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A Proof of Lemma 3

For each 1  i  n, the random variable log(1 + R
i,n

) has mean and variance, respectively,

µ
n

=

1

2

log

⇣

1� c

n

⌘

and �2
n

=

1

4

log

2

✓p
n +

p
cp

n�
p

c

◆

.

We now define
X

i,n

:=

log(1 + R
i,n

)� µ
n

�
n

p
n

, (13)

so X1,n

, . . . ,X
n,n

are i.i.d. random variables with E[X
i,n

] = 0 and
P

n

i=1 E[X2
i,n

] = 1. Recalling
that R

i,n

2 {±
p

c/n}, we see that the two possible values for X
i,n

both approach 0 as n ! 1.
This means for any ✏ > 0 we can find a sufficiently large n such that |X

i,n

| < ✏ for all 1  i  n.
In particular, this implies the Lindeberg condition for the triangular array (X

i,n

, 1  i  n): for all
✏ > 0,

lim

n!1

n

X

i=1

E[X2
i,n

1{|X
i,n

| > ✏}] = 0.

Thus, by the Lindeberg central limit theorem [4, Theorem 3.4.5], we have the convergence in distri-
bution

P

n

i=1 X
i,n

d�! Z, where Z ⇠ N (0, 1) is a standard Gaussian random variable.

Clearly µ
n

! 0 as n!1. Furthermore, one can easily verify that by the L’Hôpital’s rule,

lim

n!1
�

n

p
n =

p
c and lim

n!1
nµ

n

= � c

2

.

Therefore, from the convergence
P

n

i=1 X
i,n

d�! Z and recalling the definition (13) of X
i,n

, we
also obtain

n

X

i=1

log(1 + R
i,n

) =

n

X

i=1

�

µ
n

+ �
n

p
nX

i,n

�

= nµ
n

+ �
n

p
n

n

X

i=1

X
i,n

d�! �c

2

+

p
cZ.

In particular, by the continuous mapping theorem,
n

Y

i=1

(1 + R
i,n

)

d�! exp

⇣

� c

2

+

p
cZ

⌘

d

= G(c).
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We now want to show that we also have convergence in expectation when g is an L-Lipschitz func-
tion, namely, that E[g(S ·

Q

n

i=1(1 + R
i,n

))] ! E[g(S · G(c))]. Without loss of generality (by
replacing g(x) by ĝ(x) = g(S · x) � g(0)) we may assume S = 1 and g(0) = 0. For sim-
plicity, let S

n

=

Q

n

i=1(1 + R
i,n

). For each M > 0 define the continuous bounded function
g

M

(x) = min{g(x), M}. The convergence in distribution S
n

d! G(c) gives us
lim

n!1
E[g

M

(S
n

))] = E[g
M

(G(c))] for all M > 0. (14)

Since g
M

" g pointwise, by the monotone convergence theorem we also have
lim

M!1
E[g

M

(G(c))] = E[g(G(c))]. (15)

Now observe that E[S
n

] = 1 and E[S2
n

] = (1 + c/n)

n  exp(c). Since g(0) = 0 and g is L-
Lipschitz, we have g(x)  Lx for all x � 0. In particular, E[g(S

n

)

2
]  L2E[S2

n

]  L2
exp(c).

Moreover, by Markov’s inequality,

P(g(S
n

) > M)  P
✓

S
n

>
M

L

◆

 E[S
n

]

M/L
=

L

M
.

Therefore, for each n and for all M > 0, by Cauchy-Schwarz inequality,
�

�E[g(S
n

)]� E[g
M

(S
n

)]

�

�

= E[(g(S
n

)�M) · 1{g(S
n

) > M}]
 E[g(S

n

) · 1{g(S
n

) > M}]
 E[g(S

n

)

2
]

1/2 P(g(S
n

) > M)

1/2


�

L3
exp(c)/M

�1/2
.

Since the final bound does not involve n, this shows that lim

M!1 E[g
M

(S
n

)] ! E[g(S
n

)] uni-
formly in n. This allows us to interchange the order of the limit operations below, which, together
with (14) and (15), give us our desired result:
lim

n�1
E[g(S

n

)] = lim

n�1
lim

M�1
E[g

M

(S
n

)] = lim

M�1
lim

n�1
E[g

M

(S
n

)] = lim

M�1
E[g

M

(G(c))] = E[g(G(c))].

This completes the proof of Lemma 3.

B Proofs of Lemma 5 and Lemma 7

B.1 Proof of Lemma 5

Lemma 5 essentially follows from the definition of ↵(n).

Proof of Lemma 5. We proceed by induction on m. For the base case m = 0, we use Jensen’s
inequality and the fact that E[G(c)] = 1:

V
(n)
⇣

(S; c, 0) = g(S) = g(S · E[G(c)])  E[g(S · G(c))] = U(S, c).

Now assume the statement (10) holds for m� 1. Then for m,

V
(n)
⇣

(S; c, m) = inf

�2R
sup

|r|min{⇣,

p
c}
��r + V

(n)
⇣

(S + Sr; c� r2, m� 1)

 inf

�2R
sup

|r|min{⇣,

p
c}
��r + U(S + Sr, c� r2

) + ↵(n)
(S + Sr, c� r2, m� 1)

 sup

|r|min{⇣,

p
c}
�rSU

S

(S, c) + U(S + Sr, c� r2
) + ↵(n)

(S + Sr, c� r2, m� 1)

= sup

|r|min{⇣,

p
c}

U(S, c) + ✏
r

(S, c) + ↵(n)
(S + Sr, c� r2, m� 1)

= U(S, c) + ↵(n)
(S, c,m).

The first line is from the definition (5); the second line is using the inductive hypothesis that (10)
holds for m�1; the third line is from substituting the choice � = SU

S

(S, c); the fourth line is from
the definition of ✏

r

; and the last line is from the definition of ↵(n)
(S, c,m).
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B.2 Proof of Lemma 7

For completeness, we provide a more detailed proof of Lemma 7.

Proof of Lemma 7. Unrolling the inductive definition (9), we can write

↵(n)
(S, c) = sup

r1,...,r

n

|r
m

|⇣,

P
n

m=1 r

2
m

c

f(r1, . . . , rn

),

where f is the function

f(r1, . . . , rn

) =

n

X

m=1

✏
r

m

⇣

S
m�1
Y

i=1

(1 + r
i

), c�
m�1
X

i=1

r2
i

⌘

.

Let (r1, . . . , rn

) be such that |r
m

|  ⇣ and
P

n

m=1 r2
m

 c. We will show that f(r1, . . . , rn

) 
(18c + 8/

p
2⇡) LK ⇣1/4.

Assume for now that ⇣  c2. Let 0  n⇤  n be the largest index such that
n⇤
X

m=1

r2
m

 c�
p

⇣.

We split the analysis into two parts.

For 1  m  min{n, n⇤ + 1}: We want to apply the bound in Lemma 6, so let us verify that the
conditions in Lemma 6 are satisfied. Clearly |r

m

|  ⇣  1/16. Moreover, since c �
P

m�1
i=1 r2

i

�
c�

P

n⇤
i=1 r2

i

�
p

⇣ and ⇣  1/16, we also have

|r
m

|  ⇣  ⇣1/4

8



q

c�
P

m�1
i=1 r2

i

8

.

Therefore, by (11) from Lemma 6,

✏
r

m

⇣

S

m�1
Y

i=1

(1 + r
i

), c�
m�1
X

i=1

r2
i

⌘

 16LK

 

max

(

⇣

c�
m�1
X

i=1

r2
i

⌘�3/2
,
⇣

c�
m�1
X

i=1

r2
i

⌘�1/2
)

|r
m

|3

+ max

(

⇣

c�
m�1
X

i=1

r2
i

⌘�2
,
⇣

c�
m�1
X

i=1

r2
i

⌘�1/2
)

r4
m

!

 16LK
⇣

max{⇣�3/4, ⇣�1/4} |r
m

|3 + max{⇣�1, ⇣�1/4} r4
m

⌘

= 16LK
⇣

⇣�3/4 |r
m

|3 + ⇣�1 r4
m

⌘

(since ⇣ < 1)

 16LK
⇣

⇣1/4 r2
m

+ ⇣ r2
m

⌘

(since |r
m

|  ⇣)

 16LK

✓

⇣1/4 r2
m

+ ⇣1/4 1

16

3/4
r2
m

◆

(since ⇣  1/16)

= 18LK ⇣1/4 r2
m

.

Summing over 1  m  min{n, n⇤ + 1} gives us
min{n, n⇤+1}

X

m=1

✏
r

m

⇣

S

m�1
Y

i=1

(1+r
i

), c�
m�1
X

i=1

r2
i

⌘

 18LK ⇣1/4
min{n, n⇤+1}

X

m=1

r2
m

 18LK ⇣1/4 c. (16)

For n⇤ + 2  m  n, if n⇤  n � 2: Without loss of generality we may assume r
n

6= 0, for if
r
n

= 0, then the term depending on r
n

does not affect f(r1, . . . , rn

) since

✏
r

n

⇣

S

n�1
Y

i=1

(1 + r
i

), c�
n�1
X

i=1

r2
i

⌘

= 0,
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so we can remove r
n

and only consider n⇤ + 2  m  n� 1. From the definition of n⇤ we see that
P

n⇤+1
m=1 r2

m

> c�
p

⇣, and since
P

n

m=1 r2
m

 c, this implies

n

X

m=n⇤+2

r2
m

 c�
n⇤+1
X

m=1

r2
m

< c� (c�
p

⇣) =

p

⇣. (17)

Note also that for each n⇤ + 2  m  n,

0 < r2
n


n

X

i=m

r2
i

 c�
m�1
X

i=1

r2
i

 c�
n⇤+1
X

i=1

r2
i


p

⇣  1

4

,

so by (12) from Lemma 6,

✏
r

m

⇣

S

m�1
Y

i=1

(1 + r
i

), c�
m�1
X

i=1

r2
i

⌘

 4LKp
2⇡

· r2
m

q

c�
P

m�1
i=1 r2

i

 4LKp
2⇡

· r2
m

p

P

n

i=m

r2
i

.

Therefore, by applying Lemma 8 below to x
i

= r2
n⇤+1+i

, we see that

n

X

m=n⇤+2

✏
r

m

⇣

S

m�1
Y

i=1

(1 + r
i

), c�
m�1
X

i=1

r2
i

⌘

 4LKp
2⇡

n

X

m=n⇤+2

r2
m

p

P

n

i=m

r2
i

 8LKp
2⇡

 

n

X

m=n⇤+2

r2
m

!1/2

 8LKp
2⇡

⇣1/4,

(18)

where the last inequality follows from (17). Combining (16) and (18) gives us the desired conclu-
sion.

Now if ⇣ > c2, then the argument in the second case above (for n⇤ + 2  m  n) still holds with
n⇤ set to be �1, so we still get the same conclusion.

It now remains to prove the following result, which we use at the end of the proof of Lemma 7.
Lemma 8. For x1, . . . , xk

� 0 with x
k

> 0, we have

k

X

i=1

x
ip

x
i

+ x
i+1 + · · · + x

k

 2

 

k

X

i=1

x
i

!1/2

.

Proof. Let L
k

denote the objective function that we wish to bound,

L
k

(x1, . . . , xk

) =

k

X

i=1

x
ip

x
i

+ x
i+1 + · · · + x

k

,

and note that for any t > 0,

L
k

(tx1, . . . , txk

) =

p
t L

k

(x1, . . . , xk

), (19)

For each k 2 N, let �

k

denote the unit simplex in Rk with x
k

> 0,

�

k

=

(

(x1, . . . , xk

) : x1, . . . , xk�1 � 0, x
k

> 0,

k

X

i=1

x
i

= 1

)

,

and let ⌘
k

denote the supremum of the function L
k

over x 2 �

k

. Given x = (x1, . . . , xk

) 2 �

k

,
define y = (y1, . . . , yk�1) by y

i

= x
i+1/(1� x1), so y 2 �

k�1. Then we can write

L
k

(x1, . . . , xk

) =

x1p
x1 + · · · + x

k

+ L
k�1(x2, . . . , xk

)

= x1 +

p
1� x1 Lk�1(y1, . . . , yk�1)

 x1 +

p
1� x1 ⌘

k�1,

13



where the second equality is from (19) and the last inequality is from the definition of ⌘
k�1. The

function x1 7! x1 +

p
1� x1 ⌘

k�1 is concave and maximized at x⇤1 = 1� ⌘2
k�1/4, giving us

L
k

(x1, . . . , xk

)  x⇤1 +

p

1� x⇤1 ⌘
k�1 = 1�

⌘2
k�1

4

+

s

⌘2
k�1

4

⌘
k�1 = 1 +

⌘2
k�1

4

.

Taking the supremum over x 2 �

k

gives us the recursion

⌘
k

 1 +

⌘2
k�1

4

,

which, along with the base case ⌘1 = 1, easily implies ⌘
k

 2 for all k 2 N. Now given
x1, . . . , xk

� 0 with x
k

> 0, let x0 = (tx1, . . . , txk

) with t = 1/(x1 + · · ·+x
k

), so x0 2 �

k

. Then
using (19) and the bound ⌘

k

 2, we get

L
k

(x1, . . . , xk

) =

1p
t
L

k

(tx1, . . . , txk

)  ⌘
k

 

k

X

i=1

x
i

!1/2

 2

 

k

X

i=1

x
i

!1/2

,

as desired.

C Proof of Lemma 6

In this section we provide a proof of Lemma 6. Throughout the rest of this paper, we use the
following notation for the higher-order partial derivatives of U ,

U
S

a

c

b(S, c) =

@a+bU(S, c)

@Sa@cb

, a, b 2 N0.

We will use the following bounds on U
S

2 , U
S

3 , and U
S

4 , which we prove in Appendix D. These
bounds are where we use the crucial assumptions that the payoff function g is convex, L-Lipschitz,
and K-linear.
Lemma 9. Let g : R0 ! R0 be a convex, L-Lipschitz, K-linear function. Then for all S, c > 0,

|U
S

2
(S, c)|  2LKp

2⇡
· 1

S2
p

c
(20)

|U
S

3
(S, c)|  7LK · max{c�3/2, c�1/2}

S3
, (21)

|U
S

4
(S, c)|  28LK · max{c�2, c�1/2}

S4
. (22)

We will also use the following property of the function U .
Lemma 10. The function U(S, c) is convex in S and non-decreasing in c.

Proof. For each fixed c � 0 and for each realization of the random variable G(c) > 0, the function
S 7! g(S · G(c)) is convex. Therefore, U(S, c) is convex in S, being a nonnegative linear com-
bination of convex functions. In particular, this implies U

S

2
(S, c) � 0. So by the Black-Scholes

equation (6), we also have U
c

(S, c) =

1
2S2U

S

2
(S, c) � 0.

We are now ready to prove Lemma 6. For clarity, we divide the proof into two parts: we first prove
the bound (12), then prove the bound (11).

Proof of (12) in Lemma 6. Recall that U(S, c) is non-decreasing in c by Lemma 10. Then by the
Taylor remainder theorem, we can write

✏
r

(S, c) = U(S + Sr, c� r2
)� U(S, c)� rSU

S

(S, c)

 U(S + Sr, c)� U(S, c)� rSU
S

(S, c)

=

1

2

r2S2U
S

2
(S + S⇠, c)

14



where ⇠ is some value between 0 and r. Since |⇠|  |r| 
p

c  1/2, we have (1 + ⇠)2 � 1/4.
Moreover, from (20) in Lemma 9, we have

�

�

(1 + ⇠)2S2U
S

2
(S + S⇠, c)

�

�  2LKp
2⇡

· 1p
c
.

Combining the bounds above gives us

✏
r

(S, c)  1

2

r2

(1 + ⇠)2
�

�

(1 + ⇠)2S2U
S

2
(S + S⇠, c)

�

�  4LKp
2⇡

· r2

p
c
,

as desired.

Proof of (11) in Lemma 6. Fix S, c > 0, and consider the function
f(r) = U(S + Sr, c� r2

), |r| 
p

c.

By repeatedly applying the Black-Scholes differential equation (6), we can easily verify that f(0) =

U(S, c), f 0(0) = SU
S

(S, c), and

f 00(r) = p2(r) r S2U
S

2
(S + Sr, c� r2

) + p3(r) (1 + r)2r S3U
S

3
(S + Sr, c� r2

)

+ (1 + r)4r2 S4U
S

4
(S + Sr, c� r2

),
(23)

where p2, p3 are the polynomials p2(r) = 2r3
+ 4r2 � 3r � 6 and p3(r) = 4r2

+ 4r � 2.

Noting that we can write
✏
r

(S, c) = f(r)� f(0)� f 0(0)r,

another application of Taylor’s remainder theorem allows us to write

✏
r

(S, c) =

1

2

f 00(⇠)r2

for some ⇠ lying between 0 and r. It is easy to verify that we have
�

�

�

�

p2(⇠)

(1 + ⇠)2

�

�

�

�

 7,

�

�

�

�

p3(⇠)

(1 + ⇠)

�

�

�

�

 3 for all |⇠|  |r|  1

16

.

Moreover, since ⇠2  r2  c/64, we have c � ⇠2 � 63
64c. Then from the bound (20) in Lemma 9,

we have
�

�

(1 + ⇠)2S2U
S

2
(S + S⇠, c� ⇠2

)

�

�  2LKp
2⇡

· 1

(c� ⇠2
)

1/2
 2LKp

2⇡
· 1

(

63
64c)1/2

 LK c�1/2.

We also get from the bound (21) in Lemma 9,
�

�

(1 + ⇠)3S3U
S

3
(S + S⇠, c� ⇠2

)

�

�  7LK max{(c� ⇠2
)

�3/2, (c� ⇠2
)

�1/2}

 7LK max

n⇣

63

64

c
⌘�3/2

,
⇣

63

64

c
⌘�1/2o

 7LK

✓

64

63

◆3/2

max{c�3/2, c�1/2}

 8LK max{c�3/2, c�1/2}.
Similarly, the bound (22) in Lemma 9 gives us

�

�

(1 + ⇠)4S4U
S

4
(S + S⇠, c� ⇠2

)

�

�  29LK max{c�2, c�1/2}.
Applying the bounds above to (23) gives us

|f 00(⇠)| 
�

�

�

�

p2(⇠)

(1 + ⇠)2

�

�

�

�

· |⇠| ·
�

�

(1 + ⇠)2S2U
S

2
(S + S⇠, c� ⇠2

)

�

�

+

�

�

�

�

p3(⇠)

(1 + ⇠)

�

�

�

�

· |⇠| ·
�

�

(1 + ⇠)3S3U
S

3
(S + S⇠, c� ⇠2

)

�

�

+ ⇠2 ·
�

�

(1 + ⇠)4S4U
S

4
(S + S⇠, c� ⇠2

)

�

�

 7LK |r| c�1/2
+ 24LK |r| max{c�3/2, c�1/2} + 29LK r2

max{c�2, c�1/2}
 31LK |r| max{c�3/2, c�1/2} + 29LK r2

max{c�2, c�1/2}.
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Therefore, we obtain

|✏
r

(S, c)| =

1

2

|f 00(⇠)| · r2  16LK
⇣

|r|3 max{c�3/2, c�1/2} + r4
max{c�2, c�1/2}

⌘

,

as desired.

D Proof of the Bounds on the Derivatives (Lemma 9)

In this section we prove the bounds on the higher-order derivatives U
S

a

(S, c), a � 0. Proving the
bounds in Lemma 9 is more difficult than the analysis that we have done so far, and uses the full
force of the assumptions that the payoff function g is convex, L-Lipschitz, and K-linear.

The outline of the proof is as follows. By writing U(S, c) as a convolution, we can write its deriva-
tives U

S

a

(S, c) as an expectation of g(S ·G(c)) modulated by certain polynomials (Appendix D.1).
The K-linearity of g allows us to approximate g by the European-option payoff function gEC that we
encountered in Section 2, so we first prove Lemma 9 for the specific case when the payoff function
is gEC (Appendix D.2). We extend the bound on U

S

2
(S, c) to the general case by dominating the

function inside the expectation by another carefully constructed function (Appendix D.3). Finally,
we use the approximation of g by gEC to prove the bounds on the higher-order derivatives U

S

3 and
U

S

4 (Appendix D.4). In particular, Lemma 15 proves the bound (20), and Lemma 18 proves the
bounds (21) and (22).

Throughout the rest of this appendix, Z ⇠ N (0, 1) denotes a standard Gaussian random variable,
and � and � denote the cumulative distribution function and the probability density function, re-
spectively, of the standard Gaussian distribution. The symbol ⇤ denotes the convolution operator on
R. We also use the fact that G(c)

d

= exp(� 1
2c+

p
cZ). Recall that the convexity of g implies differ-

entiability almost everywhere, so we can work with its derivative g0, which is necessarily increasing
(since g is convex) and satisfies |g0(x)|  L (since g is L-Lipschitz).

Finally, in the proofs below we use the following easy property, which we state without proof.
Lemma 11. For f : R ! R, Z ⇠ N (0, 1), and c � 0, we have

E[f(Z) exp(

p
cZ)] = exp

⇣ c

2

⌘

E[f(Z +

p
c)],

provided all the expectations above exist.

D.1 Formulae for the Derivatives

In this section we show that the partial derivative U
S

a

(S, c) can be expressed as an expectation of
a polynomial modulated by the payoff function g. We define the family of polynomials p[a]

(x, y),
a � 0, as follows:

p[0]
(x, y) = 1

p[a+1]
(x, y) = (x� ay) p[a]

(x, y)� p[a]
x

(x, y) for a � 1,
(24)

where p
[a]
x

(x, y) = @p[a]
(x, y)/@x.

The following is the main result in this section; note that we only assume that g is Lipschitz.
Lemma 12. Let g : R0 ! R0 be an L-Lipschitz function. For a � 0 and S, c > 0,

U
S

a

(S, c) =

1

Saca/2
E

h

p[a]
(Z,
p

c) · g
⇣

S · exp

⇣

� c

2

+

p
cZ

⌘⌘i

,

where Z ⇠ N (0, 1).

In proving Lemma 12 we will need the following result, which allows us to differentiate the convo-
lution.
Lemma 13. Fix c > 0. Let g : R0 ! R0 be an L-Lipschitz function, and let g̃(x) = g(exp(x)). Let
! : R ! R be given by !(x) = p(x) �(x/

p
c), where p(x) is a polynomial in x with coefficients

involving c. Finally, let f : R ! R be given by f(r) = (g̃ ⇤ !)(r). Then the derivative f 0(r) =

df(r)/dr can be written as the derivative of the convolution, f 0(r) = (g̃ ⇤ !0
)(r).
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Proof. Fix r 2 R. For h 6= 0, consider the quantity ⇢
h

=

1
h

(f(r+h)�f(r)), and note that f 0(r) =

lim

h!0 ⇢
h

. Recalling the definition of f as a convolution and using the mean-value theorem, we
can write ⇢

h

as

⇢
h

=

Z 1

�1
g̃(x)

✓

!(r � x + h)� !(r � x)

h

◆

dx =

Z 1

�1
g(x) !0(r � x + ⇠

h

) dx,

for some ⇠
h

between 0 and h. Let

⇢0 :=

Z 1

�1
g̃(x) !0(r � x) dx = (g̃ ⇤ !0)(r).

Then by another application of the mean-value theorem, we can write

�

h

:= ⇢
h

� ⇢0 = ⇠
h

Z 1

�1
g̃(x)

✓

!0(r � x + ⇠
h

)� !0(r � x)

⇠
h

◆

dx

= ⇠
h

Z 1

�1
g̃(x) !00(r � x + ⇠

(2)
h

) dx,

(25)

for some ⇠
(2)
h

lying between 0 and ⇠
h

. One can easily verify that the second derivative of ! is given
by

!00(x) =

q(x)

c2
�

✓

xp
c

◆

,

where q(x) is the polynomial q(x) = (x2 � c)p(x)� 2cxp0(x) + c2p00(x). Since g is L-Lipschitz,
for each x 2 R we have

0  g̃(x) = g(exp(x))  g(0) + |g(exp(x))� g(0)|  g(0) + L exp(x)

This gives us the estimate
�

�

�

�

Z 1

�1
g̃(x) !00(r � x + ⇠

(2)
h

) dx

�

�

�

�

 1

c2

Z 1

�1

�

g(0) + L exp(x)

�

· |q(r � x + ⇠
(2)
h

)| · �

 

r � x + ⇠
(2)
hp

c

!

dx

=

1

c3/2

Z 1

�1

�

g(0) + L exp(r + ⇠
(2)
h

�
p

cy)

�

· |q(
p

cy)| · �(y) dy <1,

where in the computation above we have used the substitution y = (r � x + ⇠
(2)
h

)/
p

c. The last ex-
pression above shows that the integral is finite, since we are integrating exponential and polynomial
functions against the Gaussian density. Plugging this bound to (25) and recalling that |⇠

h

|  |h|, we
obtain

|�
h

|  |h| ·
�

�

�

�

Z 1

�1
g̃(x) !00(r � x + ⇠

(2)
h

) dx

�

�

�

�

! 0 as h! 0.

Since �

h

= ⇢
h

� ⇢0, this implies our desired conclusion,

f 0(r) = lim

h!0
⇢

h

= ⇢0 = (g̃ ⇤ !0)(r).

We are now ready to prove Lemma 12.

Proof of Lemma 12. We proceed by induction on a. The base case a = 0 follows from the
definition of U . Assume the statement holds for some a � 0; we prove it also holds for a + 1. Our
strategy is to express U

S

a as a convolution, use Lemma 13 to differentiate the convolution, and write
the result back as an expectation.
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Fix S, c > 0 for the rest of this proof. Let g̃(x) = g(exp(x)) and �
c

(x) = �(x/
p

c). From the
inductive hypothesis and the fact that �Z

d

= Z, we have

U
S

a

(S, c) =

1

Saca/2
E

h

p[a]
(�Z,

p
c) · g̃

⇣

log S � c

2

�
p

cZ
⌘i

=

1

Saca/2

Z 1

�1
p[a]

(�x,
p

c) · g̃
⇣

log S � c

2

�
p

cx
⌘

· �(x) dx

=

1

Sac(a+1)/2

Z 1

�1
p[a]

✓

� yp
c
,
p

c

◆

· g̃
⇣

log S � c

2

� y
⌘

· �
c

(y) dy

=

1

Sac(a+1)/2

Z 1

�1
g̃

⇣

log S � c

2

� y
⌘

· !(y) dy

=

1

Sac(a+1)/2
(g̃ ⇤ !)

⇣

log S � c

2

⌘

,

where in the computation above we have used the substitution y =

p
cx, and we have defined the

function

!(y) = p[a]

✓

� yp
c
,
p

c

◆

· �

✓

yp
c

◆

.

In particular, ! has derivative

!0(y) = � 1p
c

✓

p[a]
x

✓

� yp
c
,
p

c

◆

+

yp
c
p[a]

✓

� yp
c
,
p

c

◆◆

�

✓

yp
c

◆

.

Differentiating U
S

a with respect to S and using the result of Lemma 13 give us

U
S

a+1
(S, c) = � a

Sa+1c(a+1)/2
(g̃ ⇤ !)

⇣

log S � c

2

⌘

+

1

Sa+1c(a+1)/2
(g̃ ⇤ !0)

⇣

log S � c

2

⌘

=

1

Sa+1c(a+1)/2

Z 1

�1
g̃

⇣

log S � c

2

� y
⌘

�

!0(y)� a!(y)

�

dy

=

1

Sa+1ca/2

Z 1

�1
g̃

⇣

log S � c

2

�
p

cx
⌘

�

!0(
p

cx)� a!(

p
cx)

�

dx

=

1

Sa+1ca/2

Z 1

�1
g̃

⇣

log S � c

2

�
p

cx
⌘

(

(�x�a

p
c)p[a](�x,

p
c)�p

[a]
x

(�x,

p
c)

)p
c

�(x) dx

=

1

Sa+1c(a+1)/2

Z 1

�1
g̃

⇣

log S � c

2

�
p

cx
⌘

p[a+1]
(�x,

p
c) �(x) dx

=

1

Sa+1c(a+1)/2
E

h

p[a+1]
(�Z,

p
c) · g̃

⇣

log S � c

2

�
p

cZ
⌘i

=

1

Sa+1c(a+1)/2
E

h

p[a+1]
(Z,

p
c) · g

⇣

S ·
⇣

� c

2

+

p
cZ

⌘⌘i

,

as desired. In the computation above we have again used the substitution x = y/
p

c and the fact
that �Z

d

= Z. This completes the induction step and the proof of the lemma.

As an example, the first few polynomials p[a]
(x, y) are

p[0]
(x, y) = 1

p[1]
(x, y) = x

p[2]
(x, y) = x2 � yx� 1

p[3]
(x, y) = x3 � 3yx2

+ (2y2 � 3)x + 3y,
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giving us the formulae

U(S, c) = E
h

g
⇣

S · exp

⇣

� c

2

+

p
cZ

⌘⌘i

U
S

(S, c) =

1

S
p

c
E

h

Z · g
⇣

S · exp

⇣

� c

2

+

p
cZ

⌘⌘i

U
S

2
(S, c) =

1

S2c
E

h

(Z2 �
p

cZ � 1) · g
⇣

S · exp

⇣

� c

2

+

p
cZ

⌘⌘i

U
S

3
(S, c) =

1

S3c3/2
E

h

�

Z3 � 3

p
cZ2

+ (2c� 3)Z + 3

p
c
�

· g
⇣

S · exp

⇣

� c

2

+

p
cZ

⌘⌘i

.

We also have the following easy corollaries.

Corollary 2. For a � 1, E[p[a]
(Z,
p

c)] = 0. For a � 2, we also have E[p[a]
(Z +

p
c,
p

c)] = 0.

Proof. First assume a � 1, and take g to be the constant function g(x) = 1. In this case U(S, c) = 1

and U
S

a

(S, c) = 0, so by the result of Lemma 12, E[p[a]
(Z,
p

c)] = Saca/2 U
S

a

(S, c) = 0. Next,
assume a � 2, and take g to be the linear function g(x) = x. In this case U(S, c) = E[S ·G(c)] = S,
so U

S

a

(S, c) = 0. Then using the results of Lemma 11 and Lemma 12,

E
h

p[a]
(Z +

p
c,
p

c)
i

= exp

⇣

� c

2

⌘

E
h

p[a]
(Z,
p

c) exp(

p
cZ)

i

= Sa�1ca/2 U
S

a

(S, c) = 0.

D.2 Calculations for the European-Option Payoff Function

In this section, we bound the derivatives U
S

a

(S, c) for the special case when g is the payoff function
of the European call function, g(x) = max{0, x �K}, where K > 0 is a constant. Note that the
bounds on U

S

3 and U
S

4 are slightly stronger than the stated bounds (21) and (22), because in this
case we are able to compute the derivatives exactly.
Lemma 14. Let g(x) = max{0, x�K}. Then for all S, c > 0,

|U
S

2
(S, c)|  Kp

2⇡
· 1

S2
p

c

|U
S

3
(S, c)|  Kp

2⇡
· (2

p
c + 1)

S3c

|U
S

4
(S, c)|  Kp

2⇡
· (6c + 5

p
c + 2)

S4c3/2

Proof. We first compute the Black-Scholes value U(S, c). Define

↵ ⌘ ↵(S, c) = � 1p
c

log

S

K
+

p
c

2

,

and observe that S · exp(�c/2 +

p
cZ) � K if and only if Z � ↵. Then using the result of

Lemma 11, we have

U(S, c) = E
h⇣

S · exp

⇣

� c

2

+

p
cZ

⌘

�K
⌘

· 1{Z � ↵}
i

= S · exp

⇣

� c

2

⌘

E
⇥

exp(

p
cZ) · 1{Z � ↵}

⇤

�K P(Z � ↵)

= S P(Z � ↵�
p

c)�K P(Z � ↵)

= S �(�↵ +

p
c)�K �(�↵).

Differentiating the formula above with respect to c and applying the Black-Scholes differential equa-
tion (6), we get

U
S

2
(S, c) =

2

S2
U

c

(S, c) =

1

S2c

⇥

S↵�
�

�↵ +

p
c
�

+ K(�↵ +

p
c)� (↵)

⇤

=

K

S2
p

c
�(↵),
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where the last equality follows from the relation S�(�↵+

p
c) = K�(↵). In particular, we have the

bound 0  U
S

2
(S, c)  K/(S2

p
2⇡c). A direct calculation reveals that the higher order derivatives

of U are given by

U
S

3
(S, c) =

K

S3c

�

↵� 2

p
c
�

�(↵) and U
S

4
(S, c) =

K

S4c3/2

�

↵2 � 5

p
c↵ + 6c� 1

�

�(↵).

It is not difficult to see that we have |↵ exp(�↵2/2)|  1 and |↵2
exp(�↵2/2)|  1. Applying

these bounds to the formulae above gives us the desired conclusion.

D.3 Bounding the Second Derivative U
S

2
(S, c)

We now bound the second-order derivative U
S

2
(S, c) in the general case.

Lemma 15. Let g : R0 ! R0 be a convex, L-Lipschitz, K-linear function. Then for all S, c > 0,

0  U
S

2
(S, c)  2LKp

2⇡
· 1

S2
p

c
.

Proof. Recall that U(S, c) is convex in S (Lemma 10), so U
S

2
(S, c) � 0. If g is a linear function,

say g(x) = �x for some 0  �  L, then U(S, c) = E[�S ·G(c)] = �S. In this case U
S

2
(S, c) = 0,

and we are done.

Now assume g is not a linear function. Since g is non-negative, L-Lipschitz, and K-linear, we can
find 0  �  L such that g0

(x) = � for x � K. Moreover, since g is convex and not a linear
function, we also have that � > g0

(0). Define the function g̃ : R0 ! R0 by

g̃(x) =

g(x)� g(0)� xg0
(0)

� � g0
(0)

, (26)

and note that g̃ is an increasing, 1-Lipschitz convex function with g̃(0) = g̃0
(0) = 0, 0  g̃0

(x)  1,
and g̃0

(x) = 1 for x � K.

Consider the quantity V (S, c) = E[g̃(S · G(c))], and note that we can write

V (S, c) =

E [g(S · G(c))� g(0)� g0
(0) · S · G(c)]

� � g0
(0)

=

U(S, c)� g(0)� g0
(0) · S

� � g0
(0)

.

Taking second derivative with respect to S on both sides and using the fact that 0  ��g0
(0)  2L,

we obtain
0  U

S

2
(S, c) = (� � g0

(0)) · V
S

2
(S, c)  2L · V

S

2
(S, c).

We already know that V
S

2
(S, c) � 0 since g̃ is convex, so we only need to show that

V
S

2
(S, c)  Kp

2⇡
· 1

S2
p

c
.

For 0 < S  K, using the formula from Lemma 12 and the result of Lemma 16 below, we obtain

V
S

2
(S, c) =

1

S2c
E

h

(Z2 �
p

cZ � 1) · g̃
⇣

S · exp

⇣

� c

2

+

p
cZ

⌘⌘i

 1

S2c
· S
p

cp
2⇡
 Kp

2⇡
· 1

S2
p

c
,

and for S � K, we use the result of Lemma 17 to obtain

V
S

2
(S, c) =

1

S2c
E

h

(Z2 �
p

cZ � 1) · g̃
⇣

S · exp

⇣

� c

2

+

p
cZ

⌘⌘i

 1

S2c
·K
p

cp
2⇡

=

Kp
2⇡

· 1

S2
p

c
.

This completes the proof of the lemma.

It remains to prove the following two results, which we use in the proof of Lemma 15 above with g̃
in place of g. Note that the first result below does not use the assumption that g is eventually linear.
Lemma 16. Let g : R0 ! R0 be an increasing, nonnegative, convex, 1-Lipschitz function. Then for
all S, c > 0,

E
h

(Z2 �
p

cZ � 1) · g
⇣

S · exp

⇣

� c

2

+

p
cZ

⌘⌘i

 S
p

cp
2⇡

.

20



Proof. Fix S, c > 0, and define the following quantities:

t1 =

p
c�
p

c + 4

2

t2 =

p
c +

p
c + 4

2

�1 = S · exp

⇣

� c

2

+

p
c t1

⌘

�2 = S · exp

⇣

� c

2

+

p
c t2

⌘

g1 = g(�1) g2 = g(�2)

t⇤ =

1p
c

log

✓

exp(

p
ct2)�

1

S
· exp

⇣ c

2

⌘

· (g2 � g1)

◆

.

Furthermore, define the function h : R! R0 by

h(x) = g1 +

⇣

g2 � g1 � �2 + S · exp

⇣

� c

2

+

p
c x

⌘⌘

· 1{x � t⇤}.

We will show that

E
h

(Z2 �
p

cZ � 1) · g
⇣

S · exp

⇣

� c

2

+

p
cZ

⌘⌘i

 E
⇥

(Z2 �
p

cZ � 1) · h(Z)

⇤

, (27)

and furthermore, we can evaluate the latter expectation explicitly:

E
⇥

(Z2 �
p

cZ � 1) · h(Z)

⇤

= S
p

c �(t⇤ �
p

c)  S
p

cp
2⇡

.

We begin by noting that t1 and t2 are the two roots of the polynomial x2 �
p

cx � 1. Since g is
increasing and 1-Lipschitz,

g2 � g1 = g(�2)� g(�1)  �2 � �1 = S · exp

⇣

� c

2

⌘

�

exp(

p
c t2)� exp(

p
c t1)

�

.

Therefore, from the definition of t⇤, we see that

exp(

p
c t2)� exp(

p
c t⇤) =

1

S
· exp

⇣ c

2

⌘

· (g2 � g1)  exp(

p
c t2)� exp(

p
c t1),

so t1  t⇤  t2. Furthermore, by construction,

S · exp

⇣

� c

2

+

p
c t⇤

⌘

= S · exp

⇣

� c

2

+

p
c t2

⌘

� (g2 � g1) = �2 � g2 + g1,

so h(t⇤) = g1. This means h is a continuous convex function of x (although we will not actually
use this property). We will now show that pointwise,

�(x) · (x2 �
p

cx� 1) · g
⇣

S · exp

⇣

� c

2

+

p
cx

⌘⌘

 �(x) · (x2 �
p

cx� 1) · h(x). (28)

We consider four cases:

• Suppose x  t1, so x2 �
p

cx� 1 � 0. Since g is increasing and nonnegative,

0  g
⇣

S · exp

⇣

� c

2

+

p
cx

⌘⌘

 g
⇣

S · exp

⇣

� c

2

+

p
c t1

⌘⌘

= g1 = h(x).

• Suppose t1  x  t⇤, so x2 �
p

cx� 1  0. Since g is increasing,

g
⇣

S · exp

⇣

� c

2

+

p
cx

⌘⌘

� g
⇣

S · exp

⇣

� c

2

+

p
c t1

⌘⌘

= g1 = h(x) � 0.

• Suppose t⇤  x  t2, so x2 �
p

cx� 1  0. Since g is increasing and 1-Lipschitz,

g
⇣

S · exp

⇣

� c

2

+

p
cx

⌘⌘

� g
⇣

S · exp

⇣

� c

2

+

p
c t2

⌘⌘

+ S · exp

⇣

� c

2

+

p
cx

⌘

� S · exp

⇣

� c

2

+

p
c t2

⌘

= g2 � �2 + S · exp

⇣

� c

2

+

p
cx

⌘

= h(x) � 0.
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• Suppose x � t2, so x2 �
p

cx� 1 � 0. Since g is increasing and 1-Lipschitz,

g
⇣

S · exp

⇣

� c

2

+

p
cx

⌘⌘

 g
⇣

S · exp

⇣

� c

2

+

p
c t2

⌘⌘

+ S · exp

⇣

� c

2

+

p
cx

⌘

� S · exp

⇣

� c

2

+

p
c t2

⌘

= g2 � �2 + S · exp

⇣

� c

2

+

p
cx

⌘

= h(x).

Integrating (28) over x 2 R gives us the desired inequality (27). Let us now evaluate the expectation
on the right hand side of (27). A simple computation using the properties of Z ⇠ N (0, 1) gives us

E
⇥

(Z2 �
p

cZ � 1) · h(Z)

⇤

= g1 E
⇥

(Z2 �
p

cZ � 1)

⇤

+ (g2 � g1 � �2) · E
⇥

(Z2 �
p

cZ � 1) · 1{Z � t⇤}
⇤

+ S · exp

⇣

� c

2

⌘

· E
⇥

(Z2 �
p

cZ � 1) exp(

p
cZ) · 1{Z � t⇤}

⇤

= (g2 � g1 � �2) · (t⇤ �
p

c) �(t⇤) + St⇤ �(t⇤ �
p

c)

= �S · exp

⇣

� c

2

+

p
c t⇤

⌘

· (t⇤ �
p

c) �(t⇤) + St⇤ �(t⇤ �
p

c)

= �S(t⇤ �
p

c) �(t⇤ �
p

c) + St⇤ �(t⇤ �
p

c)

= S
p

c �(t⇤ �
p

c),

as desired.

The following result is similar to Lemma 16, except that this result assumes the K-linearity of g and
achieves a stronger result.
Lemma 17. Let g : R0 ! R0 be an increasing, nonnegative, convex, 1-Lipschitz function with the
property that g0

(x) = 1 for x � K. Then for all S � K and c > 0,

E
h

(Z2 �
p

cZ � 1) · g
⇣

S · exp

⇣

� c

2

+

p
cZ

⌘⌘i

 K
p

cp
2⇡

.

Proof. This proof is similar in nature to the proof of Lemma 16, and we omit some of the details.

Case 1: Suppose S � K exp(

p

c(c + 4)/2). Recall the European-option payoff function gEC(x) =

max{0, x �K} from Section 2, and note that the K-linearity of g implies g(x) = g(K) + gEC(x)

for x � K. Using the fact that g is increasing and K-linear, we can show that for all x 2 R we have

(x2�
p

cx�1)·g
⇣

S · exp

⇣

� c

2

+

p
cx

⌘⌘

 (x2�
p

cx�1)·
n

g(K) + gEC

⇣

S · exp

⇣

� c

2

+

p
cx

⌘⌘o

.

Integrating both sides above with Z ⇠ N (0, 1) in place of x and using the result of Lemma 14, we
obtain

E
h

(Z2 �
p

cZ � 1) · g
⇣

S · exp

⇣

� c

2

+

p
cZ

⌘⌘i

 E
h

(Z2 �
p

cZ � 1) ·
n

g(K) + gEC

⇣

S · exp

⇣

� c

2

+

p
cZ

⌘⌘oi

= E
h

(Z2 �
p

cZ � 1) · gEC

⇣

S · exp

⇣

� c

2

+

p
cZ

⌘⌘i

 K
p

cp
2⇡

.

Case 2: Suppose K  S  K exp(

p

c(c + 4)/2). Define the following quantities:

t0 =

p
c

2

� 1p
c

log

S

K � g(K) + g1
, �1 = S · exp

✓

� c

2

+

p
c
⇣

p
c�

p
c + 4

2

⌘

◆

,

and g1 = g(�1). Consider the function h2 : R ! R0 given by

h2(x) = g1 +

⇣

g(K)� g1 �K + S · exp

⇣

� c

2

+

p
c x

⌘⌘

· 1{x � t0}.
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Using the fact that g is increasing, 1-Lipschitz, and K-linear, we can show that for all x 2 R,

(x2 �
p

cx� 1) · g
⇣

S · exp

⇣

� c

2

+

p
cx

⌘⌘

 (x2 �
p

cx� 1) · h2(x).

Integrating both sides above with Z ⇠ N (0, 1) in place of x, we get

E
h

(Z2 �
p

cZ � 1) · g
⇣

S · exp

⇣

� c

2

+

p
cZ

⌘⌘i

 E
⇥

(Z2 �
p

cZ � 1) · h2(Z)

⇤

.

Following the same calculation as in the proof of Lemma 16, we can evaluate the latter expectation
to be

E
⇥

(Z2 �
p

cZ � 1) · h2(Z)

⇤

= (K � g(K) + g1)
p

c �(t0) 
K
p

cp
2⇡

,

where the last inequality follows from the relation 0  g(K)� g1  K � �1, since g is increasing
and 1-Lipschitz.

D.4 Bounding the Higher-Order Derivatives

We now turn to bounding the higher-order derivatives U
S

3
(S, c) and U

S

4
(S, c). Our strategy is to

approximate the eventually linear payoff function g by the European-option payoff gEC and applying
the bounds for gEC developed in Lemma 14.
Lemma 18. Let g : R0 ! R0 be a convex, L-Lipschitz, K-linear function. Then for all S, c > 0,

|U
S

3
(S, c)|  7LK · max{c�3/2, c�1/2}

S3
,

|U
S

4
(S, c)|  28LK · max{c�2, c�1/2}

S4
.

Proof. Since g is L-Lipschitz and K-linear, we can find 0  �  L such that g(x) = g(K)+�(x�
K) for x � K. We decompose g into two parts,

g(x) = �gEC(x) + g⇤(x),

where gEC(x) = max{0, x�K} is the European-option payoff function, and g⇤ : R0 ! R0 is given
by g⇤(x) = g(x) for 0  x  K, and g⇤(x) = g(K) otherwise.

Then the Black-Scholes value U(S, c) also decomposes,

U(S, c) = E[g(S · G(c))] = � E[gEC(S · G(c))] + E[g⇤(S · G(c))] ⌘ � UEC
(S, c) + U⇤

(S, c),

and similarly for the derivatives,

U
S

a

(S, c) = � UEC
S

a

(S, c) + U⇤
S

a

(S, c), a � 0. (29)

For the function gEC, Lemma 14 tells us that for all S, c > 0,

|UEC
S

3 (S, c)|  3Kp
2⇡

· max{c1/2, 1}
S3c

, |UEC
S

4 (S, c)|  13Kp
2⇡

· max{c, 1}
S4c3/2

. (30)

Now for the second function g⇤, we use Lemma 12 to write

U⇤
S

a

(S, c) =

1

Saca/2
E

h

p[a]
(Z,
p

c) · g⇤
⇣

S · exp

⇣

� c

2

+

p
cZ

⌘⌘i

. (31)

Since E[p[a]
(Z,
p

c)] = 0 for a � 1 (Corollary 2), we may assume that g(0) = 0, so g⇤(0) = 0 as
well. Since g is L-Lipschitz, this implies

sup

x2R

�

�g⇤(x)

�

�

= max

0xK

|g(x)|  max

0xK

Lx = LK.

Therefore, by applying triangle inequality and Cauchy-Schwarz inequality to (31), we get for a � 1,

|U⇤
S

a

(S, c)|  1

Saca/2
E

h

�

�

�

p[a]
(Z,
p

c)
�

�

�

· LK
i

 LK

Saca/2
E



⇣

p[a]
(Z,
p

c)
⌘2

�1/2

. (32)
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For a = 3, 4, we use the recursion (24) to compute the polynomials p[a]
(Z,
p

c), and we evaluate
the expectation E[(p[a]

(Z,
p

c))2]. Plugging in this expectation to (32) with a = 3 gives us

|U⇤
S

3(S, c)|  LK

S3c3/2
·
�

4c2
+ 18c + 6

�1/2 
p

28 · LK · max{c, 1}
S3c3/2

. (33)

Therefore, by combining the bound above with the first inequality in (30) and using the decomposi-
tion (29), we get the first part of our lemma,

|U
S

3
(S, c)|  3p

2⇡
· LK · max{c1/2, 1}

S3c
+

p
28 · LK · max{c, 1}

S3c3/2
 7LK · max{c, 1}

S3c3/2
.

A similar computation with a = 4 yields the second part of the lemma,

|U
S

4
(S, c)|  13p

2⇡
· LK · max{c, 1}

S4c3/2
+

p
518 · LK · max{c3/2, 1}

S4c2
 28LK · max{c3/2, 1}

S3c2
.
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