
Using multiple samples to learn mixture
models

Jason Lee∗
Stanford University

Stanford, USA
jdl17@stanford.edu

Ran Gilad-Bachrach
Microsoft Research
Redmond, USA

rang@microsoft.com

Rich Caruana
Microsoft Research
Redmond, USA

rcaruana@microsoft.com

Abstract

In the mixture models problem it is assumed that there are K distributions
θ1, . . . , θK and one gets to observe a sample from a mixture of these distri-
butions with unknown coefficients. The goal is to associate instances with
their generating distributions, or to identify the parameters of the hidden
distributions. In this work we make the assumption that we have access to
several samples drawn from the same K underlying distributions, but with
different mixing weights. As with topic modeling, having multiple samples
is often a reasonable assumption. Instead of pooling the data into one sam-
ple, we prove that it is possible to use the differences between the samples
to better recover the underlying structure. We present algorithms that re-
cover the underlying structure under milder assumptions than the current
state of art when either the dimensionality or the separation is high. The
methods, when applied to topic modeling, allow generalization to words not
present in the training data.

1 Introduction

The mixture model has been studied extensively from several directions. In one setting it
is assumed that there is a single sample, that is a single collection of instances, from which
one has to recover the hidden information. A line of studies on clustering theory, starting
from [5] has proposed to address this problem by finding a projection to a low dimensional
space and solving the problem in this space. The goal of this projection is to reduce the
dimension while preserving the distances, as much as possible, between the means of the
underlying distributions. We will refer to this line as MM (Mixture Models). On the other
end of the spectrum, Topic modeling (TM), [9, 3], assumes multiple samples (documents)
that are mixtures, with different weights of the underlying distributions (topics) over words.
Comparing the two lines presented above shows some similarities and some differences. Both
models assume the same generative structure: a point (word) is generated by first choosing
the distribution θi using the mixing weights and then selecting a point (word) according to
this distribution. The goal of both models is to recover information about the generative
model (see [10] for more on that). However, there are some key differences:

(a) In MM, there exists a single sample to learn from. In TM, each document is a mixture
of the topics, but with different mixture weights.

(b) In MM, the points are represented as feature vectors while in TM the data is represented
as a word-document co-occurrence matrix. As a consequence, the model generated by
TM cannot assign words that did not previously appear in any document to topics.

∗Work done while the author was an intern at Microsoft Resaerch

1

(c) TM assumes high density of the samples, i.e., that the each word appears multiple times.
However, if the topics were not discrete distributions, as is mostly the case in MM, each
"word" (i.e., value) would typically appear either zero or one time, which makes the
co-occurrence matrix useless.

In this work we try to close the gap between MM and TM. Similar to TM, we assume that
multiple samples are available. However, we assume that points (words) are presented as
feature vectors and the hidden distributions may be continuous. This allows us to solve
problems that are typically hard in the MM model with greater ease and generate models
that generalize to points not in the training data which is something that TM cannot do.

1.1 Definitions and Notations

We assume a mixture model in which there are K mixture components θ1, . . . , θK defined
over the space X. These mixture components are probability measures over X. We assume
that there are M mixture models (samples), each drawn with different mixture weights
Φ1, . . . ,ΦM such that Φj = (φj1, . . . , φ

j
K) where all the weights are non-negative and sum to

1. Therefore, we have M different probability measures D1, . . . , DM defined over X such
that for a measurable set A and j = 1, . . . ,M we have Dj(A) =

∑
i φ

j
iθi (A). We will denote

by φmin the minimal value of φji .
In the first part of this work, we will provide an algorithm that given samples S1, . . . , SM
from the mixtures D1, . . . , DM finds a low-dimensional embedding that preserves the dis-
tances between the means of each mixture.
In the second part of this work we will assume that the mixture components have disjoint
supports. Hence we will assume that X = ∪jCj such that the Cj ’s are disjoint and for
every j, θj(Cj) = 1. Given samples S1, . . . , SM , we will provide an algorithm that finds the
supports of the underlying distributions, and thus clusters the samples.

1.2 Examples

Before we dive further in the discussion of our methods and how they compare to prior art,
we would like to point out that the model we assume is realistic in many cases. Consider the
following example: assume that one would like to cluster medical records to identify sub-
types of diseases (e.g., different types of heart disease). In the classical clustering setting
(MM), one would take a sample of patients and try to divide them based on some similarity
criteria into groups. However, in many cases, one has access to data from different hospitals
in different geographical locations. The communities being served by the different hospitals
may be different in socioeconomic status, demographics, genetic backgrounds, and exposure
to climate and environmental hazards. Therefore, different disease sub-types are likely to
appear in different ratios in the different hospital. However, if patients in two hospitals
acquired the same sub-type of a disease, parts of their medical records will be similar.
Another example is object classification in images. Given an image, one may break it to
patches, say of size 10x10 pixels. These patches may have different distributions based on the
object in that part of the image. Therefore, patches from images taken at different locations
will have different representation of the underlying distributions. Moreover, patches from
the center of the frame are more likely to contain parts of faces than patches from the
perimeter of the picture. At the same time, patches from the bottom of the picture are
more likely to be of grass than patches from the top of the picture.
In the first part of this work we discuss the problem of identifying the mixture component
from multiple samples when the means of the different components differ and variances are
bounded. We focus on the problem of finding a low dimensional embedding of the data that
preserves the distances between the means since the problem of finding the mixtures in a
low dimensional space has already been address (see, for example [10]). Next, we address a
different case in which we assume that the support of the hidden distributions is disjoint.
We show that in this case we can identify the supports of each distribution. Finally we
demonstrate our approaches on toy problems. The proofs of the theorems and lemmas

2

appear in the appendix. Table 1 summarizes the applicability of the algorithms presented
here to the different scenarios.

1.3 Comparison to prior art

Disjoint Overlapping
clusters clusters

High DSC, MSP MSPdimension
Low DSCdimension

Table 1: Summary of the scenarios the MSP
(Multi Sample Projection) algorithm and the
DSC (Double Sample Clustering) algorithm

are designed to address.

There are two common approaches in the
theoretical study of the MM model. The
method of moments [6, 8, 1] allows the re-
covery of the model but requires exponen-
tial running time and sample sizes. The
other approach, to which we compare our
results, uses a two stage approach. In the
first stage, the data is projected to a low
dimensional space and in the second stage
the association of points to clusters is recov-
ered. Most of the results with this approach
assume that the mixture components are
Gaussians. Dasgupta [5], in a seminal pa-
per, presented the first result in this line.
He used random projections to project the points to a space of a lower dimension. This
work assumes that separation is at least Ω(σmax

√
n). This result has been improved in

a series of papers. Arora and Kannan [10] presented algorithms for finding the mixture
components which are, in most cases, polynomial in n and K. Vempala and Wang [11]
used PCA to reduce the required separation to Ω

(
σmaxK1/4 log1/4

(
n/φmin

))
. They use

PCA to project on the first K principal components, however, they require the Gaussians
to be spherical. Kanan, Salmasian and Vempala [7] used similar spectral methods but
were able to improve the results to require separation of only cσmaxK

2/3
/φ2
min. Chaud-

huri [4] have suggested using correlations and independence between features under the
assumption that the means of the Gaussians differ on many features. They require sepa-
ration of Ω

(
σmax

√
K log(Kσmax logn/φmin)

)
, however they assume that the Gaussians

are axis aligned and that the distance between the centers of the Gaussians is spread across
Ω (Kσmax logn/φmin) coordinates.
We present a method to project the problem into a space of dimension d∗ which is the
dimension of the affine space spanned by the means of the distributions. We can find
this projection and maintain the distances between the means to within a factor of 1 − ε.
The different factors, σmax, n and ε will affect the sample size needed, but do not make the
problem impossible. This can be used as a preprocessing step for any of the results discussed
above. For example, combining with [5] yields an algorithm that requires a separation of only
Ω
(
σmax

√
d∗
)
≤ Ω

(
σmax

√
K
)
. However, using [11] will result in separation requirement

of Ω
(
σmax

√
K log (Kσmax log d∗/φmin)

)
. There is also an improvement in terms of the

value of σmax since we need only to control the variance in the affine space spanned by the
means of the Gaussians and do not need to restrict the variance in orthogonal directions,
as long as it is finite. Later we also show that we can work in a more generic setting
where the distributions are not restricted to be Gaussians as long as the supports of the
distributions are disjoint. While the disjoint assumption may seem too strict, we note that
the results presented above make very similar assumptions. For example, even if the required
separation is σmaxK1/2 then if we look at the Voronoi tessellation around the centers of the
Gaussians, each cell will contain at least 1 − (2π)−1

K3/4 exp (−K/2) of the mass of the
Gaussian. Therefore, when K is large, the supports of the Gaussians are almost disjoint.

2 Projection for overlapping components

In this section we present a method to use multiple samples to project high dimensional
mixtures to a low dimensional space while keeping the means of the mixture components

3

Algorithm 1 Multi Sample Projection (MSP)
Inputs:
Samples S1, . . . , Sm from mixtures D1, . . . , Dm

Outputs:
Vectors v̄1, . . . , v̄m−1 which span the projected space
Algorithm:

1. For j = 1, . . . ,m let Ēj be the mean of the sample Sj
2. For j = 1, . . . ,m− 1 let v̄j = Ēj − Ēj+1

3. return v̄1, . . . , v̄m−1

well separated. The main idea behind the Multi Sample Projection (MSP) algorithm is
simple. Let µi be the mean of the i’th component θi and let Ej be the mean of the j’th
mixture Dj . From the nature of the mixture, Ej is in the convex-hull of µ1, . . . , µK and
hence in the affine space spanned by them; this is demonstrated in Figure 1. Under mild
assumptions, if we have sufficiently many mixtures, their means will span the affine space
spanned by µ1, . . . , µK . Therefore, the MSP algorithm estimates the Ej ’s and projects to
the affine space they span. The reason for selecting this sub-space is that by projecting on
this space we maintain the distance between the means while reducing the dimension to at
most K − 1. The MSP algorithm is presented in Algorithm 1. In the following theorem we
prove the main properties of the MSP algorithm. We will assume that X = Rn, the first two
moments of θj are finite, and σ2max denotes maximal variance of any of the components in
any direction. The separation of the mixture components is minj 6=j′ ‖µj − µj′‖. Finally, we
will denote by d∗ the dimension of the affine space spanned by the µj ’s. Hence, d∗ ≤ K− 1.
Theorem 1. MSP Analysis
Let Ej = E [Dj] and let vj = Ej − Ej+1. Let Nj = |Sj |. The following holds for MSP:

1. The computational complexity of the MSP algorithm is n
∑M
j=1 Nj + 2n (m− 1)

where n is the original dimension of the problem.

2. For any ε > 0, Pr
[
supj

∥∥Ej − Ēj∥∥ > ε
]
≤ nσ2max

ε2

∑
j

1
Nj

.

3. Let µ̄i be the projection of µi on the space spanned by v̄1, . . . , v̄M−1 and assume that
∀i, µi ∈ span {vj}. Let αij be such that µi =

∑
j α

i
jvj and let A = maxi

∑∣∣αij∣∣
then with probability of at least 1− nσ2max

ε2

∑
j

1
Nj

Pr
[
max
i,i′
|‖µi − µi′‖ − ‖µ̄i − µ̄i′‖| > ε

]
≤ 4nσ2maxA2

ε2

∑
j

1
Nj

.

Figure 1: The mean of the mixture compo-
nents will be in the convex hull of their means

demonstrated here by the red line.

The MSP analysis theorem shows that with
large enough samples, the projection will
maintain the separation between the centers
of the distributions. Moreover, since this is
a projection, the variance in any direction
cannot increase. The value of A measures
the complexity of the setting. If the mixing
coefficients are very different in the differ-
ent samples then A will be small. However,
if the mixing coefficients are very similar, a
larger sample is required. Nevertheless, the
size of the sample needed is polynomial in
the parameters of the problem. It is also
apparent that with large enough samples,
a good projection will be found, even with

4

large variances, high dimensions and close
centroids.
A nice property of the bounds presented here is that they assume only bounded first and
second moments. Once a projection to a low dimensional space has been found, it is possible
to find the clusters using approaches presented in section 1.3. However, the analysis of the
MSP algorithm assumes that the means of E1, . . . , EM span the affine space spanned by
µ1, . . . , µK . Clearly, this implies that we require that m > d∗. However, when m is much
larger than d∗, we might end-up with a projection on too large a space. This could easily
be fixed since in this case, Ē1, . . . , Ēm will be almost co-planar in the sense that there will
be an affine space of dimension d∗ that is very close to all these points and we can project
onto this space.

3 Disjoint supports and the Double Sample Clustering (DSC)
algorithm

In this section we discuss the case where the underlying distributions have disjoint supports.
In this case, we do not make any assumption about the distributions. For example, we do
not require finite moments. However, as in the mixture of Gaussians case some sort of
separation between the distributions is needed, this is the role of the disjoint supports.
We will show that given two samples from mixtures with different mixture coefficients, it
is possible to find the supports of the underlying distributions (clusters) by building a tree
of classifiers such that each leaf represents a cluster. The tree is constructed in a greedy
fashion. First we take the two samples, from the two distributions, and reweigh the examples
such that the two samples will have the same cumulative weight. Next, we train a classifier
to separate between the two samples. This classifier becomes the root of the tree. It also
splits each of the samples into two sets. We take all the examples that the classifier assign
to the label +1(−1), reweigh them and train another classifier to separate between the two
samples. We keep going in the same fashion until we can no longer find a classifier that
splits the data significantly better than random.
To understand why this algorithm works it is easier to look first at the case where the
mixture distributions are known. If D1 and D2 are known, we can define the L1 distance
between them as L1 (D1, D2) = supA |D1 (A) –D2 (A)|.1 It turns out that the supremum is
attained by a set A such that for any i, µi (A) is either zero or one. Therefore, any inner
node in the tree splits the region without breaking clusters. This process proceeds until all
the points associated with a leaf are from the same cluster in which case, no classifier can
distinguish between the classes.
When working with samples, we have to tolerate some error and prevent overfitting. One way
to see that is to look at the problem of approximating the L1 distance between D1 and D2

using samples S1 and S2. One possible way to do that is to define L̂1 = supA
∣∣∣∣A∩S1∣∣S1

∣∣ − A∩S2∣∣S2

∣∣ ∣∣∣∣.
However, this estimate is almost surely going to be 1 if the underlying distributions are
absolutely continuous. Therefore, one has to restrict the class from which A can be selected
to a class of VC dimension small enough compared to the sizes of the samples. We claim
that asymptotically, as the sizes of the samples increase, one can increase the complexity of
the class until the clusters can be separated.
Before we proceed, we recall a result of [2] that shows the relation between classification
and the L1 distance. We will abuse the notation and treat A both as a subset and as a
classifier. If we mix D1 and D2 with equal weights then

err (A) = D1 (X \A) +D2 (A)
= 1−D1 (A) +D2 (A)
= 1− (D1 (A)−D2 (A)) .

Therefore, minimizing the error is equivalent to maximizing the L1 distance.
1the supremum is over all the measurable sets.

5

Algorithm 2 Double Sample Clustering (DSC)
Inputs:

• Samples S1, S2

• A binary learning algorithm L that given samples S1, S2 with weights w1, w2 finds
a classifier h and an estimator e of the error of h.
• A threshold τ > 0.

Outputs:
• A tree of classifiers

Algorithm:
1. Let w1 = 1 and w2 = |S1|/|S2|

2. Apply L to S1 & S2 with weights w1 & w2 to get the classifier h and estimator e.
3. If e ≥ 1

2 − τ ,
(a) return a tree with a single leaf.

4. else
(a) For j = 1, 2, let S+

j = {x ∈ Sj s.t. h (x) > 0}
(b) For j = 1, 2, let S−j = {x ∈ Sj s.t. h (x) < 0}
(c) Let T+ be the tree returned by the DSC algorithm applied to S+

1 and S+
2

(d) Let T− be the tree returned by the DSC algorithm applied to S−1 and S−2
(e) return a tree in which c is at the root node and T− is its left subtree and T+

is its right subtree

The key observation for the DSC algorithm is that if φ1
i 6= φ2

i , then a set A that maximizes
the L1 distance betweenD1 andD2 is aligned with cluster boundaries (up to a measure zero).

Figure 2: Demonstration of the DSC algo-
rithm. Assume that Φ1 = (0.4, 0.3, 0.3) for
the orange, green and blue regions respec-
tively and Φ2 = (0.5, 0.1, 0.4). The green re-
gion maximizes the L1 distance and therefore
will be separated from the blue and orange.
Conditioned on these two regions, the mixture
coefficients are Φ1

orange, blue = (4/7, 3/7) and
Φ2
orange, blue = (5/9, 4/9). The region that

maximized this conditional L1 is the orange
regions that will be separated from the blue.

Furthermore, A contains all the clusters for
which φ1

i > φ2
i and does not contain all the

clusters for which φ1
i < φ2

i . Hence, if we
split the space to A and Ā we have few clus-
ters in each side. By applying the same trick
recursively in each side we keep on bisecting
the space according to cluster boundaries
until subspaces that contain only a single
cluster remain. These sub-spaces cannot be
further separated and hence the algorithm
will stop. Figure 2 demonstrates this idea.
The following lemma states this argument
mathematically:
Lemma 1. If Dj =

∑
i φ

j
iθi then

1. L1 (D1, D2) ≤∑
i max

(
φ1
i − φ2

i , 0
)
.

2. If A∗ = ∪i:φ1
i
>φ2

i
Ci then D1 (A∗)−

D2 (A∗) =
∑
i max

(
φ1
i − φ2

i , 0
)
.

3. If ∀i, φ1
i 6= φ2

i and A is such that
D1 (A)−D2 (A) = L1 (D1, D2) then
∀i, θi (A∆A∗) = 0.

We conclude from Lemma 1 that if D1 and
D2 were explicitly known and one could have found a classifier that best separates between
the distributions, that classifier would not break clusters as long as the mixing coefficients

6

are not identical. In order for this to hold when the separation is applied recursively in the
DSC algorithm it suffices to have that for every I ⊆ [1, . . . ,K] if |I| > 1 and i ∈ I then

φ1
i∑

i′∈I φ
1
i′
6= φ2

i∑
i′∈I φ

2
i′

to guarantee that at any stage of the algorithm clusters will not be split by the classifier
(but may be sections of measure zero). This is also sufficient to guarantee that the leaves
will contain single clusters.
In the case where data is provided through a finite sample then some book-keeping is
needed. However, the analysis follows the same path. We show that with samples large
enough, clusters are only minimally broken. For this to hold we require that the learning
algorithm L separates the clusters according to this definition:
Definition 1. For I ⊆ [1, . . . ,K] let cI : X 7→ {±1} be such that cI(x) = 1 if x ∈ ∪i∈ICi
and cI(x) = −1 otherwise. A learning algorithm L separates C1, . . . , CK if for every ε, δ > 0
there exists N such that for every n > N and every measure ν over X×{±1} with probability
1− δ over samples from νn:

1. The algorithm L returns an hypothesis h : X 7→ {±1} and an error estimator
e ∈ [0, 1] such that |Prx,y∼ν [h (x) 6= y]− e| ≤ ε

2. h is such that
∀I, Pr

x,y∼ν
[h (x) 6= y] < Pr

x,y∼ν
[cI (x) 6= y] + ε .

Before we introduce the main statement, we define what it means for a tree to cluster the
mixture components:
Definition 2. A clustering tree is a tree in which in each internal node is a classifier and
the points that end in a certain leaf are considered a cluster. A clustering tree ε-clusters the
mixture coefficient θ1, . . . , θK if for every i ∈ 1, . . . ,K there exists a leaf in the tree such
that the cluster L ⊆ X associated with this leaf is such that θi (L) ≥ 1 − ε and θi′ (L) < ε
for every i′ 6= i.

To be able to find a clustering tree, the two mixtures have to be different. The following
definition captures the gap which is the amount of difference between the mixtures.
Definition 3. Let Φ1 and Φ2 be two mixture vectors. The gap, g, between them is

g = min
{∣∣∣∣ φ1

i∑
i′∈I φ

1
i′
− φ2

i∑
i′∈I φ

2
i′

∣∣∣∣ : I ⊆ [1, . . . ,K] and |I| > 1
}

.

We say that Φ is b bounded away from zero if b ≤ mini φi.
Theorem 2. Assume that L separates θ1, . . . , θK , there is a gap g > 0 between Φ1 and Φ2

and both Φ1 and Φ2 are bounded away from zero by b > 0. For every ε∗, δ∗ > 0 there exists
N = N (ε∗, δ∗, g, b,K) such that given two random samples of sizes N < n1, n2 from the two
mixtures, with probability of at least 1− δ∗ the DSC algorithm will return a clustering tree
which ε∗-clusters θ1, . . . , θK when applied with the threshold τ = g/8.

4 Empirical evidence

We conducted several experiments with synthetic data to compare different methods when
clustering in high dimensional spaces. The synthetic data was generated from three Gaus-
sians with centers at points (0, 0) , (3, 0) and (−3,+3). On top of that, we added additional
dimensions with normally distributed noise. In the first experiment we used unit variance
for all dimensions. In the second experiment we skewed the distribution so that the variance
in the other features is 5.
Two sets of mixing coefficients for the three Gaussians were chosen at random 100 times by
selecting three uniform values from [0, 1] and normalizing them to sum to 1. We generated

7

37

42

47

52

57

62

67

0 2000 4000 6000 8000 10000 12000

Random Projection
K-Means
Maximal Variance
MSP
DSC

(a) Accuracy with spherical Gaussians

38

40

42

44

46

48

50

0 2000 4000 6000 8000 10000 12000

(b) Average accuracy with skewed Gaussians
Figure 3: Comparison the different algorithms: The dimension of the problem is

presented in the X axis and the accuracy on the Y axis.

two samples with 80 examples each from the two mixing coefficients. The DSC and MSP
algorithm received these two samples as inputs while the reference algorithms, which are
not designed to use multiple samples, received the combined set of 160 points as input.
We ran 100 trials. In each trial, each of the algorithms finds 3 Gaussians. We then measure
the percentage of the points associated with the true originating Gaussian after making the
best assignment of the inferred centers to the true Gaussians.
We compared several algorithms. K-means was used on the data as a baseline. We compared
three low dimensional projection algorithms. Following [5] we used random projections as
the first of these. Second, following [11] we used PCA to project on the maximal variance
subspace. MSP was used as the third projection algorithm. In all projection algorithm we
first projected on a one dimensional space and then applied K-means to find the clusters.
Finally, we used the DSC algorithm. The DSC algorithm uses the classregtree function in
MATLAB as its learning oracle. Whenever K-means was applied, the MATLAB implemen-
tation of this procedure was used with 10 random initial starts.
Figure 3(a) shows the results of the first experiment with unit variance in the noise dimen-
sions. In this setting, the Maximal Variance method is expected to work well since the first
two dimensions have larger expected variance. Indeed we see that this is the case. However,
when the number of dimensions is large, MSP and DSC outperform the other methods;
this corresponds to the difficult regime of low signal to noise ratio. In 12800 dimensions,
MSP outperforms Random Projections 90% of the time, Maximal Variance 80% of the time,
and K-means 79% of the time. DSC outperforms Random Projections, Maximal Variance
and K-means 84%, 69%, and 66% of the time respectively. Thus the p-value in all these
experiments is < 0.01.
Figure 3(b) shows the results of the experiment in which the variance in the noise dimensions
is higher which creates a more challanging problem. In this case, we see that all the reference
methods suffer significantly, but the MSP and the DSC methods obtain similar results as in
the previous setting. Both the MSP and the DSC algorithms win over Random Projections,
Maximal Variance and K-means more than 78% of the time when the dimension is 400 and
up. The p-value of these experiments is < 1.6× 10−7.

5 Conclusions

The mixture problem examined here is closely related to the problem of clustering. Most
clustering data can be viewed as points generated from multiple underlying distributions or
generating functions, and clustering can be seen as the process of recovering the structure
of or assignments to these distributions. We presented two algorithms for the mixture
problem that can be viewed as clustering algorithms. The MSP algorithm uses multiple
samples to find a low dimensional space to project the data to. The DSC algorithm builds
a clustering tree assuming that the clusters are disjoint. We proved that these algorithms
work under milder assumptions than currently known methods. The key message in this
work is that when multiple samples are available, often it is best not to pool the data into
one large sample, but that the structure in the different samples can be leveraged to improve
clustering power.

8

References
[1] Mikhail Belkin and Kaushik Sinha, Polynomial learning of distribution families, Foun-

dations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, IEEE,
2010, pp. 103–112.

[2] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira, Analysis of rep-
resentations for domain adaptation, Advances in neural information processing systems
19 (2007), 137.

[3] David M Blei, Andrew Y Ng, and Michael I Jordan, Latent dirichlet allocation, the
Journal of machine Learning research 3 (2003), 993–1022.

[4] Kamalika Chaudhuri and Satish Rao, Learning mixtures of product distributions using
correlations and independence, Proc. of COLT, 2008.

[5] Sanjoy Dasgupta, Learning mixtures of gaussians, Foundations of Computer Science,
1999. 40th Annual Symposium on, IEEE, 1999, pp. 634–644.

[6] Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant, Efficiently learning mixtures
of two gaussians, Proceedings of the 42nd ACM symposium on Theory of computing,
ACM, 2010, pp. 553–562.

[7] Ravindran Kannan, Hadi Salmasian, and Santosh Vempala, The spectral method for
general mixture models, Learning Theory, Springer, 2005, pp. 444–457.

[8] Ankur Moitra and Gregory Valiant, Settling the polynomial learnability of mixtures of
gaussians, Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Sympo-
sium on, IEEE, 2010, pp. 93–102.

[9] Christos H Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, and Santosh Vem-
pala, Latent semantic indexing: A probabilistic analysis, Proceedings of the seven-
teenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database sys-
tems, ACM, 1998, pp. 159–168.

[10] Arora Sanjeev and Ravi Kannan, Learning mixtures of arbitrary gaussians, Proceedings
of the thirty-third annual ACM symposium on Theory of computing, ACM, 2001,
pp. 247–257.

[11] Santosh Vempala and Grant Wang, A spectral algorithm for learning mixtures of distri-
butions, Foundations of Computer Science, 2002. Proceedings. The 43rd Annual IEEE
Symposium on, IEEE, 2002, pp. 113–122.

9

