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Abstract

The brain uses population codes to form distributed, noise-tolerant representa-
tions of sensory and motor variables. Recent work has examined the theoretical
optimality of such codes in order to gain insight into the principles governing
population codes found in the brain. However, the majority of the population
coding literature considers either conditionally independent neurons or neurons
with noise governed by a stimulus-independent covariance matrix. Here we an-
alyze population coding under a simple alternative model in which latent “input
noise” corrupts the stimulus before it is encoded by the population. This provides
a convenient and tractable description for irreducible uncertainty that cannot be
overcome by adding neurons, and induces stimulus-dependent correlations that
mimic certain aspects of the correlations observed in real populations. We ex-
amine prior-dependent, Bayesian optimal coding in such populations using exact
analyses of cases in which the posterior is approximately Gaussian. These anal-
yses extend previous results on independent Poisson population codes and yield
an analytic expression for squared loss and a tight upper bound for mutual infor-
mation. We show that, for homogeneous populations that tile the input domain,
optimal tuning curve width depends on the prior, the loss function, the resource
constraint, and the amount of input noise. This framework provides a practical
testbed for examining issues of optimality, noise, correlation, and coding fidelity
in realistic neural populations.

1 Introduction

A substantial body of work has examined the optimality of neural population codes [1–19]. How-
ever, the classical literature has focused mostly on codes with independent Poisson noise, and on
Fisher information-based analyses of unbiased decoding. Real neurons, by contrast, exhibit depen-
dencies beyond those induced by the stimulus (i.e., “noise correlations”), and Fisher information
does not accurately quantify information when performance is close to threshold [7, 15, 18], or
when biased decoding is optimal. Moreover, the classical population codes with independent Pois-
son noise predict unreasonably good performance with even a small number of neurons. A variety
of studies have shown that the information extracted from independently recorded neurons (across
trials or even animals) outperforms the animal itself [20, 21]. For example, a population of only 220
Poisson neurons with tuning width of 60 deg (full width at half height) and tuning amplitude of 10
spikes can match the human orientation discrimination threshold of ⇡ 1 deg. (See Supplement S1
for derivation.) Note that even fewer neurons would be required if peak spike counts were higher.

The mismatch between this predicted efficiency and animals’ actual behaviour has been attributed
to the presence of information-limiting correlations between neurons [22, 23]. However, deviation
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Figure 1: Bayesian formulation of neural population coding with input noise.

from independence renders most analytical treatments infeasible, necessitating the use of numerical
methods (Monte Carlo simulations) for quantifying the performance of such codes [7, 15].

Here we examine a family of population codes for which the posterior is Gaussian, which makes it
feasible to perform a variety of analytical treatments. In particular, when tuning curves are Gaussian
and “tile” the input domain, we obtain codes for which the likelihood is proportional to a Gaussian
[2, 16]. Combined with a Gaussian stimulus prior, this results in a Gaussian posterior whose variance
depends only on the total spike count. This allows us to derive tractable expressions for neurometric
functions such as mean squared error (MSE) and mutual information (MI), and to analyze optimality
without resorting to Fisher information, which can be inaccurate for short time windows or small
spike counts [7, 15, 18]. Secondly, we extend this framework to incorporate shared “input noise” in
the stimulus variable of interest (See Fig. 1). This form of noise differs from many existing models,
which assume noise to arise from shared connectivity, but with no direct relationship to the stimulus
coding [5, 15, 18, 24] (although see [16, 25] for related approaches).

This paper is organised as follows. In Sec. 2, we describe an idealized Poisson population code with
tractable posteriors, and review classical results based on Fisher Information. In Sec. 3, we provide
a Bayesian treatment of these codes, deriving expressions for mean squared error (MSE) and mutual
information (MI). In Sec. 4, we extend these analyses to a population with input noise. Finally, in
Sec. 5 we examine the patterns of pairwise dependencies introduced by input noise.

2 Independent Poisson population codes

Consider an idealized population of Poisson neurons that encode a scalar stimulus s with Gaussian-
shaped tuning curves. Under this (classical) model, the response vector r = (r1, . . . rN )> is condi-
tionally Poisson distributed:

r
i

|s ⇠ Poiss(f
i

(s)), p(r|s) =
NY

i=1

1
ri!

f
i

(s)rie�fi(s), (Poisson encoding) (1)

where tuning curves f
i

(s) take the form

f
i

(s) = ⌧A exp
⇣
� 1

2�2
t
(s� ?

s
i

)2
⌘
, (tuning curves) (2)

with equally-spaced preferred stimuli ?
s = (

?
s1, . . .

?
s
N

), tuning width �
t

, amplitude A, and time
window for counting spikes ⌧ . We assume that the tuning curves “tile”, i.e., sum to a constant over
the relevant stimulus range:

NX

i=1

f
i

(s) = � (tiling property) (3)

We can determine � by integrating the summed tuning curves (eq. 3) over the stimulus space, givingR
ds

P
N

i=1 fi(s) = NA
p
2⇡�

t

= S�, with solution:

� = a�
t

/� (expected total spike count) (4)

where � = S/N is the spacing between tuning curve centers, and a =
p
2⇡A⌧ is a constant that

we will refer to as the “effective amplitude”, since it depends on true tuning curve amplitude and
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the time window for integrating spikes. Note, that tiling holds almost perfectly if tuning curves are
broad compared to their spacing (e.g. �

t

> �). However, our results hold on average for a much
broader range of �

t

. (See Supplementary Figs S2 and S3 for a numerical analysis.)

Let R =
P

r
i

denote the total spike count from the entire population. Due to tiling, R is a Poisson
random variable with rate �, regardless of the stimulus: p(R|s) = 1

R!�
Re��.

For simplicity, we will consider stimuli drawn from a zero-mean Gaussian prior with variance �2
s

:

s ⇠ N (0,�2
s

), p(s) = 1p
2⇡�s

e
� s2

2�2
s . (stimulus prior) (5)

Since
Q

i

e�fi(s) = e�� due to the tiling assumption, the likelihood (eq. 1 as a function of s) and
posterior both take Gaussian forms:

p(r|s) /
Y

i

f
i

(s)ri / N
�
s
�� 1
R

r>
?
s , 1

R

�2
t

�
(likelihood) (6)

p(s|r) = N
⇣ r>

?
s

R+ ⇢
,

�2
t

R+ ⇢

⌘
, (posterior) (7)

where ⇢ = �2
t

/�2
s

denotes the ratio of the tuning curve variance to prior variance. The maximum of
the likelihood (eq. 6) is the so-called center-of-mass estimator estimator, 1

R

r>
?
s , while the mean of

the posteror (eq. 7) is biased toward zero by an amount that depends on ⇢. Note that the posterior
variance does not depend on which neurons emitted spikes, only the total spike count R, a fact that
will be important for our analyses below.

2.1 Capacity constraints for defining optimality

Defining optimality for a population code requires some form of constraint on the capacity of the
neural population, since clearly we can achieve arbitrarily narrow posteriors if we allow arbitrarily
large total spike count R. In the following, we will consider two different biologically plausible
constraints:

• A space constraint, in which we constrain only the number of neurons. This means that
increasing the tuning width �

t

will increase the expected population spike count � (see
eq. 4), since more neurons will respond as tuning curves grow wider.

• An energy constraint, in which we fix � while allowing �
t

and amplitude A to vary. Here,
we can make tuning curves wider but must reduce the amplitude so that total expected spike
count remains fixed.

We will show that the optimal tuning depends strongly on which kind of constraint we apply.

2.2 Analyses based on Fisher Information

The Fisher information provides a popular, tractable metric for quantifying the efficiency of a neural
code, given by E[� @

2

@s

2 log p(r|s)], where expectation is taken with respect to encoding distribution
p(r|s). For our idealized Poisson population, the total Fisher information is:

I
F

(s) =
NX

i=1

f 0
i

(s)2

f
i

(s)
=

NX

i=1

A
(s� ?

s
i

)2

�4
t

exp
⇣
� (s� ?

s
i

)2

2�2
t

⌘
=

a

�
t

�
=

�

�2
t

, (Fisher info) (8)

which we can derive, as before, using the tiling property (eq. 3). (See also Supplemental Sec. S2).
The first of the two expressions at right reflects I

F

for the space constraint, where � varies implicitly
as we vary �

t

. The second expresses I
F

under the energy constraint, where � is constant so that a
varies implicitly with �

t

. For both constraints, I
F

increases with increasing a and decreasing �
t

[5].

Fisher information provides a well-known bound on the variance of an unbiased estimator ŝ(r)
known as the Cramér-Rao (CR) bound, namely var(ŝ|s) � 1/I

F

(s). Since FI is constant over s in
our idealized setting, this leads to a bound on the mean squared error ([7, 12]):

MSE , E
⇥
(ŝ(r)� s)2

⇤
p(r,s)

� E


1

I
F

(s)

�

p(s)

=
�
t

�

a
=

�2
t

�
, (9)
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Figure 2: Mean squared error as a function of the tuning width �
t

, under space constraint (top row)
and energy constraint (bottom row), for spacing � = 1 and amplitude A = 20 sp/s. and Top
left: MSE for different prior widths �

s

(with A=2,⌧ = 200ms), showing that optimal �
t

increases
with larger prior variance. Cramér-Rao bound (gray solid) is minimized at �

t

= 0, whereas bound
(eq. 12, gray dashed) accurately captures shape and location of the minimum. Top right: Similar
curves for different time windows ⌧ for counting spikes (with �

s

=32), showing that optimal �
t

in-
creases for lower spike counts. Bottom row: Similar traces under energy constraint (where A scales
inversely with �

t

so that � =
p
2⇡⌧A�

t

is constant). Although the CR bound grossly understates
the true MSE for small counting windows (right), the optimal tuning is maximally narrow in this
configuration, consistent with the CR curve.

which is simply the inverse of Fisher Information (eq. 8).

Fisher information also provides a (quasi) lower bound on the mutual information, since an efficient
estimator (i.e., one that achieves the CR bound) has entropy upper-bounded by that of a Gaussian
with variance 1/I

F

(see [3]). In our setting this leads to the lower bound:

MI(s, r) , H(s)�H(s|r) � 1
2 log

⇣
�2
s

a

�
t

�

⌘
= 1

2 log
⇣
�2
s

�

�2
t

⌘
. (10)

Note that neither of these FI-based bounds apply exactly to the Bayesian setting we consider here,
since Bayesian estimators are generally biased, and are inefficient in the regime of low spike counts
[7]. We examine them here nonetheless (gray traces in Figs. 2 and 3) due to their prominence in the
prior literature ([5, 12, 14]), and to emphasize their limitations for characterizing optimal codes.

2.3 Exact Bayesian analyses

In our idealized population, the total spike count R is a Poisson random variable with mean �, which
allows us to compute the MSE and MI by taking expectations w.r.t. this distribution.

Mean Squared Error (MSE)

The mean squared error, which equals the average posterior variance (eq. 7), can be computed
analytically for this model:

MSE = E


�2
t

R+ ⇢

�

p(R)

=
1X

R=0

✓
�2
t

R+ ⇢

◆
�R

R!
e�� = �2

t

e�� �(⇢) �⇤ (⇢,��) , (11)

where ⇢ = �2
t

/�2
s

and �⇤(a, z) = z�a

1
�(a)

R
z

0 ta�1e�tdt is the holomorphic extension of the lower
incomplete gamma function [26] (see SI for derivation). When the tuning curve is narrower than the
prior (i.e., �2

t

 �2
s

), we can obtain a relatively tight lower bound:

MSE � �2
t

�

�
1� e��

�
+ (�2

s

� �2
t

)e��. (12)
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Figure 3: Mutual information as a function of tuning width �
t

, directly analogous to plots in Fig. 2.
Note the problems with the lower bound on MI derived from Fisher information (top, gray traces)
and the close match of the derived bound (eq. 14, dashed gray traces). The effects are similar
to Fig. 2, except that MI-optimal tuning widths are slightly smaller (upper left and right) than for
MSE-optimal codes. For both loss functions, optimal width is minimal under an energy constraint.

Figure 2 shows the MSE (and derived bound) as a function of the tuning width �
t

over the range
where tiling approximately holds. Note the high accuracy of the approximate formula (12, dashed
gray traces) and that the FI-based bound does not actually lower-bound the MSE in the case of
narrow priors (darker traces).

For the space-constrained setting (top row, obtained by substituting � = a�
t

/� in eqs. 11 and
12), we observe substantial discrepancies between the true MSE and FI-based analysis. While FI
suggests that optimal tuning width is near zero (down to the limits of tiling), analyses reveal that the
optimal �

t

grows with prior variance (left) and decreasing time window (right). These observations
agree well with the existing literature (e.g. [15, 16]). However, if we restrict the average population
firing rate (energy constraint, bottom plots), the optimal tuning curves once again approach zero. In
this case, FI provides correct intuitions and better approximation of the true MSE.

Mutual Information (MI)

For a tiling population and Gaussian prior, mutual information between the stimulus and response
is:

MI(s, r) = 1
2E

h
log

⇣
1 +R�

2
s

�

2
t

⌘i

P (R)
, (13)

which has no closed-form solution, but can be calculated efficiently with a discrete sum over R from
0 to some large integer (e.g., R = � + n

p
� to capture n standard deviations above the mean). We

can derive an upper bound using the Taylor expansion to log while preserving the exact zeroth order
term:

MI(s, r)  1�e

��

2 log
⇣
1 + ( �

1�e

�� )
�

2
s

�

2
t

⌘
= 1�e

�a�t/�

2 log
⇣
1 + a

1�e

�a�t/�

�

2
s

�t�

⌘
(14)

Once again, we investigate the efficiency of population coding for neurons, now in terms of the
maximal MI. Figure 3 shows MI as a function of the neural tuning width �

t

. We observe a similar
effect as for the MSE: the optimal tuning widths are now different from zero,but only for the space
constraint. The energy constraint, as well as implications from FI indicate optimum near �

t

=0.
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3 Poisson population coding with input noise

We can obtain a more general family of correlated population codes by considering “input noise”,
where the stimulus s is corrupted by an additive noise n (see Fig. 1):

s ⇠ N (0,�2
s

) (prior) (15)

n ⇠ N (0,�2
n

) (input noise) (16)
r
i

|s, n ⇠ Poiss(f
i

(s+ n)) (population response) (17)

The use of Gaussians allows us to marginalise over n analytically, resulting in a Gaussian form for
the likelihood and Gaussian posterior:

p(r|s) / N
�
s
�� 1
R

r>
?
s , 1

R

�2
t

+ �2
n

�
(likelihood) (18)

p(s|r) = N
✓

r>
?
s

�2
t

/�2
s

+R(�2
n

/�2
s

+ 1)
,

(�2
t

+R�2
n

)�2
s

�2
t

+R(�2
n

+ �2
s

)

◆
(posterior) (19)

Note that even in the limit of large spike counts, the posterior variance is non-zero, converging to
�2
n

�2
s

/(�2
n

+ �2
s

).

3.1 Population coding characteristics: FI, MSE, & MI

Fisher information for a population with input noise can be using the fact that the likelihood (eq. 18)
is Gaussian: Eq. (18):

I
F

(s) , �E

d2 log p(r|s)

ds2

�

p(r|s)
= E


R

�2
t

+R�2
n

�

p(R)

=
�e��

�2
n

�(1 + ⇢)�⇤(1 + ⇢,��) (20)

where ⇢ = �2
t

/�2
n

and �⇤(·, ·) once again denotes holomorphic extension of lower incomplete
gamma function. Note that for �

n

= 0, this reduces to (eq. 8).

It is straightforward to employ the results from Sec. 2.3 for the exact Bayes analyses of a Gaussian
posterior (19):

MSE = �2
s

E


�2
t

+R�2
n

�2
t

+R(�2
n

+ �2
s

)

�

p(R)

= �2
s

⇢E


1

⇢+R

�

p(R)

+
�

2
s�

2
n

�

2
s+�

2
n
E


R

⇢+R

�

p(R)

=
⇥
⇢�(⇢)�⇤(⇢,��) + �

2
n

�

2
s+�

2
n
��(1 + ⇢)�⇤(1 + ⇢,��)

⇤
�2
s

e��, (21)

MI = 1
2E


log

✓
1 +

R�2
s

�2
t

+R�2
n

◆�

p(R)

, (22)

where ⇢ = �2
t

/(�2
s

+ �2
n

). Although we could not determine closed-form analytical expressions
for MI, it can be computed efficiently by summing over a range of integers [0, . . . R

max

] for which
P (R) has sufficient support. Note this is still a much faster procedure than estimating these values
from Monte Carlo simulations.

3.2 Optimal tuning width under input noise

Fig. 4 shows the optimal tuning width under the space constraint: the value of �
t

minimizing MSE
(left) or maximising MI (right) as a function of the prior width �

s

, for selected time windows of
integration ⌧ . Blue traces show results for a Poisson population, while green traces correspond to a
population with input noise (�

n

= 1).

For both MSE and MI loss functions, optimal tuning width decreases for narrower priors. However,
under input noise (green traces), the optimal tuning width saturates at the value that depends on
the available number of spikes. As the prior grows wider, the growth of the optimal tuning width
depends strongly on the choice of loss function: optimal �

t

grows approximately logarithmically
with �

s

for minimizing MSE (left), but it grows much slower for maximizing MI (right). Note that
for realistic prior widths (i.e. for �

s

>�
n

), the effects of input noise on optimal tuning width are far
more substantial under MI than under MSE.
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Figure 4: Optimal tuning width �
t

(under space constraint only) as a function of prior width �
s

,
for classic Poisson populations (blue) and populations with input-noise (green, �2

n

= 1). Different
traces correspond to different time windows of integration, for � = 1 and A = 20 sp/s. As �

n

increases, the optimal tuning width increases under MI, and under MSE when �
s

< �
n

(traces not
shown). For MSE, predictions of the Poisson and input-noise model converge for priors �

s

>�
n

.

We have not shown plots for energy-constrained population codes because the optimal tuning width
sits at the minimum of the range over which tiling can be said to hold, regardless of prior width,
input noise level, time window, or choice of loss function. This can be seen easily in the expressions
for MI (eqs. 13 and 22), in which each term in the expectation is a decreasing function of �

t

for
all R > 0. This suggests that, contrary to some recent arguments (e.g., [15, 16]), narrow tuning (at
least down to the limit of tiling) really is best if the brain has a fixed energetic budget for spiking, as
opposed to a mere constraint on the number of neurons.

4 Correlations induced by input noise

Input noise alters the mean, variance, and pairwise correlations of population responses in a sys-
tematic manner that we can compute directly (see Supplement for derivations). In Fig. 5 we show
the effects input noise with standard deviation �

n

= 0.5�, for neurons with the tuning amplitude
of A = 10. The tuning curve (mean response) becomes slightly flatter (A), while the variance in-
creases, especially at the flanks (B). Fig. 5C shows correlations between the two neurons with tuning
curves and variance are shown in panels A-B: one pair with the same preferred orientation at zero
(red) and a second with a 2 degree difference in preferred orientation (blue). From these plots, it is
clear that the correlation structure depends on both the tuning as well as the stimulus. Thus, in order
to describe such correlations one needs to consider the entire stimulus range, not simply the average
correlation marginalized over stimuli.

Figure 5D shows the pairwise correlations across an entire population of 21 neurons given a stimulus
at s = 0. Although we assumed Gaussian tuning curves here, one obtain similar plots for arbitrary
unimodal tuning curves (see Supplement), which should make it feasible to test our predictions
in real data. However, the time scale of the input noise and basic neural computations is about
10 ms. At such short spike count windows, available number of spikes is low, and so are correlations
induced by input noise. With other sources of second order statistics, such as common input gains
(e.g. by contrast or adaptation), these correlations might be too subtle to recover [23].

5 Discussion

We derived exact expressions for mean squared error and mutual information in a Bayesian analysis
of: (1) an idealized Poisson population coding model; and (2) a correlated, conditionally Poisson
population coding model with shared input noise. These expressions allowed us to examine the
optimal tuning curve width under both loss functions, under two kinds of resource constraints. We
have confirmed that optimal �

t

diverges from predictions based on Fisher information, if the overall
spike count allowed is allowed to grow with tuning width (i.e., because more neurons respond to
the stimulus when tuning curves become broader). We referred to this as a “space constraint” to
differentiate it from an “energy constraint”, in which tuning curve amplitude scales down with tuning
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Figure 5: Response statistics of neural population with input noise, for standard deviation �
n

= 0.5.
(A) Expected spike responses of two neurons: ?

s1 = 0 (red) and ?
s2 = �2 (blue). The common

noise effectively smooths blurs the tuning curves with a Gaussian kernel of width �
n

. (B) Variance
of neuron 1, its tuning curve replotted in black for reference. Input noise has largest influence on
variance at the steepest parts of the tuning curve. (C) Cross-correlation of the neuron 1 with two
others: one sharing the same preference (red), and one with ?

s = �2 (blue). Note that correlation
of two identically tuned neurons is largest at the steepest part of the tuning curve. (D) Spike count
correlations for entire population of 21 neurons given a fixed stimulus s = 0, illustrating that the
pattern of correlations is signal dependent.

width so that average total spike count is invariant to tuning width. In this latter scenario, predictions
from Fisher information are no longer inaccurate, and we find that optimal tuning width should be
narrow (down to the limit at which the tiling assumption applies), regardless of the duration, prior
width, or input noise level.

We also derived explicit predictions for the dependencies (i.e., response correlations) induced by
the input noise. These depend on the shape (and scale) of tuning responses, and on the amount of
noise (�

n

). However, for a reasonable assumption that noise distribution is much narrower than the
width of the prior (and tuning curves), under which the mean firing rate changes little, we can derive
predictions for the covariances directly from the measured tuning curves. An important direction
for future work will be to examine the detailed structure of correlations measured in large popula-
tions. We feel that the input noise model — which describes exactly those correlations that are most
harmful for decoding — has the potential to shed light on the factors affecting the coding capacity
in optimal neural populations [23].

Finally, if we return to our example from the Introduction to see how the number of neurons neces-
sary to reach the human discrimination threshold of �s=1 degree changes in the presence of input
noise. As �

n

approaches �s, the number of neurons required goes rapidly to infinity (See Supple-
mentary Fig. S1).
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