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Abstract

We use the notion of local Rademacher complexity to design new algorithms for
learning kernels. Our algorithms thereby benefit from the sharper learning bounds
based on that notion which, under certain general conditions, guarantee a faster
convergence rate. We devise two new learning kernel algorithms: one based on
a convex optimization problem for which we give an efficient solution using ex-
isting learning kernel techniques, and another one that can be formulated as a
DC-programming problem for which we describe a solution in detail. We also re-
port the results of experiments with both algorithms in both binary and multi-class
classification tasks.

1 Introduction

Kernel-based algorithms are widely used in machine learning and have been shown to often provide
very effective solutions. For such algorithms, the features are provided intrinsically via the choice of
a positive-semi-definite symmetric kernel function, which can be interpreted as a similarity measure
in a high-dimensional Hilbert space. In the standard setting of these algorithms, the choice of the
kernel is left to the user. That choice is critical since a poor choice, as with a sub-optimal choice of
features, can make learning very challenging. In the last decade or so, a number of algorithms and
theoretical results have been given for a wider setting known as that of learning kernels or multiple
kernel learning (MKL) (e.g., [1, 2, 3, 4, 5, 6]). That setting, instead of demanding from the user to
take the risk of specifying a particular kernel function, only requires from him to provide a family
of kernels. Both tasks of selecting the kernel out of that family of kernels and choosing a hypothesis
based on that kernel are then left to the learning algorithm.
One of the most useful data-dependent complexity measures used in the theoretical analysis and
design of learning kernel algorithms is the notion of Rademacher complexity (e.g., [7, 8]). Tight
learning bounds based on this notion were given in [2], improving earlier results of [4, 9, 10].
These generalization bounds provide a strong theoretical foundation for a family of learning kernel
algorithms based on a non-negative linear combination of base kernels. Most of these algorithms,
whether for binary classification or multi-class classification, are based on controlling the trace of
the combined kernel matrix.
This paper seeks to use a finer notion of complexity for the design of algorithms for learning ker-
nels: the notion of local Rademacher complexity [11, 12]. One shortcoming of the general notion
of Rademacher complexity is that it does not take into consideration the fact that, typically, the
hypotheses selected by a learning algorithm have a better performance than in the worst case and
belong to a more favorable sub-family of the set of all hypotheses. The notion of local Rademacher
complexity is precisely based on this idea by considering Rademacher averages of smaller subsets
of the hypothesis set. It leads to sharper learning bounds which, under certain general conditions,
guarantee a faster convergence rate.

⇤Alternative address: Memorial Sloan-Kettering Cancer Center, 415 E 68th street, New York, NY 10065,
USA. Email: kloft@cbio.mskcc.org.
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We show how the notion of local Rademacher complexity can be used to guide the design of new
algorithms for learning kernels. For kernel-based hypotheses, the local Rademacher complexity can
be both upper- and lower-bounded in terms of the tail sum of the eigenvalues of the kernel matrix
[13]. This motivates the introduction of two natural families of hypotheses based on non-negative
combinations of base kernels with kernels constrained by a tail sum of the eigenvalues. We study
and compare both families of hypotheses and derive learning kernel algorithms based on both. For
the first family of hypotheses, the algorithm is based on a convex optimization problem. We show
how that problem can be solved using optimization solutions for existing learning kernel algorithms.
For the second hypothesis set, we show that the problem can be formulated as a DC-programming
(difference of convex functions programming) problem and describe in detail our solution. We report
empirical results for both algorithms in both binary and multi-class classification tasks.
The paper is organized as follows. In Section 2, we present some background on the notion of local
Rademacher complexity by summarizing the main results relevant to our theoretical analysis and the
design of our algorithms. Section 3 describes and analyzes two new kernel learning algorithms, as
just discussed. In Section 4, we give strong theoretical guarantees in support of both algorithms. In
Section 5, we report the results of preliminary experiments, in a series of both binary classification
and multi-class classification tasks.

2 Background on local Rademacher complexity

In this section, we present an introduction to local Rademacher complexities and related properties.

2.1 Core ideas and definitions

We consider the standard set-up of supervised learning where the learner receives a sample
�
z
1

=

(x
1

, y
1

), . . . , zn = (xn, yn)
�

of size n � 1 drawn i.i.d. from a probability distribution P over
Z = X ⇥ Y . Let F be a set of functions mapping from X to Y , and let l : Y ⇥ Y ! [0, 1] be a loss
function. The learning problem is that of selecting a function f 2 F with small risk or expected loss
E[l(f(x), y)]. Let G := l(F , ·) denote the loss class, then, this is equivalent to finding a function
g 2 G with small average E[g]. For convenience, in what follows, we assume that the infimum
of E[g] over G is reached and denote by g⇤ 2 argming2G E[g] the most accurate predictor in G.
When the infimum is not reached, in the following results, E[g⇤] can be equivalently replaced by
infg2G E[g].
Definition 1. Let �

1

, . . . ,�n be an i.i.d. family of Rademacher variables taking values �1 and
+1 with equal probability independent of the sample (z

1

, . . . , zn). Then, the global Rademacher
complexity of G is defined as

Rn(G) := E

sup

g2G
1

n

nX

i=1

�ig(zi)

�
.

Generalization bounds based on the notion of Rademacher complexity are standard [7]. In particular,
for the empirical risk minimization (ERM) hypothesis bgn, for any � > 0, the following bound holds
with probability at least 1� �:

E[bgn]� E[g⇤]  2 sup

g2G

��E[g]� bE[g]��  4Rn(G) +
s

2 log

2

�

n
. (1)

Rn(G) is in the order of O(1/
p
n) for various classes used in practice, including when F is a

kernel class with bounded trace and when the loss l is Lipschitz. In such cases, the bound (1)
converges at rate O(1/

p
n). For some classes G, we may, however, obtain fast rates of up to O(1/n).

The following presentation is based on [12]. Using Talagrand’s inequality, one can show that with
probability at least 1� �,

E[bgn]� E[g⇤]  8Rn(G) + ⌃(G)
s

8 log

2

�

n
+

3 log

2

�

n
. (2)

Here, ⌃2

(G) := supg2G E[g2] is a bound on the variance of the functions in G. The key idea to
obtain fast rates is to choose a much smaller class G?

n ✓ G with as small a variance as possible,
while requiring that bgn still lies in G?

n. Since such a small class can also have a substantially smaller
Rademacher complexity Rn(G?

n), the bound (2) can be sharper than (1).
But how can we find a small class G?

n that is just large enough to contain bgn? We give some further
background on how to construct such a class in the supplementary material section 1. It turns out
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Figure 1: Illustration of the bound (3). The volume of the gray shaded area amounts to the term
✓r+

P
j>✓ �j occurring in (3). The left- and right-most figures show the cases of ✓ too small or too

large, and the center figure the case corresponding to the appropriate value of ✓.

that the order of convergence of E[bgn] � E[g⇤] is determined by the order of the fixed point of the
local Rademacher complexity, defined below.
Definition 2. For any r > 0, the local Rademacher complexity of G is defined as

Rn(G; r) := Rn

��
g 2 G : E[g2]  r

 �
.

If the local Rademacher complexity is known, it can be used to compare bgn with g⇤, as E[bgn]�E[g⇤]
can be bounded in terms of the fixed point of the Rademacher complexity of F , besides constants and
O(1/n) terms. But, while the global Rademacher complexity is generally of the order of O(1/

p
n)

at best, its local counterpart can converge at orders up to O(1/n). We give an example of such a
class—particularly relevant for this paper—below.

2.2 Kernel classes

The local Rademacher complexity for kernel classes can be accurately described and shown to admit
a simple expression in terms of the eigenvalues of the kernel [13] (cf. also Theorem 6.5 in [11]).
Theorem 3. Let k be a Mercer kernel with corresponding feature map �k and reproducing kernel
Hilbert space Hk. Let k(x, x̃) =

P1
j=1

�j'j(x)>'j(x̃) be its eigenvalue decomposition, where
(�i)

1
i=1

is the sequence of eigenvalues arranged in descending order. Let F := {fw = (x 7!
hw,�k(x)i) : kwkHk

 1}. Then, for every r > 0,

E[R(F ; r)] 
s

2

n
min

✓�0

⇣
✓r +

X

j>✓

�j

⌘
=

vuut 2

n

1X

j=1

min(r,�j). (3)

Moreover, there is an absolute constant c such that, if �
1

� 1

n , then for every r � 1

n ,

cp
n

1X

j=1

min(r,�j)  E[R(F ; r)].

We summarize the proof of this result in the supplementary material section 2. In view of (3), the
local Rademacher complexity for kernel classes is determined by the tail sum of the eigenvalues.
A core idea of the proof is to optimize over the “cut-off point” ✓ of the tail sum of the eigenvalues
in the bound. Solving for the optimal ✓, gives a bound in terms of truncated eigenvalues, which is
illustrated in Figure 1.
Consider, for instance, the special case where r = 1. We can then recover the familiar upper bound
on the Rademacher complexity: Rn(F)  pTr(k)/n. But, when

P
j>✓ �j = O(exp(�✓)), as in

the case of Gaussian kernels [14], then

O
⇣
min

✓�0

�
✓r + exp(�✓)

�⌘
= O(r log(1/r)).

Therefore, we have R(F ; r) = O(

p
r
n log(1/r)), which has the fixed point r⇤ = O(

log(n)
n ). Thus,

by Theorem 8 (shown in the supplemental material), we have E[bgn] � E[g⇤] = O(

log(n)
n ), which

yields a much stronger learning guarantee.

3 Algorithms

In this section, we will use the properties of the local Rademacher complexity just discussed to
devise a novel family of algorithms for learning kernels.
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3.1 Motivation and analysis

Most learning kernel algorithms are based on a family of hypotheses based on a kernel kµ =PM
m=1

µmkm that is a non-negative linear combination of M base kernels. This is described by
the following hypothesis class:

H :=

�
fw,kµ =

�
x 7! hw,�kµ(x)i

�
: kwkHkµ

 ⇤,µ ⌫ 0

 
.

It is known that the Rademacher complexity of H can be upper-bounded in terms of the trace of
the combined kernel. Thus, most existing algorithms for learning kernels [1, 4, 6] add the following
constraint to restrict H:

Tr(kµ)  1. (4)
As we saw in the previous section, however, the tail sum of the eigenvalues of the kernel, rather than
its trace, determines the local Rademacher complexity. Since the local Rademacher complexity can
lead to tighter generalization bounds than the global Rademacher complexity, this motivates us to
consider the following hypothesis class for learning kernels:

H
1

:=

�
fw,kµ 2 H :

X

j>✓

�j(kµ)  1

 
.

Here, ✓ is a free parameter controlling the tail sum. The trace is a linear function and thus the
constraint (4) defines a half-space, therefore a convex set, in the space of kernels. The function
k 7! P

j>✓ �j(k), however, is concave since it can be expressed as the difference of the trace and
the sum of the ✓ largest eigenvalues, which is a convex function.
Nevertheless, the following upper bound holds, denoting µ̃m := µm/ kµk

1

,
MX

m=1

µm

X

j>✓

�j(km) =

MX

m=1

µ̃m

X

j>✓

�j(kµk
1

km) 
X

j>✓

�j

✓ MX

m=1

µ̃m kµk
1

km

| {z }
=kµ

◆
, (5)

where the equality holds by linearity and the inequality by the concavity just discussed. This leads
us to consider alternatively the following class

H
2

:=

⇢
fw,kµ 2 H :

MX

m=1

µm

X

j>✓

�j(km)  1

�
.

The class H
2

is convex because it is the restriction of the convex class H via a linear inequality
constraint. H

2

is thus more convenient to work with. The following proposition helps us compare
these two families.
Proposition 4. The following statements hold for the sets H

1

and H
2

:

1. (a) H
1

✓ H
2

2. (b) If ✓ = 0, then H
1

= H
2

.

3. (c) Let ✓ > 0. There exist kernels k
1

, . . . , kM and a probability measure P such that
H

1

( H
2

.

The proposition shows that, in general, the convex class H
2

can be larger than H
1

. The following
result shows that in general an even stronger result holds.
Proposition 5. Let ✓ > 0. There exist kernels k

1

, . . . , kM and a probability measure P such that
conv(H

1

) ( H
2

.

The proofs of these propositions are given in the supplemental material. These results show that in
general H

2

could be a richer class than H
1

and even its convex hull. This would suggest working
with H

1

to further limit the risk of overfitting, however, as already pointed out, H
2

is more conve-
nient since it is a convex class. Thus, in the next section, we will consider both hypothesis sets and
introduce two distinct learning kernel algorithms, each based on one of these families.

3.2 Convex optimization algorithm

The simpler algorithm performs regularized empirical risk minimization based on the convex
class H

2

. Note that by a renormalization of the kernels k
1

, . . . , kM , according to ˜km :=

(

P
j>✓ �j(km))

�1km and ˜kµ =

PM
m=1

µm
˜km, we can simply rewrite H

2

as

H
2

=

˜H
2

:=

⇢
fw,˜kµ

= (x 7! hw,�
˜kµ
(x)i), kwkHk̃µ

 ⇤, µ ⌫ 0, kµk
1

 1

�
, (6)
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which is the commonly studied hypothesis class in multiple kernel learning. Of course, in practice,
we replace the empirical version of the kernel k by the kernel matrix K = (k(xi, xj))

n
i,j=1

, and
consider �

1

, . . . ,�n as the eigenvalues of the kernel matrix and not of the kernel itself. Hence, we
can easily exploit existing software solutions:

1. For all m = 1, . . . ,M , compute
P

j>✓ �j(Km);

2. For all m = 1, . . . ,M , normalize the kernel matrices according to ˜Km :=

(

P
j>✓ �j(Km))

�1Km;

3. Use any of the many existing (`
1

-norm) MKL solvers to compute the minimizer of ERM
over ˜H

2

.

Note that the tail sum can be computed in O(n2✓) for each kernel because it is sufficient to compute
the ✓ largest eigenvalues and the trace:

P
j>✓ �j(Km) = Tr(Km)�P✓

j=1

�j(Km).

3.3 DC-programming

In the more challenging case, we perform penalized ERM over the class H
1

, that is, we aim to solve

min

w

1

2

kwk2HKµ
+ C

nX

i=1

l(yifw,Kµ(xi)) s.t.
X

j>✓

�j(Kµ)  1 . (7)

This is a convex optimization problem with an additional concave constraint
P

j>✓ �j(Kµ)  1.
This constraint is not differentiable, but it admits a subdifferential at any point µ

0

2 RM . Denote the
subdifferential of the function µ 7! �j(Kµ) by @µ0

�j(Kµ0
) := {v 2 RM

: �j(Kµ)��j(Kµ0
) �

hv,µ�µ
0

i, 8µ 2 RM}. Moreover, let u
1

, . . . ,un be the eigenvectors of Kµ0
sorted in descending

order. Defining vm :=

P
j>✓ u

>
j Kmuj , one can verify—using the sub-differentiability of the max

operator—that v = (v
1

, . . . , vM )

> is contained in the subdifferential @µ0

P
j>✓ �j(Kµ0

). Thus,
we can linearly approximate the constraint, for any µ

0

2 RM , viaX

j>✓

�j(Kµ) ⇡ hv,µ� µ
0

i =

X

j>✓

u>
j Kµ�µ0

uj .

We can thus tackle problem (7) using the DCA algorithm [15], which in this context reduces to
alternating between the linearization of the concave constraint and solving the resulting convex
problem, that is, for any µ

0

2 RM ,

min

wµ⌫0

1

2

kwk2HKµ
+ C

nX

i=1

l(fw,Kµ(xi), yi)

s.t.
X

j>✓

u>
j K(µ�µ0)

uj  1.
(8)

Note that µ
0

changes in every iteration and so may also do the eigenvectors u
1

, . . . ,un of Kµ0
,

until the DCA algorithm converges. The DCA algorithm is proven to converge to a local minimum,
even when the concave function is not differentiable [15]. The algorithm is also close to the CCCP
algorithm of Yuille and Rangarajan [16], modulo the use of subgradients instead of the gradients.
To solve (8), we alternate the optimization with respect to µ and w. Note that, for fixed w, we can
compute the optimal µ analytically. Up to normalization the following holds:

8m = 1, . . . ,M : µm =

vuut kwk2HkµP
j>✓ u

>
j Kmuj

. (9)

A very similar optimality expression has been used in the context the group Lasso and `p-norm
multiple kernel learning by [3]. In turn, we need to compute a w that is optimal in (8), for fixed
µ. We perform this computation in the dual; e.g., for the hinge loss l(t, y) = max(0, 1 � ty), this
reduces to a standard support vector machine (SVM) [17, 18] problem,

max

0�↵�C
1>↵� 1

2

(↵ � y)>Kµ(↵ � y), (10)

where � denotes the Hadamard product.
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Algorithm 1 (DC ALGORITHM FOR LEARNING KERNELS BASED ON THE LOCAL RADEMACHER
COMPLEXITY).

1: input: kernel matrix K = (k(xi, xj))
n
i,j=1 and labels y1, . . . , yn 2 {�1, 1}, optimization precision "

2: initialize µm := 1/M for all m = 1, . . . ,M
3: while optimality conditions are not satisfied within tolerance ✏ do

4: SVM training: compute a new ↵ by solving the SVM problem (10)
5: eigenvalue computation: compute eigenvalues u1, . . . ,un of Kµ

6: store µ0 := µ
7: µ update: compute a new µ according to (9) using (11)
8: normalize µ such that

P
j>✓ ujK(µ�µ0)uj = 1

9: end while

10: SVM training: solve (10) with respect to ↵
11: output: ✏-accurate ↵ and kernel weights µ

For the computation of (9), we can recover the term kwk2Hkµ
corresponding to the ↵ that is optimal

in (10) via
kwk2HKµ

= µ2

m(↵ � y)>Km(↵ � y), (11)

which follows from the KKT conditions with respect to (10). In summary, the proposed algorithm,
which is shown in Algorithm Table 1, alternatingly optimizes ↵ and µ, where prior to each µ step
the linear approximation is updated by computing an eigenvalue decomposition of Kµ.
In the discussion that precedes, for the sake of simplicity of the presentation, we restricted ourselves
to the case of an `

1

-regularization, that is we showed how the standard trace-regularization can be
replaced by a regularization based on the tail-sum of the eigenvalues. It should be clear that in the
same way we can replace the familiar `p-regularization used in learning kernel algorithms [3] for
p � 1 with `p-regularization in terms of the tail eigenvalues. In fact, as in the `

1

case, in the `p case,
our convex optimization algorithm can be solved using existing MKL optimization solutions. The
results we report in Section 5 will in fact also include those obtained by using the `

2

version of our
algorithm.

4 Learning guarantees

An advantage of the algorithms presented is that they benefit from strong theoretical guarantees.
Since H

1

✓ H
2

, it is sufficient to present these guarantees for H
2

—any bound that holds for H
2

a
fortiori holds for H

1

. To present the result, recall from Section 3.2 that, by a re-normalization of the
kernels, we may equivalently express H

2

by ˜H
2

, as defined in (6). Thus, the algorithms presented
enjoy the following bound on the local Rademacher complexity, which was shown in [19] (Theorem
5). Similar results were shown in [20, 21].
Theorem 6 (Local Rademacher complexity). Assume that the kernels are uniformly bounded (for
all m, k˜kmk1 < 1) and uncorrelated. Then, the local Rademacher complexity of eH

2

can be
bounded as follows:

R(

eH
2

; r) 
vuut16e

n
max

m=1,...,M

 1X

j=1

min

⇣
r, e2⇤2

log

2

(M)�j(
˜km)

⌘!
+ O

✓
1

n

◆
.

Note that we show the result under the assumption of uncorrelated kernels only for simplicity of
presentation. More generally, a similar result holds for correlated kernels and arbitrary p � 1

(cf. [19], Theorem 5). Subsequently, we can derive the following bound on the excess risk from
Theorem 6 using a result of [11] (presented as Theorem 8 in the supplemental material 1).

Theorem 7. Let l(t, y) = 1

2

(t� y)2 be the squared loss. Assume that for all m, there exists d such
that �j(

˜km)  dj�� for some � > 1 (this is a common assumption and, for example, met for finite
rank kernels and Gaussian kernels [14]). Then, under the assumptions of the previous theorem, for
any � > 0, with probability at least 1 � � over the draw of the sample, the excess loss of the class
˜H
2

can be bounded as follows:

E[bgn]� E[g⇤]  186

r
3� �

1� �

�
4d⇤2

log

2

(M)

� 1
1+�

2

��1
�+1 e(M/e)

��1
�+1 n� �

�+1
�
+ O

✓
1

n

◆
.
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Figure 2: Results of the TSS experiment. LEFT: average AUCs of the compared algorithms. CEN-
TER: for each kernel, the average kernel weight and single-kernel AUC. RIGHT: for each kernel
Km, the tail sum

P
j>✓ �j as a function of the eigenvalue cut-off point ✓.

We observe that the above bound converges in O
⇣
log

2

(M)

1
1+� M

��1
�+1 n� �

1+�

⌘
. This can be almost

as slow as O
�
log(M)/

p
n
�

(when � ⇡ 1) and almost as fast as O
�
M/n

�
(when letting � ! 1).

The latter is the case, for instance, for finite-rank or Gaussian kernels.

5 Experiments

In this section, we report the results of experiments with the two algorithms we introduced, which
we will denote by conv and dc in short. We will compare our algorithms with the classical `

1

-norm
MKL (denoted by l1) and the more recent `

2

-norm MKL [3] (denoted by l2). We also measure
the performance of the uniform kernel combination, denoted by unif, which has frequently been
shown to achieve competitive performances [22]. In all experiments, we use the hinge loss as a loss
function, including a bias term.

5.1 Transcription Start Site Detection

Our first experiment aims at detecting transcription start sites (TSS) of RNA Polymerase II binding
genes in genomic DNA sequences. We experiment on the TSS data set, which we downloaded
from http://mldata.org/. This data set, which is a subset of the data used in the larger study
of [23], comes with 5 kernels, capturing various complementary aspects: a weighted-degree kernel
representing the TSS signal TSS, two spectrum kernels around the promoter region (Promo) and
the 1st exon (1st Ex), respectively, and two linear kernels based on twisting angles (Angle) and
stacking energies (Energ), respectively. The SVM based on the uniform combination of these 5

kernels was found to have the highest overall performance among 19 promoter prediction programs
[24], it therefore constitutes a strong baseline. To be consistent with previous studies [24, 3, 23], we
will use the area under the ROC curve (AUC) as an evaluation criterion.
All kernel matrices Km were normalized such that Tr(Km) = n for all m, prior to the experiment.
SVM computations were performed using the SHOGUN toolbox [25]. For both conv and dc, we
experiment with `

1

- and `
2

-norms. We randomly drew an n-elemental training set and split the
remaining set into validation and test sets of equal size. The random partitioning was repeated 100

times. We selected the optimal model parameters ✓ 2 {2i, i = 0, 1, . . . , 4} and C 2 {10�i, i =

�2,�1, 0, 1, 2} on the validation set, based on their maximal mean AUC, and report mean AUCs on
the test set as well as standard deviations (the latter are within the interval [1.1, 2.5] and are shown in
detail in the supplemental material 4). The experiment was carried out for all n 2 {100, 250, 1000}.
Figure 2 (left) shows the mean AUCs on the test sets.
We observe that unif and l2 outperform l1, except when n = 100, in which case the three meth-
ods are on par. This is consistent with the result reported by [3]. For all sample sizes investigated,
conv and dc yield the highest AUCs.
We give a brief explanation for the outcome of the experiment. To further investigate, we compare
the average kernel weights µ output by the compared algorithms (for n = 100). They are shown
in Figure 2 (center), where we report, below each kernel, also its performance in terms of its AUC
when training an SVM on that single kernel alone. We observe that l1 focuses on the TSS kernel
using the TSS signal, which has the second highest AUC among the kernels (85.2). However, l1
discards the 1st exon kernel, which also has a high predictive performance (AUC of 85.8). A similar
order of kernel importance is determined by l2, but which distributes the weights more broadly,
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Table 1: The training split (sp) fraction, dataset size (n), and multi-class accuracies shown with ±1

standard error. The performance results for MKL and conv correspond to the best values obtained
using either `

1

-norm or `
2

-norm regularization.
sp n unif MKL conv ✓

plant 0.5 940 91.1 ± 0.8 90.6 ± 0.9 91.4 ± 0.7 32
nonpl 0.5 2732 87.2 ± 1.6 87.7 ± 1.3 87.6 ± 0.9 4
psortPos 0.8 541 90.5 ± 3.1 90.6 ± 3.4 90.8 ± 2.8 1
psortNeg 0.5 1444 90.3 ± 1.8 90.7 ± 1.2 91.2 ± 1.3 8
protein 0.5 694 57.2 ± 2.0 57.2 ± 2.0 59.6 ± 2.4 8

while still mostly focusing on the TSS kernel. In contrast, conv and dc distribute their weight only
over the TSS, Promoter, and 1st Exon kernels, which are also the kernels that also have the highest
predictive accuracies. The considerably weaker kernels Angle and Energ are discarded.
But why are Angle and Energ discarded? This can be explained by means of Figure 2 (right),
where we show the tail sum of each kernel as a function of the cut-off point ✓. We observe that
Angle and Energ have only moderately large first and second eigenvalues, which is why they
hardly profit when using conv or dc. The Promo and Exon kernels, however, which are discarded
by l1, have a large first (and also second) eigenvalues, which is why they are promoted by conv or
dc. Indeed, the model selection determines the optimal cut-off, for both conv and dc, for ✓ = 1.

5.2 Multi-class Experiments

We next carried out a series of experiments with the conv algorithm in the multi-class classification
setting, that repeatedly has demonstrated amenable to MKL learning [26, 27]. As described in
Section 3.2 the conv problem can be solved by simply re-normalizing the kernels by the tail sum of
the eigenvalues and making use of any `p-norm MKL solver. For our experiments, we used the ufo
algorithm [26] from the DOGMA toolbox http://dogma.sourceforge.net/. For both conv
and ufo we experiment both with `

1

and `
2

regularization and report the best performance achieved
in each case.
We used the data sets evaluated in [27] (plant, nonpl, psortPos, and psortNeg), which consist of
either 3 or 4 classes and use 69 biologically motivated sequence kernels.1 Furthermore, we also
considered the proteinFold data set of [28], which consists of 27 classes and uses 12 biologically
motivated base kernels.2

The results are summarized in Table 1: they represent mean accuracy values with one standard
deviation as computed over 10 random splits of the data into training and test folds. The fraction of
the data used for training, as well as the total number of examples, is also shown. The optimal value
for the parameter ✓ 2 {2i, i = 0, 1, . . . , 8} was determined by cross-validation. For the parameters
↵ and C of the ufo algorithm we followed the methodology of [26]. For plant, psortPos, and
psortNeg, the results show that conv leads to a consistent improvement in a difficult multi-class
setting, although we cannot attest to their significance due to the insufficient size of the data sets.
They also demonstrate a significant performance improvement over l1 and unif in the proteinFold
data set, a more difficult task where the classification accuracies are below 60%.

6 Conclusion

We showed how the notion of local Rademacher complexity can be used to derive new algorithms for
learning kernels by using a regularization based on the tail sum of the eigenvalues of the kernels. We
introduced two natural hypothesis sets based on that regularization, discussed their relationships, and
showed how they can be used to design an algorithm based on a convex optimization and one based
on solving a DC-programming problem. Our algorithms benefit from strong learning guarantees.
Our empirical results show that they can lead to performance improvement in some challenging
tasks. Finally, our analysis based on local Rademacher complexity could be used as the basis for the
design of new learning kernel algorithms.
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[25] S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. de Bona, A. Binder, C. Gehl, and

V. Franc, “The SHOGUN Machine Learning Toolbox,” J. Mach. Learn. Res., 2010.
[26] F. Orabona and L. Jie, “Ultra-fast optimization algorithm for sparse multi kernel learning,” in Proceedings

of the 28th International Conference on Machine Learning, 2011.
[27] A. Zien and C. S. Ong, “Multiclass multiple kernel learning,” in ICML 24, pp. 1191–1198, ACM, 2007.
[28] T. Damoulas and M. A. Girolami, “Probabilistic multi-class multi-kernel learning: on protein fold recog-

nition and remote homology detection,” Bioinformatics, vol. 24, no. 10, pp. 1264–1270, 2008.
[29] P. Bartlett and S. Mendelson, “Empirical minimization,” Probab. Theory Related Fields, vol. 135(3),

pp. 311–334, 2006.
[30] A. B. Tsybakov, “Optimal aggregation of classifiers in statistical learning,” Ann. Stat., vol. 32, pp. 135–

166, 2004.

9


