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Abstract

The `1-regularized logistic regression (or sparse logistic regression) is a widely
used method for simultaneous classification and feature selection. Although many
recent efforts have been devoted to its efficient implementation, its application to
high dimensional data still poses significant challenges. In this paper, we present a
fast and effective sparse logistic regression screening rule (Slores) to identify the
“0” components in the solution vector, which may lead to a substantial reduction
in the number of features to be entered to the optimization. An appealing feature
of Slores is that the data set needs to be scanned only once to run the screening and
its computational cost is negligible compared to that of solving the sparse logistic
regression problem. Moreover, Slores is independent of solvers for sparse logis-
tic regression, thus Slores can be integrated with any existing solver to improve
the efficiency. We have evaluated Slores using high-dimensional data sets from
different applications. Experiments demonstrate that Slores outperforms the ex-
isting state-of-the-art screening rules and the efficiency of solving sparse logistic
regression can be improved by one magnitude.

1 Introduction

Logistic regression (LR) is a popular and well established classification method that has been widely
used in many domains such as machine learning [4, 7], text mining [3, 8], image processing [9, 15],
bioinformatics [1, 13, 19, 27, 28], medical and social sciences [2, 17] etc. When the number of
feature variables is large compared to the number of training samples, logistic regression is prone
to over-fitting. To reduce over-fitting, regularization has been shown to be a promising approach.
Typical examples include `2 and `1 regularization. Although `1 regularized LR is more challenging
to solve compared to `2 regularized LR, it has received much attention in the last few years and
the interest in it is growing [20, 25, 28] due to the increasing prevalence of high-dimensional data.
The most appealing property of `1 regularized LR is the sparsity of the resulting models, which is
equivalent to feature selection.

In the past few years, many algorithms have been proposed to efficiently solve the `1 regularized
LR [5, 12, 11, 18]. However, for large-scale problems, solving the `1 regularized LR with higher
accuracy remains challenging. One promising solution is by “screening”, that is, we first identify
the “inactive” features, which have 0 coefficients in the solution and then discard them from the
optimization. This would result in a reduced feature matrix and substantial savings in computational
cost and memory size. In [6], El Ghaoui et al. proposed novel screening rules, called “SAFE”,
to accelerate the optimization for a class of `1 regularized problems, including LASSO [21], `1
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regularized LR and `1 regularized support vector machines. Inspired by SAFE, Tibshirani et al.
[22] proposed “strong rules” for a large class of `1 regularized problems, including LASSO, elastic
net, `1 regularized LR and more general convex problems. In [26], Xiang et al. proposed “DOME”
rules to further improve SAFE rules for LASSO based on the observation that SAFE rules can be
understood as a special case of the general “sphere test”. Although both strong rules and the sphere
tests are more effective in discarding features than SAFE for solving LASSO, it is worthwhile to
mention that strong rules may mistakenly discard features that have non-zero coefficients in the
solution and the sphere tests are not easy to be generalized to handle the `1 regularized LR. To the
best of our knowledge, the SAFE rule is the only screening test for the `1 regularized LR that is
“safe”, that is, it only discards features that are guaranteed to be absent from the resulting models.

Figure 1: Comparison of Slores, strong
rule and SAFE on the prostate cancer
data set.

In this paper, we develop novel screening rules, called
“Slores”, for the `1 regularized LR. The proposed screen-
ing tests detect inactive features by estimating an upper
bound of the inner product between each feature vector
and the “dual optimal solution” of the `1 regularized L-
R, which is unknown. The more accurate the estimation
is, the more inactive features can be detected. An accu-
rate estimation of such an upper bound turns out to be
quite challenging. Indeed most of the key ideas/insights
behind existing “safe” screening rules for LASSO heavi-
ly rely on the least square loss, which are not applicable
for the `1 regularized LR case due to the presence of the
logistic loss. To this end, we propose a novel framework
to accurately estimate an upper bound. Our key techni-
cal contribution is to formulate the estimation of an upper
bound of the inner product as a constrained convex optimization problem and show that it admits
a closed form solution. Therefore, the estimation of the inner product can be computed efficiently.
Our extensive experiments have shown that Slores discards far more features than SAFE yet requires
much less computational efforts. In contrast with strong rules, Slores is “safe”, i.e., it never discards
features which have non-zero coefficients in the solution.

To illustrate the effectiveness of Slores, we compare Slores, strong rule and SAFE on a data set of
prostate cancer along a sequence of 86 parameters equally spaced on the λ/λmax scale from 0.1 to
0.95, where λ is the parameter for the `1 penalty and λmax is the smallest tuning parameter [10] such
that the solution of the `1 regularized LR is 0 [please refer to Eq. (1)]. The data matrix contains 132
patients with 15154 features. To measure the performance of different screening rules, we compute
the rejection ratio which is the ratio between the number of features discarded by screening rules
and the number of features with 0 coefficients in the solution. Therefore, the larger the rejection
ratio is, the more effective the screening rule is. The results are shown in Fig. 1. We can see that
Slores discards far more features than SAFE especially when λ/λmax is large while the strong rule
is not applicable when λ/λmax ≤ 0.5. We present more results and discussions to demonstrate the
effectiveness of Slores in Section 6. For proofs of the lemmas, corollaries, and theorems, please
refer to the long version of this paper [24].

2 Basics and Motivations

In this section, we briefly review the basics of the `1 regularized LR and then motivate the general
screening rules via the KKT conditions. Suppose we are given a set of training samples {xi}mi=1
and the associate labels b ∈ <m, where xi ∈ <p and bi ∈ {1,−1} for all i ∈ {1, . . . ,m}. The `1
regularized logistic regression is:

min
β,c

1

m

m∑
i=1

log(1 + exp(−〈β, x̄i〉 − bic)) + λ‖β‖1, (LRPλ)

where β ∈ <p and c ∈ < are the model parameters to be estimated, x̄i = bixi, and λ > 0 is the
tuning parameter. We denote by X ∈ <m×p the data matrix with the ith row being x̄i and the jth
column being x̄j .

2



Let C = {θ ∈ <m : θi ∈ (0, 1), i = 1, . . . ,m} and f(y) = y log(y) + (1 − y) log(1 − y) for
y ∈ (0, 1). The dual problem of (LRPλ) [24] is given by

min
θ

{
g(θ) =

1

m

m∑
i=1

f(θi) : ‖X̄T θ‖∞ ≤ mλ, 〈θ,b〉 = 0, θ ∈ C

}
. (LRDλ)

To simplify notations, we denote the feasible set of problem (LRDλ) as Fλ, and let (β∗λ, c
∗
λ) and

θ∗λ be the optimal solutions of problems (LRPλ) and (LRDλ) respectively. In [10], the authors have
shown that for some special choice of the tuning parameter λ, both of (LRPλ) and (LRDλ) have
closed form solutions. In fact, let P = {i : bi = 1}, N = {i : bi = −1}, and m+ and m− be the
cardinalities of P and N respectively. We define

λmax = 1
m‖X̄

T θ∗λmax‖∞, (1)

where

[θ∗λmax ]i =

{
m−

m , if i ∈ P,
m+

m , if i ∈ N ,
i = 1, . . . ,m. (2)

([·]i denotes the ith component of a vector.) Then, it is known [10] that β∗λ = 0 and θ∗λ = θ∗λmax
whenever λ ≥ λmax. When λ ∈ (0, λmax], it is known that (LRDλ) has a unique optimal solution
[24]. We can now write the KKT conditions of problems (LRPλ) and (LRDλ) as

〈θ∗λ, x̄j〉 ∈


mλ, if [β∗λ]j > 0,

−mλ, if [β∗λ]j < 0,

[−mλ,mλ], if [β∗λ]j = 0.

j = 1, . . . , p. (3)

In view of Eq. (3), we can see that

|〈θ∗λ, x̄j〉| < mλ⇒ [β∗λ]j = 0. (R1)

In other words, if |〈θ∗λ, x̄j〉 < mλ, then the KKT conditions imply that the coefficient of x̄j in the
solution β∗λ is 0 and thus the jth feature can be safely removed from the optimization of (LRPλ).
However, for the general case in which λ < λmax, (R1) is not applicable since it assumes the
knowledge of θ∗λ. Although it is unknown, we can still estimate a region Aλ which contains θ∗λ. As
a result, if maxθ∈Aλ |〈θ, x̄j〉| < mλ, we can also conclude that [β∗λ]j = 0 by (R1). In other words,
(R1) can be relaxed as

T (θ∗λ, x̄
j) := max

θ∈Aλ
|〈θ, x̄j〉| < mλ⇒ [β∗λ]j = 0. (R1′)

In this paper, (R1′) serves as the foundation for constructing our screening rules, Slores. From
(R1′), it is easy to see that screening rules with smaller T (θ∗λ, x̄

j) are more aggressive in discarding
features. To give a tight estimation of T (θ∗λ, x̄

j), we need to restrict the region Aλ which includes
θ∗λ as small as possible. In Section 3, we show that the estimation of the upper bound T (θ∗λ, x̄

j)
can be obtained via solving a convex optimization problem. We show in Section 4 that the convex
optimization problem admits a closed form solution and derive Slores in Section 5 based on (R1′).

3 Estimating the Upper Bound via Solving a Convex Optimization Problem

In this section, we present a novel framework to estimate an upper bound T (θ∗λ, x̄
j) of |〈θ∗λ, x̄j〉|. In

the subsequent development, we assume a parameter λ0 and the corresponding dual optimal θ∗λ0
are

given. In our Slores rule to be presented in Section 5, we set λ0 and θ∗λ0
to be λmax and θ∗λmax given

in Eqs. (1) and (2). We formulate the estimation of T (θ∗λ, x̄
j) as a constrained convex optimization

problem in this section, which will be shown to admit a closed form solution in Section 4.

For the dual function g(θ), it follows that [∇g(θ)]i = 1
m log( θi

1−θi ), [∇2g(θ)]i,i = 1
m

1
θi(1−θi) ≥

4
m .

Since ∇2g(θ) is a diagonal matrix, it follows that ∇2g(θ) � 4
mI , where I is the identity matrix.

Thus, g(θ) is strongly convex with modulus µ = 4
m [16]. Rigorously, we have the following lemma.

Lemma 1. Let λ > 0 and θ1, θ2 ∈ Fλ, then

a). g(θ2)− g(θ1) ≥ 〈∇g(θ1), θ2 − θ1〉+ 2
m‖θ2 − θ1‖22. (4)

b). If θ1 6= θ2, the inequality in (4) becomes a strict inequality, i.e., “≥” becomes “>”.
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Given λ ∈ (0, λ0], it is easy to see that both of θ∗λ and θ∗λ0
belong to Fλ0

. Therefore, Lemma 1 can
be a useful tool to bound θ∗λ with the knowledge of θ∗λ0

. In fact, we have the following theorem.
Theorem 2. Let λmax ≥ λ0 > λ > 0, then the following holds:

a). ‖θ∗λ − θ∗λ0
‖22 ≤

m

2

[
g
(
λ
λ0
θ∗λ0

)
− g(θ∗λ0

) +
(

1− λ
λ0

)
〈∇g(θ∗λ0

), θ∗λ0
〉
]

(5)

b). If θ∗λ 6= θ∗λ0
, the inequality in (5) becomes a strict inequality, i.e., “≤” becomes “<”.

Theorem 2 implies that θ∗λ is inside a ball centred at θ∗λ0
with radius

r =

√
m
2

[
g
(
λ
λ0
θ∗λ0

)
− g(θ∗λ0

) + (1− λ
λ0

)〈∇g(θ∗λ0
), θ∗λ0

〉
]
. (6)

Recall that to make our screening rules more aggressive in discarding features, we need to get a tight
upper bound T (θ∗λ, x̄

j) of |〈θ∗λ, x̄j〉| [please see (R1′)]. Thus, it is desirable to further restrict the
possible region Aλ of θ∗λ. Clearly, we can see that

〈θ∗λ,b〉 = 0 (7)

since θ∗λ is feasible for problem (LRDλ). On the other hand, we call the set Iλ0
= {j : 〈θ∗λ0

, x̄j〉 =
|mλ0|, j = 1, . . . , p} the “active set” of θ∗λ0

. We have the following lemma for the active set.

Lemma 3. Given the optimal solution θ∗λ of problem (LRDλ), the active set Iλ = {j : |〈θ∗λ, x̄j〉| =
mλ, j = 1, . . . , p} is not empty if λ ∈ (0, λmax].

Since λ0 ∈ (0, λmax], we can see that Iλ0
is not empty by Lemma 3. We pick j0 ∈ Iλ0

and set

x̄∗ = sign(〈θ∗λ0
, x̄j0〉)x̄j0 . (8)

It follows that 〈x̄∗, θ∗λ0
〉 = mλ0. Due to the feasibility of θ∗λ for problem (LRDλ), θ∗λ satisfies

〈θ∗λ, x̄∗〉 ≤ mλ. (9)

As a result, Theorem 2, Eq. (7) and (9) imply that θ∗λ is contained in the following set:

Aλλ0
:= {θ : ‖θ − θ∗λ0

‖22 ≤ r2, 〈θ,b〉 = 0, 〈θ, x̄∗〉 ≤ mλ}.

Since θ∗λ ∈ Aλλ0
, we can see that |〈θ∗λ, x̄j〉| ≤ maxθ∈Aλλ0

|〈θ, x̄j〉|. Therefore, (R1′) implies that if

T (θ∗λ, x̄
j ; θ∗λ0

) := max
θ∈Aλλ0

|〈θ, x̄j〉| (UBP)

is smaller than mλ, we can conclude that [β∗λ]j = 0 and x̄j can be discarded from the optimization
of (LRPλ). Notice that, we replace the notations Aλ and T (θ∗λ, x̄

j) with T (θ∗λ, x̄
j ; θ∗λ0

) and Aλλ0

to emphasize their dependence on θ∗λ0
. Clearly, as long as we can solve for T (θ∗λ, x̄

j ; θ∗λ0
), (R1′)

would be an applicable screening rule to discard features which have 0 coefficients in β∗λ. We give a
closed form solution of problem (UBP) in the next section.

4 Solving the Convex Optimization Problem (UBP)

In this section, we show how to solve the convex optimization problem (UBP) based on the standard
Lagrangian multiplier method. We first transform problem (UBP) into a pair of convex minimization
problem (UBP′) via Eq. (11) and then show that the strong duality holds for (UBP′) in Lemma 6. The
strong duality guarantees the applicability of the Lagrangian multiplier method. We then give the
closed form solution of (UBP′) in Theorem 8. After we solve problem (UBP′), it is straightforward
to compute the solution of problem (UBP) via Eq. (11).

Before we solve (UBP) for the general case, it is worthwhile to mention a special case in which
Px̄j = x̄j − 〈x̄

j ,b〉
‖b‖22

b = 0. Clearly, P is the projection operator which projects a vector onto the
orthogonal complement of the space spanned by b. In fact, we have the following theorem.
Theorem 4. Let λmax ≥ λ0 > λ > 0, and assume θ∗λ0

is known. For j ∈ {1, . . . , p}, if Px̄j = 0,
then T (θ∗λ, x̄

j ; θ∗λ0
) = 0.
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Because of (R1′), we immediately have the following corollary.

Corollary 5. Let λ ∈ (0, λmax) and j ∈ {1, . . . , p}. If Px̄j = 0, then [β∗λ]j = 0.

For the general case in which Px̄j 6= 0, let

T+(θ∗λ, x̄
j ; θ∗λ0

) := max
θ∈Aλλ0

〈θ,+x̄j〉, T−(θ∗λ, x̄
j ; θ∗λ0

) := max
θ∈Aλλ0

〈θ,−x̄j〉. (10)

Clearly, we have

T (θ∗λ, x̄
j ; θ∗λ0

) = max{T+(θ∗λ, x̄
j ; θ∗λ0

), T−(θ∗λ, x̄
j ; θ∗λ0

)}. (11)

Therefore, we can solve problem (UBP) by solving the two sub-problems in (10).

Let ξ ∈ {+1,−1}. Then problems in (10) can be written uniformly as

Tξ(θ
∗
λ, x̄

j ; θ∗λ0
) = max

θ∈Aλλ0
〈θ, ξx̄j〉. (UBPs)

To make use of the standard Lagrangian multiplier method, we transform problem (UBPs) to the
following minimization problem:

−Tξ(θ∗λ, x̄j ; θ∗λ0
) = min

θ∈Aλλ0
〈θ,−ξx̄j〉 (UBP′)

by noting that maxθ∈Aλλ0
〈θ, ξx̄j〉 = −minθ∈Aλλ0

〈θ,−ξx̄j〉.

Lemma 6. Let λmax ≥ λ0 > λ > 0 and assume θ∗λ0
is known. The strong duality holds for problem

(UBP′). Moreover, problem (UBP′) admits an optimal solution in Aλλ0
.

Because the strong duality holds for problem (UBP′) by Lemma 6, the Lagrangian multiplier method
is applicable for (UBP′). In general, we need to first solve the dual problem and then recover the
optimal solution of the primal problem via KKT conditions. Recall that r and x̄∗ are defined by
Eq. (6) and (8) respectively. Lemma 7 derives the dual problems of (UBP′) for different cases.

Lemma 7. Let λmax ≥ λ0 > λ > 0 and assume θ∗λ0
is known. For j ∈ {1, . . . , p} and Px̄j 6= 0,

let x̄ = −ξx̄j . Denote

U1 = {(u1, u2) : u1 > 0, u2 ≥ 0} and U2 =
{

(u1, u2) : u1 = 0, u2 = − 〈Px̄,Px̄∗〉
‖Px̄∗‖22

}
.

a). If 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 ∈ (−1, 1], the dual problem of (UBP′) is equivalent to:

max
(u1,u2)∈U1

ḡ(u1, u2) = − 1
2u1
‖Px̄ + u2Px̄∗‖22 + u2m(λ0 − λ) + 〈θ∗λ0

, x̄〉 − 1
2u1r

2. (UBD′)

Moreover, ḡ(u1, u2) attains its maximum in U1.

b). If 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 = −1, the dual problem of (UBP′) is equivalent to:

max
(u1,u2)∈U1∪U2

¯̄g(u1, u2) =

{
ḡ(u1, u2), if (u1, u2) ∈ U1,

− ‖Px̄‖2
‖Px̄∗‖2mλ, if (u1, u2) ∈ U2.

(UBD′′)

We can now solve problem (UBP′) in the following theorem.

Theorem 8. Let λmax ≥ λ0 > λ > 0, d = m(λ0−λ)
r‖Px̄∗‖2 and assume θ∗λ0

is known. For j ∈ {1, . . . , p}
and Px̄j 6= 0, let x̄ = −ξx̄j .

a). If 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 ≥ d, then

Tξ(θ
∗
λ, x̄

j ; θ∗λ0
) = r‖Px̄‖2 − 〈θ∗λ0

, x̄〉; (12)
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b). If 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 < d, then

Tξ(θ
∗
λ, x̄

j ; θ∗λ0
) = r‖Px̄ + u∗2Px̄∗‖2 − u∗2m(λ0 − λ)− 〈θ∗λ0

, x̄〉, (13)

where

u∗2 = −a1+
√

∆
2a2

,

a2 = ‖Px̄∗‖42(1− d2),

a1 = 2〈Px̄,Px̄∗〉‖Px̄∗‖22(1− d2),

a0 = 〈Px̄,Px̄∗〉2 − d2‖Px̄‖22‖Px̄∗‖22,
∆ = a2

1 − 4a2a0 = 4d2(1− d2)‖Px̄∗‖42(‖Px̄‖22‖Px̄∗‖22 − 〈Px̄,Px̄∗〉2).

(14)

Notice that, although the dual problems of (UBP′) in Lemma 7 are different, the resulting upper
bound Tξ(θ∗λ, x̄

j ; θ∗λ0
) can be given by Theorem 8 in a uniform way. The tricky part is how to deal

with the extremal cases in which 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 ∈ {−1,+1}.

5 The proposed Slores Rule for `1 Regularized Logistic Regression

Using (R1′), we are now ready to construct the screening rules for the `1 Regularized Logistic
Regression. By Corollary 5, we can see that the orthogonality between the jth feature and the
response vector b implies the absence of x̄j from the resulting model. For the general case in which
Px̄j 6= 0, (R1′) implies that if T (θ∗λ, x̄

j ; θ∗λ0
) = max{T+(θ∗λ, x̄

j ; θ∗λ0
), T−(θ∗λ, x̄

j ; θ∗λ0
)} < mλ,

then the jth feature can be discarded from the optimization of (LRPλ). Notice that, letting ξ = ±1,
T+(θ∗λ, x̄

j ; θ∗λ0
) and T−(θ∗λ, x̄

j ; θ∗λ0
) have been solved by Theorem 8. Rigorously, we have the

following theorem.

Theorem 9 (Slores). Let λ0 > λ > 0 and assume θ∗λ0
is known.

1. If λ ≥ λmax, then β∗λ = 0;
2. If λmax ≥ λ0 > λ > 0 and either of the following holds:

(a) Px̄j = 0,
(b) max{Tξ(θ∗λ, x̄j ; θ∗λ0

) : ξ = ±1} < mλ,
then [β∗λ]j = 0.

Based on Theorem 9, we construct the Slores rule as summarized below in Algorithm 1.

Algorithm 1R = Slores(X,b, λ, λ0, θ
∗
λ0

)

InitializeR := {1, . . . , p};
if λ ≥ λmax then

setR = ∅;
else

for j = 1 to p do
if Px̄j = 0 then

remove j fromR;
else if max{Tξ(θ∗λ, x̄j ; θ∗λ0

) : ξ = ±1} < mλ
then

remove j fromR;
end if

end for
end if
Return: R

Notice that, the outputR of Slores is the indices
of the features that need to be entered to the
optimization. As a result, suppose the output
of Algorithm 1 is R = {j1, . . . , jk}, we can
substitute the full matrix X in problem (LRPλ)
with the sub-matrix XR = (x̄j1 , . . . , x̄jk) and
just solve for [β∗λ]R and c∗λ.

On the other hand, Algorithm 1 implies that
Slores needs five inputs. Since X and b come
with the data and λ is chosen by the user, we on-
ly need to specify θ∗λ0

and λ0. In other words,
we need to provide Slores with a dual opti-
mal solution of problem (LRDλ) for an arbi-
trary parameter. A natural choice is by setting
λ0 = λmax and θ∗λ0

= θ∗λmax given by Eq. (1)
and Eq. (2) in closed form.

6 Experiments

We evaluate our screening rules using the newgroup data set [10] and Yahoo web pages data sets
[23]. The newgroup data set is cultured from the data by Koh et al. [10]. The Yahoo data set-
s include 11 top-level categories, each of which is further divided into a set of subcategories. In
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our experiment we construct five balanced binary classification datasets from the topics of Com-
puters, Education, Health, Recreation, and Science. For each topic, we choose samples from
one subcategory as the positive class and randomly sample an equal number of samples from the
rest of subcategories as the negative class. The statistics of the data sets are given in Table 1.

Table 1: Statistics of the test data sets.
Data set m p no. nonzeros

newsgroup 11269 61188 1467345
Computers 216 25259 23181
Education 254 20782 28287

Health 228 18430 40145
Recreation 370 25095 49986

Science 222 24002 37227

Table 2: Running time (in seconds) of Slores,
strong rule, SAFE and the solver.

Slores Strong Rule SAFE Solver
0.37 0.33 1128.65 10.56

We compare the performance of Slores and the
strong rule which achieves state-of-the-art per-
formance for `1 regularized LR. We do not in-
clude SAFE because it is less effective in dis-
carding features than strong rules and requires
much higher computational time [22]. Fig. 1
has shown the performance of Slores, strong
rule and SAFE. We compare the efficiency of
the three screening rules on the same prostate
cancer data set in Table 2. All of the screen-
ing rules are tested along a sequence of 86 pa-
rameter values equally spaced on the λ/λmax
scale from 0.1 to 0.95. We repeat the procedure
100 times and during each time we undersam-
ple 80% of the data. We report the total running time of the three screening rules over the 86 values
of λ/λmax in Table 2. For reference, we also report the total running time of the solver1. We observe
that the running time of Slores and strong rule is negligible compared to that of the solver. However,
SAFE takes much longer time even than the solver.

In Section 6.1, we evaluate the performance of Slores and strong rule. Recall that we use the re-
jection ratio, i.e., the ratio between the number of features discarded by the screening rules and the
number of features with 0 coefficients in the solution, to measure the performance of screening rules.
Note that, because no features with non-zero coefficients in the solution would be mistakenly dis-
carded by Slores, its rejection ratio is no larger than one. We then compare the efficiency of Slores
and strong rule in Section 6.2.

The experiment settings are as follows. For each data set, we undersample 80% of the date and
run Slores and strong rules along a sequence of 86 parameter values equally spaced on the λ/λmax
scale from 0.1 to 0.95. We repeat the procedure 100 times and report the average performance and
running time at each of the 86 values of λ/λmax. Slores, strong rules and SAFE are all implemented
in Matlab. All of the experiments are carried out on a Intel(R) (i7-2600) 3.4Ghz processor.

6.1 Comparison of Performance

In this experiment, we evaluate the performance of the Slores and the strong rule via the rejection
ratio. Fig. 2 shows the rejection ratio of Slores and strong rule on six real data sets. When λ/λmax >
0.5, we can see that both Slores and strong rule are able to identify almost 100% of the inactive
features, i.e., features with 0 coefficients in the solution vector. However, when λ/λmax ≤ 0.5,
strong rule can not detect the inactive features. In contrast, we observe that Slores exhibits much
stronger capability in discarding inactive features for small λ, even when λ/λmax is close to 0.1.
Taking the data point at which λ/λmax = 0.1 for example, Slores discards about 99% inactive
features for the newsgroup data set. For the other data sets, more than 80% inactive features are
identified by Slores. Thus, in terms of rejection ratio, Slores significantly outperforms the strong
rule. Moreover, the discarded features by Slores are guaranteed to have 0 coefficients in the solution.
But strong rule may mistakenly discard features which have non-zero coefficients in the solution.

6.2 Comparison of Efficiency

We compare efficiency of Slores and the strong rule in this experiment. The data sets for evaluating
the rules are the same as Section 6.1. The running time of the screening rules reported in Fig. 3
includes the computational cost of the rules themselves and that of the solver after screening. We
plot the running time of the screening rules against that of the solver without screening. As indicated
by Fig. 2, when λ/λmax > 0.5, Slores and strong rule discards almost 100% of the inactive features.

1In this paper, the ground truth is computed by SLEP [14].
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(a) newsgroup (b) Computers (c) Education

(d) Health (e) Recreation (f) Science

Figure 2: Comparison of the performance of Slores and strong rules on six real data sets.

(a) newsgroup (b) Computers (c) Education

(d) Health (e) Recreation (f) Science

Figure 3: Comparison of the efficiency of Slores and strong rule on six real data sets.

As a result, the size of the feature matrix involved in the optimization of problem (LRPλ) is greatly
reduced. From Fig. 3, we can observe that the efficiency is improved by about one magnitude on
average compared to that of the solver without screening. However, when λ/λmax < 0.5, strong
rule can not identify any inactive features and thus the running time is almost the same as that of the
solver without screening. In contrast, Slores is still able to identify more than 80% of the inactive
features for the data sets cultured from the Yahoo web pages data sets and thus the efficiency is
improved by roughly 5 times. For the newgroup data set, about 99% inactive features are identified
by Slores which leads to about 10 times savings in running time. These results demonstrate the
power of the proposed Slores rule in improving the efficiency of solving the `1 regularized LR.

7 Conclusions
In this paper, we propose novel screening rules to effectively discard features for `1 regularized
LR. Extensive numerical experiments on real data demonstrate that Slores outperforms the existing
state-of-the-art screening rules. We plan to extend the framework of Slores to more general sparse
formulations, including convex ones, like group Lasso, fused Lasso, `1 regularized SVM, and non-
convex ones, like `p regularized problems where 0 < p < 1.
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