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A Detailed Proof of Theorem /1]

In the following, let p take range as the set of paths from the root to the leaves in the policy 7. The
notation pg[y; S] means the probability that examples in S are assigned labels y, and we also use
pol(y,y'); (S, 8] to refer to the probability that examples in .S and S’ are assigned labels y and y’
respectively. Let 1(A) be the indicator function for the event A. In this proof, note that if we fix a
labeling y of X, the path p followed from the root to a leaf of the policy tree during the execution
of the policy 7 is unique (we only consider deterministic policies). The entropy of the distribution
po[ ° X ] is
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Thus, the theorem holds.



B Proof of Theoremd

To prove Theorem {4, we first reduce probabilistic hypotheses (or mappings) to deterministic (or
noiseless) ones by expanding the hypothesis space. Then, we apply a known result on deterministic
hypotheses to obtain the result for the probabilistic hypotheses.

B.1 An Equivalence between Probabilistic and Deterministic Hypotheses

First, we establish a relationship between probabilistic and deterministic hypotheses. Recall that
h € H is a probabilistic hypothesis, and P[h(x) = y|h] € [0, 1] for all 2 when h itself is probabilis-
tic. Let T be a set of examples (without the labels) and let yr be the labeling of T. Let D = (T, yr).
Let po be the prior on H. The posterior pp is obtained from pg using Bayes rule

_ polW]PIR(T) = yr|h]

po[M(T) = yr]
From this noisy model for probabilistic hypothesis h, we construct an equivalent noiseless and deter-
ministic one. We consider a hypothesis space ' such that H' = {h{ }ycyix and by (2) = y({a})
for all z € X. In this definition, forany S C X, Y 151 is the set of all labelings of .S and y(s) is the
projection of y on S, i.e. the labeling of S according to y. Hence, y (.}, is the label of = according
toy.
In the above definition, ' is indexed by the labelings of the pool X and each hy in
H' is a deterministic hypothesis.  Further, we construct a prior p; over M’ such that
polhy] = po[M(X) = y] = > _,cp PolP] P[A(X) = y|h]. The result is that pj [y ] is the probability
that the labeling of X is y in the probabilistic model. Given D, the posterior p/, on H' is obtained
from pj, by

pplh] = pol[h|D]

polhy] 1(y )y = yr)
> yeyixi Polhy ) Ly 1y = yr)’

where 1(A) is the indicator function for the event A. In essence, we have “moved” uncertainty
associated with the likelihood P[h(T") = yr|h] into the prior pj.

pplhy] =

We now prove that the above two models are in fact equivalent in the sense that
pp[h(S) = ys] = pip[h'(S) = ys] for any S € X \ T and ys € Y!°l. This means that both
models always give the same probability for the event 2(S) = yg. To prove this result, we need the
following lemma about po[D] = po[h(T') = yr)-

Lemma 1. We have po[h(T) = yr] = > p[hy] 1(y (1) = yr).

yeYIXI

Proof. For a probabilistic hypothesis h, po[h(T') = yr| = >}, c4y Po[R] P[M(T) = yr|h]. Expand-
ing P[h(T) = yr|h] by summing over all possible labelings of the remaining unlabeled examples in
X\ T, we have

po[P(T) = yr] = Z polh] Z PA(X) =y[h] 1y () = yr)

heH yeYIX|
= > Ly =yr) > polP[h(X) = y|h]
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Using Lemmal[I] we can prove the following equivalence.

Lemma 2. Let pp and p, be the posteriors of the probabilistic and deterministic models respec-
tively after observing the labeled examples D = (T, yr). Forany S C X \ T and ys € Y91, we
have pp[h(S) = ys| = pp[I'(5) = ys].



Proof. For the probabilistic hypotheses, we have
=yrlh
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Expanding P[A(T) = yr|h] P[h(S) = ys|h] by summing over all p0551ble labelings of the remain-
ing unlabeled examples in X \ (T'U S), we have
]
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The last equality is from the definition of py[hy]. From Lemmaand the definition of pi[hy |:
polhyl Wy =yr) _ polhyl 1y ery = yr) Piolh,.
pol(T) = yr] > yeyixi Po[Ry] Ly 1y = yr) P
Thus, pp[h(S) = ys] = -, eyixi Pplhy] L(y(sy = ys) = pp[h'(S) = ys]. O

B.2 Near-optimality of the Noiseless Model

We now focus on the space H' of deterministic hypotheses. We will make use of the notations for
the noiseless model in [1]]. In this model, for a set of unlabeled examples .S C X and a hypothesis
h € H’', we can define the version space V (S, h) as the set of all hypotheses in ' that are consistent
with h on S. Formally, V (S, h) = {h' € H' : h'(S) = h(S)}. The probability of the version space
V' (S, h) with respect to the prior py, is
polV(S,) = D" polh'] = Pripy [W(S) = h(S) | h].
h'eV (S,h)

Let f(S,h) = 1 — py[V (S, h)] be the version space reduction function. It is known that in the
noiseless model, the version space reduction function f (.S, ) is adaptive monotone submodular [1].
Thus, the greedy adaptive policy selecting 2* = arg max, Ejp [f(SU{x}, h)— f(S, h)], where S
is the previously selected set and p’, is the current posterior of the noiseless model, is near-optimal.
This property is stated in Theorem [A]below and is a direct consequence of Theorem 5.2 in [1I].
Theorem A. For any k > 1, in the noiseless model, let 7 be the greedy adaptive policy that
selects k examples by the criterion x* = arg max; B,y [f(S U {z}, h) — f(S, h)], where S is the
previously selected set and pp, is the posterior after observing the labels of S. Let T be the adaptive
policy that selects the optimal k examples in terms of the version space reduction objective. We have

gty [f (@, 1y )] > (1 = *)Ehf oy [ (@ pme vy B )],

where B, [ ] is with respect to the distribution py[hy] and x ,=.v is the set of unlabeled examples
selected by T (along the path p™Y ) assuming the true labeling of X is'y.

Note that once we assume the true labeling of X to be a fixed y, the policy 7 follows exactly one
path from the root to a leave in the policy tree of 7. This path is denoted by p™Y in Theorem [A]
Using Theorem[A]and Lemma 2] we can now prove Theorem

B.3 Proof of Theorem [

For any algorithm 7, we have
]Eh/y~pg [f(zpmv, b y ZPO h/ polV (zpmv, h;)D

= ZPO hyl (1= oW (2pm5) = Via,n0)]) -
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By definition of pglhy], we have pglhy] = po[h(X) =y] = poly; X]. From Lemma
p6[h,(l’pw,y) - y(;cpw,y)] = Po [h(zpw’y) - y(xpmy)]' Thus,
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P
=V(m).
Hence, the inequality in Theorem [A]is equivalent to V (7) > (1 —1/e)V (7*).
Thus, to prove Theorem@ what remains is to prove that the example x* selected by 7™*EC yging

Equation (3) satisfies 2* = arg max, Epp, [f(S U {z}, h) — f(S,h)].
In the deterministic (noiseless) case, for any x € X, consider
Epmps, [PV (S U{z}, B)]] = > ppW]pV(SU{a}, A
h'eH’:pi[A']>0
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For all 1/ satisfying p/,[h/] > 0, we have p/,[h'] =
Thus, if 2 also satisfies h'(z) = y, we have
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Thus,

argmax { 1— % (pp[l/(2) = y))* p = argmin Y _ (pp['(2) = y))?
yey yey

= arg n;in Eprmpr, [P0V (S U {2}, 2)]]
= arg m;xXIE;L/Np/D [f(SU{x}, A
= argmgxIEh/Np/D [F(SU{z}, b)) — f(S,h)].

Furthermore, by Lemma[2] the example 2* selected by Equation (3) satisfies

" = argmax q 1 — Z(pp[h(x) =y))?p = argmax q 1 — Z(p&;[h’(m) =y])?
yey yey

Thus, z* = arg max, By [f(S U {2}, ') — f(S, )] and Theorem 4] holds.

C Proof of Theorem [3

We use the same notations as in Section [3.1]in the main paper. In each iteration of Algorithm[I] the
example 2* selected for the current batch by Equation () satisfies

¥ = arg max ep(Su {z}) = arg max {ez(S U{z}) — eZ(S)} ,

where p is the current posterior in the probabilistic model. From Theorem 3] the batch S selected in
each iteration of Algorithm (l|is near optimal, i.e, it satisfies €b () > (1 — 1/e) maxgr.|g/|— €5(S5").
To prove the near-optimality for the whole batch algorithm, we can employ the same noiseless model
H' as in Section From Lemma eb(S) =13, . plys; SI> =1 -3, 1'[ys; SI?, where
p’ is the corresponding posterior in the noiseless model and the summations are over all possible
labelings ys of S. The following proposition states that 1 — >~ p'[ys; S)? is equal to the expected
version space reduction in the noiseless model.

Proposition 1. For any S C X, in the noiseless model,

By [ = [V(S,B)]] = 1= [ys; S]*.

Proof. In the noiseless model, we have E; . [1—p'[V (S, hy)]] = Eyp [L=p'[V (S, Ay )]], where
the second expectation is with respect to p'[y; X] = p'[hy ]. Furthermore,

Ey~p[1 = P'[V(S, )l = Eynp[1 = P[y(5)5 Il = Eysnpr[1 = P [ys; S1I,
where E, /[ -] is the expectation with respect to the distribution p'[ - ; S]. Hence,

Byt [1 = D' [V (S, W) = Bysmpr [1 = Plys; SN = 1= > p'lys; SI*.
Ys
O

Thus, €b(S) is equivalent to the expected version space reduction in the noiseless model with de-
terministic hypotheses. So, in the noiseless model, Algorithm |1|is equivalent to the BatchGreedy
algorithm proposed in [2]. According to the results in [2], the version space reduction after observ-
ing the labeling of each batch is monotone adaptive submodular. Furthermore, from Theorem [3}
the average version space reduction after selecting each batch is near-optimal, i.e, each iteration of
Algorithm[I]is an e/(e — 1)-approximate greedy step [1].

For any k > 1, let 7"GEC be the policy selecting k batches using the batch maxGEC policy and 7}
be the batch policy selecting the optimal % batches with respect to the policy Gibbs error objective.
From Theorem 5.2 in [1]],

Eng (1= D41V (& pucsc y B > (1= ¢~ OR i [1— [V (g 1],

o ity Yy lly



where p( is the prior of the noiseless model and z,=,.v is the set of all examples selected by the
batch algorithm 7, after k iterations (k s examples in total), assuming the true labeling of the pool
Xisy.

From Section Ens oy [1 = o[V (2 pmow, BY)]] = V() for any policy 7. Thus, we obtain
Theorem[3]

D Derivation for the Approximation of Gibbs Error in Bayesian CRFs

‘We have:
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E Experimental Results for Text Classification using Bayesian Transductive
Naive Bayes with Batch Sizes s = 20, 30

Table 1: AUC of different learning algorithms with batch size s = 20.

Task TPass maxGEC LC NPass LogPass LogFisher
alt.atheism/comp.graphics 87.62 91.52 91.70  84.85 91.28 93.37
talk.politics.guns/talk.politics.mideast 84.23 92.52 92.56 80.61 85.89 86.93
comp.sys.mac.hardware/comp.windows.x ~ 73.96 91.71 89.98  74.79 85.83 88.06
rec.motorcycles/rec.sport.baseball 93.65 95.95 95.93  92.04 89.25 93.11
sci.crypt/sci.electronics 61.10 86.19 8597 61.28 82.80 86.93
sci.space/soc.religion.christian 92.44 95.77 95.77  89.67 91.04 93.48
soc.religion.christian/talk.politics.guns 91.11 94.56 94.56 8541 90.09 93.12
Average 83.44 92.60 9235 81.23 88.02 90.71




Table 2: AUC of different learning algorithms with batch size s = 30.

Task TPass maxGEC LC NPass LogPass LogFisher
alt.atheism/comp.graphics 87.72 92.22 9222 8527 91.05 92.88
talk.politics.guns/talk.politics.mideast 85.13 92.20 92.17  81.00 85.63 86.35
comp.sys.mac.hardware/comp.windows.x ~ 72.81 88.58 88.53 74.53 85.75 87.52
rec.motorcycles/rec.sport.baseball 94.03 96.21 96.22 92.09 89.03 92.22
sci.crypt/sci.electronics 61.71 86.12 8525 61.62 82.74 86.31
sci.space/soc.religion.christian 91.09 95.86 95.86 88.76 90.88 92.82
soc.religion.christian/talk.politics.guns 91.00 95.54 95.54 85.19 89.65 91.89
Average 83.36 92.39 9226 81.21 87.82 90.00
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