where i can be added}
S↵
i

= {� 2 I : �
j

= 1 for some j 2 N (i)} = {Ind sets conflicting with i} .

For a collection of independent set vectors S ✓ I we write P(S) as shorthand for P
✓

(� 2 S) and

f(S) = P(S) · e�(✓)
=

X

�2S

exp

✓

X

j2V

✓
j

�
j

◆

.

We can then write the marginal at node i as µ
i

= P(S
i

), and since S
i

, S�
i

, S↵
i

partition I, the space
of all independent sets of G, 1 = P(S

i

) + P(S�
i

) + P(S↵
i

). For each i let

⌫
i

= P(S↵
i

) = P(a neighbor of i is in �) .

The following lemma specifies a condition on µ
i

and ⌫
i

that implies a lower bound on ✓
i

.
Lemma 5.1. If µ

i

+ ⌫
i

� 1� � and ⌫
i

 1� ⇣� for ⇣ > 1, then ✓
i

� ln(⇣ � 1).

Proof. Let ↵ = e✓i , and observe that f(S
i

) = ↵f(S�
i

). We want to show that ↵ � ⇣ � 1.

The first condition µ
i

+ ⌫
i

� 1� � implies that

f(S
i

) + f(S↵
i

) � (1� �)(f(S
i

) + f(S↵
i

) + f(S�
i

))

= (1� �)(f(S
i

) + f(S↵
i

) + ↵�1f(S
i

)) ,

and rearranging gives

f(S↵
i

) + f(S
i

) � 1� �

�
↵�1f(S

i

) . (5.1)

The second condition ⌫
i

 1� ⇣� reads f(S↵
i

)  (1� ⇣�)(f(S
i

) + f(S↵
i

) + f(S�
i

)) or

f(S↵
i

)  1� ⇣�

⇣�
f(S

i

)(1 + ↵�1
) (5.2)

Combining (5.1) and (5.2) and simplifying results in ↵ � ⇣ � 1.

We now use the preceding lemma to show that if a coordinate is close to the boundary of the shrunken
marginal polytope M1, then the corresponding parameter is large.
Lemma 5.2. Let r be a positive real number. If µ 2 M1 and µ+ r✏ · e

i

/2 M, then ✓
i

� ln

�

q

r

�1

�

.

Proof. We would like to apply Lemma 5.1 with ⇣ = q/r and � = r✏, which requires showing that
(a) ⌫

i

 1 � q✏ and (b) µ
i

+ ⌫
i

� 1 � r✏. To show (a), note that if µ 2 M1, then µ
i

� q✏ by
definition of M1. It follows that ⌫

i

 1� µ
i

 1� q✏.

We now show (b). Since µ
i

= P(S
i

), ⌫
i

= P(S↵
i

), and 1 = P(S
i

) + P(S↵
i

) + P (S�
i

), (b)
is equivalent to P(S�

i

)  r✏. We assume that µ + r✏ · e
i

/2 M and suppose for the sake of
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contradiction that P(S�
i

) > r✏. Writing ⌘
�

= P(�) for � 2 I, so that µ =

P

�2I ⌘
�

· �, we define
a new probability measure

⌘0
�

=

8

<

:

⌘
�

+ ⌘
��ei if � 2 S

i

0 if � 2 S�
i

⌘
�

otherwise .

One can check that µ0
=

P

�2I ⌘0
�

� has µ0
j

= µ
j

for each i 6= j and µ0
i

= µ
i

+ P(S�
i

) > µ
i

+ r✏.
The point µ0, being a convex combination of independent set vectors, must be in M, and hence so
must µ+ r✏ · e

i

. But this contradicts the hypothesis and completes the proof of the lemma.

The proofs of the next two lemmas are similar in spirit to Lemma 8 in [23] and are proved in the
Appendix. The first lemma gives an upper bound on the parameters (✓

i

)

i2V

corresponding to an
arbitrary point in M1.
Lemma 5.3. If µ+ ✏ · e

i

2 M, then ✓
i

 p/✏. Hence if µ 2 M1, then ✓
i

 p/✏ for all i.

The next lemma shows that if a component µ
i

is not too small, the corresponding parameter ✓
i

is
also not too negative. As before, this allows to bound from below the parameters corresponding to
an arbitrary point in M1.
Lemma 5.4. If µ

i

� q✏, then ✓
i

� �p/q✏. Hence if µ 2 M1, then ✓
i

� �p/q✏ for all i.

5.2 Finishing the proof of Proposition 4.6

We sketch the remainder of the proof here; full detail is given in Section D of the Supplement.

Starting with an arbitrary xt in M1, our goal is to show that xt+1
= P�(xt � sˆ✓(xt

)) remains
in M1. The proof will then follow by induction, because our initial point x1 is in M1 by the
hypothesis.

The argument considers separately each hyperplane constraint for M of the form hh, xi  1. The
distance of x from the hyperplane is 1� hh, xi. Now, the definition of M1 implies that if x 2 M1,
then x+ ✏ ·e

i

2 M1 for all coordinates i, and thus 1�hh, xi � ✏khk1 for all constraints. We call a
constraint hh, xi  1 critical if 1� hh, xi < ✏khk1, and active if ✏khk1  1� hh, xi < 2✏khk1.
For xt 2 M1 there are no critical constraints, but there may be active constraints.

We first show that inactive constraints can at worst become active for the next iterate xt+1, which
requires only that the step-size is not too large relative to the magnitude of the gradient (Lemma 4.3
gives the desired bound). Then we show (using the gradient estimates from Lemmas 5.2, 5.3,
and 5.4) that the active constraints have a repulsive property and that xt+1 is no closer than xt

to any active constraint, that is, hh, xt+1i  hh, xti. The argument requires care, because the pro-
jection P� may prevent coordinates i from decreasing despite xt

i

�sˆ✓
i

(xt

) being very negative if xt

i

is already small. These arguments together show that xt+1 remains in M1, completing the proof.

6 Discussion

This paper addresses the computational tractability of parameter estimation for the hard-core model.
Our main result shows hardness of approximating the backward mapping µ 7! ✓ to within a small
polynomial factor. This is a fairly stringent form of approximation, and it would be interesting
to strengthen the result to show hardness even for a weaker form of approximation. A possible
goal would be to show that there exists a universal constant c > 0 such that approximation of the
backward mapping to within a factor 1 + c in each coordinate is NP-hard.
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