
Supplementary Material:
Attacking the saddle point problem in

high-dimensional non-convex optimization

Yann N. Dauphin
Université de Montréal

dauphiya@iro.umontreal.ca

Razvan Pascanu
Université de Montréal

r.pascanu@gmail.com

Caglar Gulcehre
Université de Montréal

gulcehrc@iro.umontreal.ca

Kyunghyun Cho
Université de Montréal

kyunghyun.cho@umontreal.ca

Surya Ganguli
Stanford University

sganguli@standford.edu

Yoshua Bengio
Université de Montréal

CIFAR Fellow
yoshua.bengio@umontreal.ca

1 Description of the different types of saddle-points

In general, consider an error function f(θ) where θ is an N dimensional continuous variable. A
critical point is by definition a point θ where the gradient of f(θ) vanishes. All critical points of
f(θ) can be further characterized by the curvature of the function in its vicinity, as described by the
eigenvalues of the Hessian. Note that the Hessian is symmetric and hence the eigenvalues are real
numbers. The following are the four possible scenarios:

• If all eigenvalues are non-zero and positive, then the critical point is a local minimum.

• If all eigenvalues are non-zero and negative, then the critical point is a local maximum.

• If the eigenvalues are non-zero and we have both positive and negative eigenvalues, then
the critical point is a saddle point with a min-max structure (see Figure 1 (b)). That is,
if we restrict the function f to the subspace spanned by the eigenvectors corresponding
to positive (negative) eigenvalues, then the saddle point is a maximum (minimum) of this
restriction.

• If the Hessian matrix is singular, then the degenerate critical point can be a saddle point, as
it is, for example, for θ3, θ ∈ R or for the monkey saddle (Figure 1 (a) and (c)). If it is a
saddle, then, if we restrict θ to only change along the direction of singularity, the restricted
function does not exhibit a minimum nor a maximum; it exhibits, to second order, a plateau.
When moving from one side to other of the plateau, the eigenvalue corresponding to this
picked direction generically changes sign, being exactly zero at the critical point. Note
that an eigenvalue of zero can also indicate the presence of a gutter structure, a degenerate
minimum, maximum or saddle, where a set of connected points are all minimum, maximum
or saddle structures of the same shape and error. In Figure 1 (d) it is shaped as a circle. The
error function looks like the bottom of a wine bottle, where all points along this circle are
minimum of equal value.

A plateau is an almost flat region in some direction. This structure is given by having the eigenvalues
(which describe the curvature) corresponding to the directions of the plateau be close to 0, but not

1

1.5 1.0 0.5 0.0 0.5 1.0 1.5
4

3

2

1

0

1

2

3

4

X

1.0
0.5

0.0
0.5

1.0

Y

1.0
0.5

0.0
0.5

1.0

Z

2.5
2.0
1.5
1.0
0.5

0.0
0.5
1.0

(a) (b)

X

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Y

1.5
1.0

0.5
0.0

0.5
1.0

1.5

Z

3

2

1

0

1

2

X

1.0 0.5 0.0 0.5 1.0

Y

1.0

0.5

0.0

0.5

1.0

Z

0.5
0.0

0.5

1.0

(c) (d)

Figure 1: Illustrations of three different types of saddle points (a-c) plus a gutter structure (d). Note
that for the gutter structure, any point from the circle x2 + y2 = 1 is a minimum. The shape of the
function is that of the bottom of a bottle of wine. This means that the minimum is a “ring” instead of
a single point. The Hessian is singular at any of these points. (c) shows a Monkey saddle where you
have both a min-max structure as in (b) but also a 0 eigenvalue, which results, along some direction,
in a shape similar to (a).

exactly 0. Or, additionally, by having a large discrepancy between the norm of the eigenvalues. This
large difference would make the direction of “relative” small eigenvalues look like flat compared to
the direction of large eigenvalues.

2 Reparametrization of the space around saddle-points

This reparametrization is given by taking a Taylor expansion of the function f around the critical
point. If we assume that the Hessian is not singular, then there is a neighbourhood around this
critical point where this approximation is reliable and, since the first order derivatives vanish, the
Taylor expansion is given by:

f(θ∗ + ∆θ) = f(θ∗) +
1

2
(∆θ)>H∆θ (1)

Let us denote by e1, . . . , enθ the eigenvectors of the Hessian H and by λ1, . . . , λnθ the correspond-
ing eigenvalues. We can now make a change of coordinates into the space span by these eigenvec-
tors:

2

∆v =
1

2

 e1
>

. . .
enθ
>

∆θ (2)

f(θ∗ + ∆θ) = f(θ∗) +
1

2

nθ∑
i=1

λi(ei
>∆θ)2 = f(θ∗) +

nθ∑
i=1

λi∆v2
i (3)

3 Empirical exploration of properties of critical points

To obtain the plot on MNIST we used the Newton method to discover nearby critical points along
the path taken by the saddle-free Newton algorithm. We consider 20 different runs of the saddle-
free algorithm, each using a different random seed. We then run 200 jobs. The first 100 jobs are
looking for critical points near the value of the parameters obtained after some random number of
epochs (between 0 and 20) of a randomly selected run (among the 20 different runs) of saddle-free
Newton method. To this starting position uniform noise is added of small amplitude (the amplitude
is randomly picked between the different values {10−1, 10−2, 10−3, 10−4} The last 100 jobs look
for critical points near uniformally sampled weights (the range of the weights is given by the unit
cube). The task (dataset and model) is the same as the one used previously.

To obtain the plots on CIFAR, we have trained multiple 3-layer deep neural networks using SGD.
The activation function of these networks is the tanh function. We saved the parameters of these
networks for each epoch. We trained 100 networks with different parameter initializations between
10 and 300 epochs (chosen randomly). The networks were then trained using the Newton method to
find a nearby critical point. This allows us to find many different critical points along the learning
trajectories of the networks.

4 Proof of Lemma 1

Lemma 1. Let A be a nonsingular square matrix in Rn × Rn, and x ∈ Rn be some vector. Then
it holds that |x>Ax| ≤ x>|A|x, where |A| is the matrix obtained by taking the absolute value of
each of the eigenvalues of A.

Proof. Let e1, . . . en be the different eigenvectors of A and λ1, . . . λn the corresponding eigenval-
ues. We now re-write the identity by expressing the vector x in terms of these eigenvalues:

|x>Ax| =

∣∣∣∣∣∑
i

(x>ei)ei
>Ax

∣∣∣∣∣ =

∣∣∣∣∣∑
i

(x>ei)λi(ei
>x)

∣∣∣∣∣ =

∣∣∣∣∣∑
i

λi(x
>ei)

2

∣∣∣∣∣
We can now use the triangle inequality |

∑
i xi| ≤

∑
i |xi| and get that

|x>Ax| ≤
∑
i

|(x>ei)2λi| =
∑
i

(x>ei)|λi|(ei>x) = x>|A|x

5 Implementation details for approximate saddle-free Newton

The Krylov subspace is obtained through a slightly modified Lanczos process (see Algorithm 1).
The initial vector of the algorithm is the gradient of the model. As noted by Vinyals and Povey
(2012), we found it was useful to include the previous search direction as the last vector of the
subspace.

3

As described in the main paper, we have ∂f̂
∂α = V

(
∂f
∂θ

)>
and ∂2f̂

∂α2 = V
(
∂2f
∂θ2

)
V>. Note that the

calculation of the Hessian in the subspace can be greatly sped up by memorizing the vectors Vi
∂2f
∂θ2

during the Lanczos process. Once memorized, the Hessian is simply the product of the two matrices
V and Vi

∂2f
∂θ2 .

We have found that it is beneficial to perform multiple optimization steps within the subspace. We
do not recompute the Hessian for these steps under the assumption that the Hessian will not change
much.

Algorithm 1 Obtaining the Lanczos vectors

Require: g← −∂f∂θ
Require: ∆θ (The past weight update)
V0 ← 0
V1 ← g

‖g‖
β1 ← 0
for i = 1→ k − 1 do
wi ← Vi

∂2f
∂θ2

if i = k − 1 then
wi ← ∆θ

end if
αi ← wiVi

wi ← wi − αiVi − βiVi−1
βi+1 ← ‖wi‖
Vi+1 ← w

‖wi‖
end for

6 Experiments

6.1 Existence of Saddle Points in Neural Networks

For feedforward networks using SGD, we choose the following hyperparameters using the random
search strategy (Bergstra and Bengio, 2012):

• Learning rate

• Size of minibatch

• Momentum coefficient

For random search, we draw 80 samples and pick the best one.

For both the Newton and saddle-free Newton methods, the damping coefficient is chosen at each
update, to maximize the improvement, among

{
100, 10−1, 10−2, 10−3, 10−4, 10−5

}
.

6.2 Effectiveness of saddle-free Newton Method in Deep Neural Networks

The deep auto-encoder was first trained using the protocol used by Sutskever et al. (2013). In these
experiments we use classical momentum.

6.3 Recurrent Neural Networks: Hard Optimization Problem

We initialized the recurrent weights of RNN to be orthogonal as suggested by Saxe et al. (2014).
The number of hidden units of RNN is fixed to 120. For recurrent neural networks using SGD, we
choose the following hyperparameters using the random search strategy:

• Learning rate

• Threshold for clipping the gradient (Pascanu et al., 2013)

4

• Momentum coefficient

For random search, we draw 64 samples and pick the best one. Just like in the experiment using
feedforward neural networks, the damping coefficient of both the Newton and saddle-free Newton
methods was chosen at each update, to maximize the improvement.

We clip the gradient and saddle-free update step if it exceeds certain threshold as suggested by
Pascanu et al. (2013).

Since it is costly to compute the exact Hessian for RNN’s, we used the eigenvalues of the Hessian
in the Krylov subspace to plot the distribution of eigenvalues for Hessian matrix in Fig. 4 (d).

References
Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of

Machine Learning Research, 13, 281–305.
Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent neural

networks. In ICML’2013.
Saxe, A., McClelland, J., and Ganguli, S. (2014). Exact solutions to the nonlinear dynamics of

learning in deep linear neural network. In International Conference on Learning Representations.
Sutskever, I., Martens, J., Dahl, G. E., and Hinton, G. E. (2013). On the importance of initialization

and momentum in deep learning. In S. Dasgupta and D. Mcallester, editors, Proceedings of the
30th International Conference on Machine Learning (ICML-13), volume 28, pages 1139–1147.
JMLR Workshop and Conference Proceedings.

Vinyals, O. and Povey, D. (2012). Krylov Subspace Descent for Deep Learning. In AISTATS.

5

	Description of the different types of saddle-points
	Reparametrization of the space around saddle-points
	Empirical exploration of properties of critical points
	Proof of Lemma 1
	Implementation details for approximate saddle-free Newton
	Experiments
	Existence of Saddle Points in Neural Networks
	Effectiveness of saddle-free Newton Method in Deep Neural Networks
	Recurrent Neural Networks: Hard Optimization Problem

