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A Details on approximating GP sample paths

In this section we give further details about the approach used in Section 2.1 to approximate a GP
using random features. These random features can be used to approximate sample paths from the
GP posterior. By optimizing these sample paths we obtain posterior samples over the global maxima
x?. We derive in more detail the kernel approximation from (5). Formally, the theorem of [4] states
Theorem 1 (Bochner’s theorem). A continuous, shift-invariant kernel is positive definite if and only
if it is the Fourier transform of a non-negative, finite measure.

As a result given some kernel k(x,x′) = k(x− x′,0) there must exist an associated density s(w),
known as its spectral density, which is the Fourier dual of k. This can be written as

k(x,x′) =

∫
e−iw

T(x−x′)s(w) dw,

s(w) =
1

(2π)d

∫
eiw

Tτk(τ ,0) dτ .

Further, we can treat this measure as a probability density p(w) = s(w)/α where α =
∫
s(w) dw

is the normalizing constant. Consequently, the kernel can be written as

k(x,x′) = αEp(w)[e
−iwT(x−x′)]

and due to the symmetry of p(w) [see 22] we can write the expectation as

= αEp(w)[
1
2 (e−iw

T(x−x′) + eiw
T(x−x′))]

= αEp(w)[cos(wTx−wTx′)] .

We can then note that
∫ 2π

0
cos(a + 2b) db = 0 for any constant offset a ∈ R. As a result, for b

uniformly distributed between 0 and 2π we can write

= αEp(w)[cos(wTx−wTx′) + Ep(b)[cos(wTx + wTx′ + 2b)]]

= αEp(w,b)[cos(wTx + b−wTx′ − b) + cos(wTx + b+ wTx′ + b)]

= 2αEp(w,b)[cos(wTx + b) cos(wTx′ + b)] .

The last equality can be derived from the sum of angles formula, which leads to the identity:
2 cos(x) cos(y) = cos(x− y) + cos(x+ y). Finally, we can average over m weights and phases

=
2α

m
Ep(W,b)[cos(Wx + b)T cos(Wx′ + b)] ,

where [W]i ∼ p(w) and [b]i ∼ p(b) are stacked versions of the original random variables. The
resulting quantity has the same expectation but results in a lower variance estimator. If we let
φ(x) =

√
2α/m cos(Wx + b) denote a random m-dimensional feature generated by this model

we can also write the kernel as k(x,x′) = Ep(φ)[φ(x)Tφ(x′)].

We now briefly show the equivalence between a Bayesian linear model using random features φ and
a GP with kernel k. Consider now a linear model f(x) = φ(x)Tθ where θ ∼ N (0, I) has a standard
Gaussian distribution and observations Dn = {(xi, yi)}i≤n of the form yi ∼ N (f(xi), σ

2). The
posterior of θ given (Dn,φ) is also normal N (m,V) where

m = (ΦTΦ + σ2I)−1ΦTy,

V = (ΦTΦ + σ2I)−1σ2,
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and where [Φ]i = φ(xi) and [y]i = yi consist of the stacked features and observations respectively.
We can also easily write the predictive distribution over f evaluated at a test point x, which is
Gaussian distributed with mean and variance given by

µn(x) = φ(x)T(ΦTΦ + σ2I)−1ΦTy,

vn(x) = φ(x)T(ΦTΦ + σ2I)−1φ(x)σ2.

By a simple application of the matrix-inversion lemma these quantities can be rewritten in terms
which only make use of the inner products between features,

µn(x) = φ(x)TΦT(ΦΦT + σ2I)−1y1:t ,

vn(x) = φ(x)Tφ(x)− φ(x)TΦT(ΦΦT + σ2I)−1Φφ(x) ,

the expectations of which are equivalent to the kernel k and we obtain the same expressions as that
in (1).

B Details on approximating the predictive variance

We now provide further details on approximating the predictive variance vn(x|x?) of inputs x given
the position of the global optimizer x?. In particular we include all steps omitted in the presentation
of Section 2.2.

B.1 Incorporating the analytic latent constraints (C1.1)

We first turn to the random variables

z = [f(x?); diag[∇2f(x?)]],

c = [yn;∇f(x?); upper[∇2f(x?)]] = [yn; 0; 0].

Here c contains the random variables that we will condition on in order to enforce constraint C1.1.
Given the input locations x and x? we can construct a kernel matrix K containing the covariance
evaluated on the stacked vector [z; c]. We again refer to [25] in constructing this matrix which
includes derivative observations, the computations of which are tedious but not overly complicated.
Note also that the portions of K which correspond to yi will have an additional σ2 due to the
observation noise. Next let Kz, Kc, and Kzc denote the corresponding diagonal and off-diagonal
blocks of the kernel matrix. We can now condition on the observed values of c to write

p(z|Dn,C1.1) = p(z|c) = N (z|m0,V0)

where m0 = KzcK
−1
c c and V0 = Kz −KzcK

−1
c KT

zc.

B.2 Incorporating the non-analytic latent constraints (C1.2 and C2)

The additional constraints C1.2 and C2 can be introduced explicitly as in (6), which takes the form
of a single Gaussian factor and d+ 1 non-Gaussian factors

p(z|Dn,C1,C2) ∝ N (z|m0,V0)
[ d+1∏
i=1

ti(zi)
]
.

We approximate this distribution using a single multivariate Gaussian q(z) where each non-Gaussian
factor is replaced by a Gaussian approximation t̃i(zi) = N (zi; m̃i, ṽi) such that

q(z) = N (z|m,V) ∝ N (z|m0,V0)
[ d+1∏
i=1

N (zi; m̃i, ṽi)
]

where this approximation is parameterized by m = V[Ṽ−1m̃ + V−10 m0] and V = (Ṽ−1 +
V−10 )−1. The parameters of the approximate factors are combined to form the vector [m̃]i = m̃i

and the diagonal matrix [Ṽ]ii = ṽi.
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To compute the approximate factors we use expectation propagation (EP). EP is a procedure that
starts from some initial values for the approximate factors (m̃i, ṽi) and iteratively refines these
quantities; here we initialize m̃i = 0 and ṽi =∞ which corresponds to m = m0 and V = V0. At
each iteration, for every factor i, we remove the contribution of the ith approximate factor to form
the cavity distribution q\i(z) ∝ q(z)/t̃i(zi). Given the independent factors we consider here we can
focus on each individual component q\i(zi) separately with mean and variance

m̄i = v̄i(mi/vii − m̃i/ṽi),

v̄i = (v−1ii − ṽ
−1
i )−1.

Let q̂(zi) ∝ q\i(zi)ti(zi) denote the tilted distribution where the ith approximate factor has been
replaced by the corresponding real factor. EP proceeds by finding the approximation qi that mini-
mizes the KL-divergence D[q̂i||qi] where qi is restricted to be Gaussian. This amounts to matching
the first two moments. Finally, by removing the influence of the cavity distribution and setting
t̃i(zi) ∝ qi(zi)/q\i(zi) we can update the approximate factors. This can be performed using the
same procedure which forms the cavity distribution.

For both sets of constraints used in this work the moments can easily be obtained by computing the
log normalizing constant Z̄i = log

∫
N (zi|m̄i, v̄i) ti(zi) dzi and using the following identities:

Eq̂[zi] = m̄i + v̄i
∂Z̄i
∂m̄i

, Varq̂[zi] = v̄i − v̄2i

([
∂Z̄i
∂m̄i

]2
− 2

∂Z̄i
∂v̄i

)
. (11)

We first show the updates for the parameters (m̃i, ṽi) of the factors corresponding to constraints on
the diagonal Hessian, i.e. where ti(zi) = I[zi < 0]. Given the moments of the tilted distribution in
(11) , we can remove the contribution of the cavity distribution as above and write

m̃i ← m̄i + κ−1, where α = − m̄i√
v̄i
,

ṽi ← β−1 − v̄i, β =
φ(α)

Φ(α)

[
φ(α)

Φ(α)
+ α

]
1

v̄i
,

κ = −
[
φ(α)

Φ(α)
+ α

]
1√
v̄i
,

where φ and Φ are the standard Gaussian density and cumulative distribution functions, respectively.
For the final soft-maximum constraint, Φ

(
(zi−ymax)/σ

)
, the moments can be calculated in a similar

fashion. Using the same procedure as above we arrive at very similar updates:

m̃i ← m̄i + κ−1, where α =
m̄i − ymax√
v̄i + σ2

,

ṽi ← β−1 − v̄i, β =
φ(α)

Φ(α)

[
φ(α)

Φ(α)
+ α

]
1

v̄i + σ2
,

κ =

[
φ(α)

Φ(α)
+ α

]
1√

v̄i + σ2
.

B.3 Incorporating the prediction constraint (C3)

Given some test input x we now turn to the problem of making predictions about f(x). We again
note that both the “prior” terms m0, V0 and the EP factors, m̃ and Ṽ, are independent of x and can
be precomputed once for later use at prediction time.

Let f = [f(x); f(x?)] be a vector given by the concatenation of the latent function at x and x?. The
distribution for f given the first two constraints can be written as

p(f |Dn,C1,C2) ≈
∫
p(f |z, c) q(z) dz = N (f |mf ,Vf ) . (12)

By writing p(f |z, c) above we are assuming that f is independent of C1.2 and C2 given z and as
a result the above is simply an integral over the product of two Gaussians. Let K† be the cross-
covariance matrix evaluated between f and [z; c] and Kf the covariance matrix associated with f .
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The posterior above will then be Gaussian with mean and variance

mf = K†[K + W̃]−1[c; m̃]

Vf = Kf −K†[K + W̃]−1KT
† ,

where W̃ is a block-diagonal matrix where the first block is zero and the second is Ṽ (note this
matrix is also diagonal since Ṽ is diagonal).

The constraint that f(x) < f(x?) can be incorporated by introducing an additional factor ensuring
that cTf is positive for c = [−1; 1]. The resulting density has a log normalizing constant given by

Z = log

∫
N (f |mf ,Vf ) I[cTf > 0] df

= log

∫
N (a|m, v) I[a > 0] da = log Φ(m/

√
v).

where m = cTmf and v = cTVfc. The derivatives of Z with respect to mf and Vf can then be
taken and a multivariate form of (11) can be used to obtain the first two moments [18]. In particular,
the second moment is given by

Var[f ] = Vf − v−1β(α+ β)(VfccTVf ),

where α = m/
√
v and β = φ(α)/Φ(α). Finally, the first diagonal component of the resulting

matrix corresponds to the marginal variance of f(x), which can be simplified as in (9). This marginal
variance can be used as the variance parameter in a Gaussian approximation to p(f(x)|Dn,x?). For
the PES acquisition function we only need this variance parameter since the entropy of a Gaussian
does not depend on its first moment.
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