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The supplementary material is organized as follows. In Section A and B, we provide the detailed
proof of respectively the deterministic and randomized guarantee for LRSSC. In Section C, we
derive the fast Alternating Direction Methods of Multipliers (ADMM) algorithm for LRSSC and
NoisyLRSSC and verify its convergence guarantee. In Section D, additional numerical experiments
of LRSSC are provided, including the real data experiments on Hopkins155 motion segmentation
dataset[16]. In Section E, we provide in-depth discussions on the Minimax Subspace Incoherence
Property, illustrating its main difference to Subspace Incoherence Property in [14] with intuitive
examples and proofs. Also in this section, we formalize the concept of “sufficiently independent”
that appeared in Example 3 of the main paper. In Section F, the proof to some stand-alone claims in
the paper are given, including the graph connectivity of LRR and the computational tractability of
the singular value condition. Finally, for readers’ easy reference, we attach a table of symbols and
notations at the very end of the supplementary material.

A Proof of Theorem 1 (the deterministic result)

Theorem 1 is proven by duality. As described in the main text, it involves constructing two levels of
fictitious optimizations. For convenience, we illustrate the proof with only three subspaces. Namely,
X = [X(1)X(2)X(3)] and S1 S2 S3 are all d-dimensional subspaces. Having more than 3 subspaces
and subspaces of different dimensions are perfectly fine and the proof will be the same.

A.1 Optimality condition

We start by describing the subspace projection critical in the proof of matrix completion and
RPCA[5, 4]. We need it to characterize the subgradient of nuclear norm.

Define projection PT (and PT⊥ ) to both column and row space of low-rank matrix C (and its
complement) as

PT (X) = UUTX +XV V T − UUTXV V T ,

PT⊥(X) = (I − UUT )X(I − V V T ),

where UUT and V V T are projections matrix defined from skinny SVD of C = UΣV T .

Lemma A.1.1 (Properties of PT and PT⊥ ).

〈PT (X), Y 〉 = 〈X,PT (Y )〉 = 〈PT (X),PT (Y )〉

〈PT⊥(X), Y 〉 = 〈X,PT⊥(Y )〉 = 〈PT⊥(X),PT⊥(Y )〉
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Proof. Using the property of inner product 〈X,Y 〉 = 〈XT , Y T 〉 and definition of adjoint operator
〈AX,Y 〉 = 〈X,A∗Y 〉, we have

〈PT (X), Y 〉 = 〈UUTX,Y 〉+ 〈XV V T , Y 〉 − 〈UUTXV V T , Y 〉
= 〈UUTX,Y 〉+ 〈V V TXT , Y T 〉 − 〈V V TXT , (UUTY )T 〉
= 〈X,UUTY 〉+ 〈XT , V V TY T 〉 − 〈XT , V V TY TUUT 〉
= 〈X,UUTY 〉+ 〈X,Y V V T 〉 − 〈X,UUTY V V T 〉
= 〈X,PT (Y )〉.

Use the equality with X = X,Y = PT (Y ), we get

〈X,PT (PT (Y ))〉 = 〈PT (X),PT (Y )〉.
The result for PT⊥ is the same as the third term in the previous derivation as I−UUT and I−V V T
are both projection matrices that are self-adjoint.

In addition, given index set D, we define projection PD, such that

PD(X) =

{
[PD(X)]ij = Xij , if (i, j) ∈ D;
[PD(X)]ij = 0, Otherwise.

For example, when D = {(i, j)|i = j}, PD(X) = 0⇔ diag(X) = 0.

Consider general convex optimization problem

min
C1,C2

‖C1‖∗ + λ‖C2‖1
s.t. B = AC1, C1 = C2, PD(C1) = 0

(A.1)

where A ∈ Rn×m is arbitrary dictionary and B ∈ Rn×N is data samples. Note that when B = X ,
A = X , (A.1) is exactly (1).

Lemma A.1.2. For optimization problem (A.1), if we have a quadruplet (C,Λ1,Λ2,Λ3) where
C1 = C2 = C is feasible, the support supp(C) = Ω ⊆ Ω̃, rank(C) = r and skinny SVD of
C = UΣV T (Σ is an r × r diagonal matrix and U , V are of compatible size), moreover if Λ1, Λ2,
Λ3 satisfy

1© PT (ATΛ1 − Λ2 − Λ3) = UV T 3© [Λ2]Ω = λsgn([C]Ω) 5© [Λ2]Ω̃c < λ

2© ‖PT⊥(ATΛ1 − Λ2 − Λ3)‖ ≤ 1 4© [Λ2]Ωc
⋂

Ω̃ ≤ λ 6© PDc(Λ3) = 0

then all optimal solutions to (A.1) satisfy supp(C) ⊆ Ω̃.

Proof. The subgradient of ‖C‖∗ is UV T +W1 for any W1 ∈ T⊥ and ‖W1‖ ≤ 1. For any optimal
solution C∗ we may choose W1 such that ‖W1‖ = 1, 〈W1,PT⊥C∗〉 = ‖PT⊥C∗‖∗. Then by the
definition of subgradient, convex function ‖C‖∗ obey

‖C∗‖∗ ≥ ‖C‖∗ + 〈UV T +W1, C
∗ − C〉

= 〈UV T ,PT (C∗ − C)〉+ 〈UV T ,PT⊥(C∗ − C)〉+ 〈W1, C
∗ − C〉

= 〈UV T ,PT (C∗ − C)〉+ ‖PT⊥C∗‖∗. (A.2)

To see the equality, note that 〈UV T ,PT⊥(A)〉 = 0 for any compatible matrix A and the following
identity that follows directly from the construction of W1 and Lemma A.1.1

〈W1, C
∗ − C〉 = 〈PT⊥W1, C

∗ − C〉 = 〈W1,PT⊥(C∗ − C)〉 = 〈W1,PT⊥C∗〉 = ‖PT⊥C∗‖∗.

Similarly, the subgradient of λ‖C‖1 is λsgn(C) + W2, for any W2 obeying supp(W2) ⊆ Ωc and
‖W2‖∞ ≤ λ. We may choose W2 such that ‖W2‖∞ = λ and 〈[W2]Ωc , C

∗
Ωc〉 = ‖C∗Ωc‖1, then by

the convexity of one norm,

λ‖C∗‖1 ≥ λ‖C‖1 + λ〈∂‖C‖1, C∗ − C〉 = λ‖C‖1 + 〈λsgn(CΩ), C∗Ω − CΩ〉+ λ‖C∗Ωc‖1. (A.3)
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Then we may combine (A.2) and (A.3) with condition 1© and 3© to get

‖C∗‖∗ + λ‖C∗‖1
≥ ‖C‖∗ + 〈UV T ,PT (C∗ − C)〉+ ‖PT⊥(C∗)‖∗ + λ‖C‖1

+ 〈λsgn(CΩ), C∗Ω − CΩ〉+ λ‖C∗Ωc‖1
= ‖C‖∗ + 〈PT (ATΛ1 − Λ2 − Λ3),PT (C∗ − C)〉+ ‖PT⊥(C∗)‖∗ + λ‖C‖1

+ 〈Λ2, C
∗
Ω − CΩ〉+ λ‖C∗

Ωc∩Ω̃
‖1 + λ‖C∗

Ω̃c
‖1. (A.4)

By Lemma A.1.1, we know

〈PT (ATΛ1 − Λ2 − Λ3),PT (C∗ − C)〉
=〈ATΛ1 − Λ2 − Λ3,PT (PT (C∗ − C))〉
=〈ATΛ1 − Λ2 − Λ3,PT (C∗)〉 − 〈ATΛ1 − Λ2 − Λ3,PT (C)〉
=〈Λ1, APT (C∗)〉 − 〈Λ2 + Λ3,PT (C∗)〉 − 〈Λ1, AC〉+ 〈Λ2 + Λ3, C〉
=〈Λ1, AC

∗ −AC〉 − 〈Λ1, APT⊥(C∗)〉+ 〈Λ2 + Λ3, C〉 − 〈Λ2 + Λ3,PT (C∗)〉
=− 〈Λ1, APT⊥(C∗)〉+ 〈Λ2 + Λ3, C〉 − 〈Λ2 + Λ3, C

∗〉+ 〈Λ2 + Λ3,PT⊥(C∗)〉
=− 〈ATΛ1 − Λ2 − Λ3,PT⊥(C∗)〉 − 〈Λ2 + Λ3, C

∗〉+ 〈Λ2 + Λ3, C〉
=− 〈PT⊥(ATΛ1 − Λ2),PT⊥(C∗)〉 − 〈Λ2 + Λ3, C

∗〉+ 〈Λ2 + Λ3, C〉
=− 〈PT⊥(ATΛ1 − Λ2),PT⊥(C∗)〉 − 〈Λ2, C

∗〉+ 〈Λ2, C〉.
Note that the last step follows from condition 6© and C, C∗’s primal feasibility. Substitute back into
(A.4), we get

‖C∗‖∗ + λ‖C∗‖1
≥‖C‖∗ + λ‖C‖1 + ‖PT⊥(C∗)‖∗ − 〈PT⊥(ATΛ1 − Λ2 − Λ3),PT⊥(C∗)〉

+ λ‖C∗
Ωc∩Ω̃

‖1 − 〈[Λ2]Ωc∩Ω̃, C
∗
Ωc∩Ω̃

〉+ λ‖C∗
Ω̃c
‖1 − 〈[Λ2]Ω̃c , C

∗
Ω̃c
〉

≥‖C‖∗ + λ‖C‖1 − (1− ‖PT⊥(ATΛ1 − Λ2 − Λ3)‖)‖PT⊥(C∗)‖∗
(λ− ‖[Λ2]Ωc∩Ω̃‖∞)‖C∗

Ωc∩Ω̃
‖1 + (λ− ‖[Λ2]Ω̃c‖∞)‖C∗

Ω̃c
‖1

Assume C∗
Ω̃c
6= 0. By condition 4©, 5© and 2©, we have the strict inequality

‖C∗‖∗ + λ‖C∗‖1 > ‖C‖∗ + λ‖C‖1.
Recall that C∗ is an optimal solution, i.e., ‖C∗‖∗ + λ‖C∗‖1 ≤ ‖C‖∗ + λ‖C‖1. By contradiction,
we conclude that C∗

Ω̃c
= 0 for any optimal solution C∗.

A.2 Constructing solution

Apply Lemma A.1.2 with A = X , B = X and Ω̃ is selected such that the Self-Expressiveness
Property (SEP) holds, then if we can find Λ1 and Λ2 satisfying the five conditions with respect to a
feasible C, then we know all optimal solutions of (1) obey SEP. The dimension of the dual variables
are Λ1 ∈ Rn×N and Λ2 ∈ RN×N .

First layer fictitious problem

A good candidate can be constructed by the optimal solutions of the fictitious programs for i =
1, 2, 3

P1 : min
C

(i)
1 ,C

(i)
2

‖C(i)
1 ‖∗ + λ‖C(i)

2 ‖1

s.t. X(i) = XC
(i)
1 , C

(i)
1 = C

(i)
2 , PDi(C(i)

1 ) = 0.

(A.5)

Corresponding dual problem is

D1 : max
Λ

(i)
1 ,Λ

(i)
2 ,Λ

(i)
3

〈X(i),Λ
(i)
1 〉

s.t. ‖Λ(i)
2 ‖∞ ≤ λ, ‖XTΛ

(i)
1 − Λ

(i)
2 − Λ

(i)
3 ‖ ≤ 1, PDci (Λ

(i)
3 ) = 0

(A.6)
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where Λ
(i)
1 ∈ Rn×Ni and Λ

(i)
2 ,Λ

(i)
3 ∈ RN×Ni . Di is the diagonal set of the ith Ni × Ni block of

C
(i)
1 . For instance for i = 2,

C
(2)
1 =

 0

C̃
(2)
1
0

 , D2 =

(i, j)

∣∣∣∣∣∣
[

0
I
0

]
ij

6= 0

 ,

The candidate solution is C =
[
C

(1)
1 C

(2)
1 C

(3)
1

]
. Now we need to use a second layer of fictitious

problem and the same Lemma A.1.2 with A = X , B = X(i) to show that the solution support Ω̃(i)

is like the following

C
(1)
1 =

 C̃
(1)
1
0
0

 , C
(2)
1 =

 0

C̃
(2)
1
0

 , C
(3)
1 =

 0
0

C̃
(3)
1

 . (A.7)

Second layer fictitious problem

The second level of fictitious problems are used to construct a suitable solution. Consider for i =
1, 2, 3,

P2 : min
C̃

(i)
1 ,C̃

(i)
2

‖C̃(i)
1 ‖∗ + λ‖C̃(i)

2 ‖1

s.t. X(i) = X(i)C̃
(i)
1 , C̃

(i)
1 = C̃

(i)
2 , diag(C̃

(i)
1 ) = 0.

(A.8)

which is apparently feasible. Note that the only difference between the second layer fictitious prob-
lem (A.8) and the first layer fictitious problem (A.5) is the dictionary/design matrix being used. In
(A.5), the dictionary contains all data points, whereas here in (A.8), the dictionary is nothing but
X(i) itself. The corresponding dimension of representation matrix C(i)

1 and C̃(i)
1 are of course dif-

ferent too. Sufficiently we hope to establish the conditions where the solutions of (A.8) and (A.5)
are related by (A.7).

The corresponding dual problem is

D2 : max
Λ̃

(i)
1 ,Λ̃

(i)
2 ,Λ̃

(i)
3

〈X(i), Λ̃
(i)
1 〉

s.t. ‖Λ̃(i)
2 ‖∞ ≤ λ, ‖[X(i)]T Λ̃

(i)
1 − Λ̃

(i)
2 − Λ̃

(i)
3 ‖ ≤ 1, diag⊥

(
Λ̃

(i)
3

)
= 0

(A.9)

where Λ̃
(i)
1 ∈ Rn×Ni and Λ̃

(i)
2 , Λ̃

(i)
3 ∈ RNi×Ni .

The proof is two steps. First we show the solution of (A.8), zero padded as in (A.7) are indeed
optimal solutions of (A.5) and verify that all optimal solutions have such shape using Lemma A.1.2.
The second step is to verify that solution C =

[
C

(1)
1 C

(2)
1 C

(3)
1

]
is optimal solution of (1).

A.3 Constructing dual certificates

To complete the first step, we need to construct Λ
(i)
1 , Λ

(i)
2 and Λ

(i)
3 such that all conditions in Lem-

ma A.1.2 are satisfied. We use i = 1 to illustrate. Let the optimal solution1 of (A.9) be Λ̃
(1)
1 , Λ̃

(1)
2

and Λ̃
(1)
3 . We set Λ

(1)
1 = Λ̃

(1)
1 , Λ

(1)
2 =

 Λ̃
(1)
2

Λa
Λb

 and Λ
(1)
3 =

 Λ̃
(1)
3
0
0

. As Ω̃ defines the

first block now, this construction naturally guarantees 3© and 4©. 6© follows directly from the dual
feasibility. The existence of Λa and Λb obeying 5© 1© 2© is something we need to show.

To evaluate 1© and 2©, let’s first define the projection operator. Take skinny SVD C̃
(1)
1 =

Ũ (1)Σ̃(1)(Ṽ (1))T .

C
(1)
1 =

 C̃
(1)
1
0
0

 =

 Ũ (1)

0
0

 Σ̃(1)(Ṽ (1))T

1It need not be unique, for now we just use them to denote any optimal solution.
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U (1)[U (1)]T =

 Ũ (1)[Ũ (1)]T 0 0
0 0 0
0 0 0

 , V (1)[V (1)]T = Ṽ (1)(Ṽ (1))T

For condition 1© we need

PT1

(
XTΛ

(1)
1 − Λ

(1)
2

)
= PT1

 [X(1)]
T

Λ̃
(1)
1 − Λ̃2 − Λ̃3

[X(2)]
T

Λ̃
(1)
1 − Λa

[X(3)]
T

Λ̃
(1)
1 − Λb


=

 PT̃1
([X(1)]

T
Λ̃

(1)
1 − Λ̃2 − Λ̃3)

([X(2)]T Λ̃
(1)
1 − Λa)Ṽ (1)(Ṽ (1))T

([X(3)]
T

Λ̃
(1)
1 − Λb)Ṽ

(1)(Ṽ (1))T

 =

 Ũ (1)[Ṽ (1)]T

0
0


The first row is guaranteed by construction. The second and third row are something we need to
show. For condition 2©

∥∥∥PT⊥1 (XTΛ
(1)
1 − Λ

(1)
2 − Λ̃3

)∥∥∥ =

∥∥∥∥∥∥∥
 PT̃⊥1 ([X(1)]

T
Λ̃

(1)
1 − Λ̃2 − Λ̃3)

([X(2)]
T

Λ̃
(1)
1 − Λa)(I − Ṽ (1)(Ṽ (1))T )

([X(3)]
T

Λ̃
(1)
1 − Λb)(I − Ṽ (1)(Ṽ (1))T )


∥∥∥∥∥∥∥

≤‖PT̃⊥1 ([X(1)]
T

Λ̃
(1)
1 − Λ̃2 − Λ̃3)‖+ ‖[X(2)]

T
Λ̃

(1)
1 − Λa‖+ ‖[X(3)]

T
Λ̃

(1)
1 − Λb‖

Note that as ([X(2)]
T

Λ̃
(1)
1 − Λa)Ṽ (1)(Ṽ (1))T = 0, the complement projection ([X(2)]

T
Λ̃

(1)
1 −

Λa)(I − Ṽ (1)(Ṽ (1))T ) = ([X(2)]
T

Λ̃
(1)
1 − Λa). The same goes for the third row. In fact, in worst

case, ‖PT̃⊥1 ([X(1)]
T

Λ̃
(1)
1 − Λ̃2)‖ = 1, then for both 1© and 2© to hold, we need

[X(2)]
T

Λ̃
(1)
1 − Λa = 0, [X(3)]

T
Λ̃

(1)
1 − Λb = 0. (A.10)

In other words, the conditions reduce to whether there exist Λa,Λb obeying ‖Λa‖∞ < λ and
‖Λb‖∞ < λ that can nullify [X(2)]

T
Λ̃

(1)
1 and [X(3)]

T
Λ̃

(1)
1 .

In fact, as we will illustrate, (A.10) is sufficient for the original optimization (1) too. We start the
argument by taking the skinny SVD of constructed solution C.

C =

 C̃1 0 0

0 C̃2 0

0 0 C̃3

 =

 Ũ1 0 0

0 Ũ2 0

0 0 Ũ3

 Σ̃1 0 0

0 Σ̃2 0

0 0 Σ̃3

 Ṽ1 0 0

0 Ṽ2 0

0 0 Ṽ3

 .

Check that U, V are both orthonormal, Σ is diagonal matrix with unordered singular values. Let the
block diagonal shape be Ω, the five conditions in Lemma A.1.2 are met with

Λ1 =
(

Λ̃
(1)
1 Λ̃

(2)
1 Λ̃

(3)
1

)
, Λ2 =

 Λ̃
(1)
2 Λ

(2)
a Λ

(3)
a

Λ
(1)
a Λ̃

(2)
2 Λ

(3)
b

Λ
(1)
b Λ

(2)
b Λ̃

(3)
2

 , Λ3 =

 Λ̃
(1)
3 0 0

0 Λ̃
(2)
3 0

0 0 Λ̃
(3)
3

 ,

as long as Λ
(i)
1 , Λ

(i)
2 and Λ

(i)
3 guarantee the optimal solution of (A.5) obeys SEP for each i. Condition

3© 4© 5© and 6© are trivial. To verify condition 1© and 2©,

XTΛ1 − Λ2 − Λ3

=

 [X(1)]
T

Λ̃
(1)
1 − Λ̃

(1)
2 − Λ̃

(1)
3 [X(1)]

T
Λ̃

(2)
1 − Λ

(2)
a [X(1)]

T
Λ̃

(3)
1 − Λ

(3)
a

[X(2)]
T

Λ̃
(1)
1 − Λ

(1)
a [X(2)]

T
Λ̃

(2)
1 − Λ̃

(2)
2 − Λ̃

(2)
3 [X(2)]

T
Λ̃

(3)
1 − Λ

(3)
b

[X(3)]
T

Λ̃
(1)
1 − Λ

(1)
b [X(3)]

T
Λ̃

(2)
1 − Λ

(2)
b [X(3)]

T
Λ̃

(3)
1 − Λ̃

(3)
2 − Λ̃

(3)
3


=

 [X(1)]
T

Λ̃
(1)
1 − Λ̃

(1)
2 − Λ̃

(1)
3 0 0

0 [X(2)]
T

Λ̃
(2)
1 − Λ̃

(2)
2 − Λ̃

(2)
3 0

0 0 [X(3)]
T

Λ̃
(3)
1 − Λ̃

(3)
2 − Λ̃

(3)
3

 .
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Furthermore, by the block-diagonal SVD of C, projection PT can be evaluated for each diagonal
block, where optimality condition of the second layer fictitious problem guarantees that for each i

PT̃i([X
(i)]

T
Λ̃

(i)
1 − Λ̃

(i)
2 − Λ̃

(i)
3 ) = ŨiṼ

T
i .

It therefore holds that

1© PT (XTΛ1 − Λ2 − Λ3) =

 Ũ1Ṽ
T
1 0 0

0 Ũ2Ṽ
T
2 0

0 0 Ũ3Ṽ
T
3

 = UV T ,

2© ‖PT⊥(XTΛ1 − Λ2)‖

=

∥∥∥∥∥∥∥∥
PT̃⊥i ([X(1)]

T
Λ̃

(1)
1 − Λ̃

(1)
2 ) 0 0

0 PT̃⊥i ([X(2)]
T

Λ̃
(2)
1 − Λ̃

(2)
2 ) 0

0 0 PT̃⊥i ([X(3)]
T

Λ̃
(3)
1 − Λ̃

(3)
2 )

∥∥∥∥∥∥∥∥
= max
i=1,2,3

‖PT̃⊥i ([X(1)]
T

Λ̃
(i)
1 − Λ̃

(i)
2 )‖ ≤ 1.

A.4 Dual Separation Condition

Definition A.4.1 (Dual Separation Condition). For X(i), if the corresponding dual optimal solution
Λ̃

(i)
1 of (A.9) obeys ‖[X(j)]T Λ̃

(i)
1 ‖∞ < λ for all j 6= i, then we say that dual separation condition

holds.
Remark A.4.1. Definition A.4.1 directly implies the existence of Λa, Λb obeying (A.10).

Bounding ‖[X(j)]T Λ̃
(i)
1 ‖∞ is equivalent to bound the maximal inner product of arbitrary column

pair of X(j) and Λ̃
(i)
1 . Let x be a column of X(j) and ν be a column of Λ̃

(i)
1 ,

〈x, ν〉 = ‖ν∗‖〈x, ν

‖ν∗‖〉 ≤ ‖ν
∗‖‖[V (i)]Tx‖∞ ≤ max

k
‖ProjSi(Λ̃

(i)
1 )ek‖ max

x∈X\Xi
‖[V (i)]Tx‖∞.

where V (i) = [ ν1
‖ν∗1 ‖

, ...,
νNi
‖ν∗Ni‖

] is a normalized dual matrix as defined in Definition 2 and ek denotes

standard basis. Recall that in Definition 2, ν∗ is the component of ν inside Si and ν is normalized
such that ‖ν∗‖ = 1. It is easy to verify that [Λ̃

(i)
1 ]∗ = ProjSi(Λ̃

(i)
1 ) is minimum-Frobenious-norm

optimal solution. Note that we can choose Λ̃
(i)
1 to be any optimal solution of (A.9), so we take Λ̃

(i)
1

such that the associated V (i) is the one that minimizes maxx∈X\Xi ‖[V (i)]Tx‖∞.

Now we may write a sufficient dual separation condition in terms of the incoherence µ in Defini-
tion 3,

〈x, ν〉 ≤ max
k
‖[Λ̃(i)

1 ]∗ek‖µ(Xi) ≤ λ. (A.11)

Now it is left to bound maxk ‖[Λ̃(i)
1 ]∗ek‖ with meaningful properties of X(i).

A.4.1 Separation condition via singular value

By the second constraint of (A.9), we have

1 ≥ ‖[X(i)]T Λ̃
(i)
1 − Λ̃

(i)
2 − Λ̃

(i)
3 ‖ ≥ max

k
‖([X(i)]T Λ̃

(i)
1 − Λ̃

(i)
2 − Λ̃

(i)
3 )ek‖ := ‖v‖ (A.12)

Note that maxk ‖([X(i)]
T

Λ̃
(i)
1 − Λ̃

(i)
2 − Λ̃

(i)
3 )ek‖ is the 2-norm of a vector and we conveniently

denote this vector by v. It follows that

‖v‖ =

√
|vk|2 +

∑
i 6=k
|vi|2 ≥

√∑
i 6=k
|vi|2 = ‖v−k‖, (A.13)

where vk denotes the kth element and v−k stands for v with the kth element removed. For conve-
nience, we also define X−k to be X with the kth column removed and Xk to be the kth column
vector of X .
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By condition 6© in Lemma A.1.2, Λ̃
(i)
3 is diagonal, hence Λ̃

(i)
3 ek =

[
0, ..., [Λ̃

(i)
3 ek]k, ..., 0

]T
and

[Λ̃
(i)
3 ek]−k = 0. To be precise, we may get rid of Λ̃

(i)
3 all together

‖v−k‖ = max
k

∥∥∥([X
(i)
−k]T Λ̃

(i)
1 − [[Λ̃

(i)
2 ]T ]−k

)
ek

∥∥∥.
Note that maxk ‖Xek‖ is a norm, as is easily shown in the following lemma.

Lemma A.4.1. Function f(X) := maxk ‖Xek‖ is a norm.

Proof. We prove by definition of a norm.
(1) f(aX) = maxk ‖[aX]k‖ = maxk(|a|‖Xk‖) = ‖a‖f(X).
(2) Assume X 6= 0 and f(X) = 0. Then for some (i, j), Xij = c 6= 0, so f(X) ≥ |c| which
contradicts f(X) = 0.
(3) Triangular inequality:

f(X1 +X2) = max
k

(‖[X1 +X2]k‖) ≤ max
k

(‖[X1]k‖+ ‖[X2]k‖)
≤ max

k1
(‖[X1]k1‖) + max

k2
(‖[X2]k2‖) = f(X1) + f(X2).

Thus by triangular inequality,

‖v−k‖ ≥max
k

∥∥∥[X
(i)
−k]T [Λ̃

(i)
1 ek]

∥∥∥−max
k

∥∥∥[[Λ̃
(i)
2 ]T ]−kek

∥∥∥
≥σdi(X(i)

−k) max
k
‖[Λ̃(i)

1 ]∗ek‖ − λ
√
Ni − 1 (A.14)

where σdi(X
(i)
−k) is the rth (smallest non-zero) singular value of X(i)

−k. The last inequality is true

because X(i)
−k and [Λ̃

(i)
1 ]∗ belong to the same di-dimensional subspace and the condition ‖Λ̃(i)

2 ‖∞ ≤
λ. Combining (A.12)(A.13) and (A.14), we find the desired bound

max
k
‖[Λ̃(i)

1 ]∗ek‖ ≤
1 + λ

√
Ni − 1

σdi(X
(i)
−k)

<
1 + λ

√
Ni

σdi(X
(i)
−k)

.

The condition (A.11) now becomes

〈x, ν〉 ≤ µ(1 + λ
√
Ni)

σdi(X
(i)
−k)

< λ ⇔ µ(1 + λ
√
Ni) < λσdi(X

(i)
−k). (A.15)

Note that when X(i) is well conditioned with condition number κ,

σdi(X
(i)
−k) =

1

κ
√
di
‖X(i)
−k‖F = (1/κ)

√
Ni/di.

To interpret the inequality, we remark that when µκ
√
di < 1 there always exists a λ such that SEP

holds.

A.4.2 Separation condition via inradius

This time we relax the inequality in (A.14) towards the max/infinity norm.

‖v−k‖ = max
k

∥∥∥([X
(i)
−k]T Λ̃

(i)
1 − [[Λ̃

(i)
2 ]T ]−k

)
ek

∥∥∥
≥max

k

∥∥∥([X
(i)
−k]T Λ̃

(i)
1 − [[Λ̃

(i)
2 ]T ]−k

)
ek

∥∥∥
∞

≥max
k

∥∥∥[X
(i)
−k]T [Λ̃

(i)
1 ]∗

∥∥∥
∞
− λ (A.16)
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This is equivalent to for all k = 1, .., Ni
‖[X(i)

−k]
T
ν∗1‖∞ ≤ 1 + λ,

‖[X(i)
−k]

T
ν∗2‖∞ ≤ 1 + λ,

...

‖[X(i)
−k]

T
ν∗Ni‖∞ ≤ 1 + λ,

⇔


ν∗1 ∈ (1 + λ)[conv(±X(i)

−k)]o,

ν∗2 ∈ (1 + λ)[conv(±X(i)
−k)]o,

...

ν∗Ni ∈ (1 + λ)[conv(±X(i)
−k)]o,

wherePo represents the polar set of a convex setP , namely, every column of Λ̃
(i)
1 in (A.11) is within

this convex polytope [conv(±X(i)
−k)]o scaled by (1 +λ). A upper bound follows from the geometric

properties of the symmetric convex polytope.
Definition A.4.2 (circumradius). The circumradius of a convex body P , denoted byR(P), is defined
as the radius of the smallest Euclidean ball containing P .

The magnitude ‖ν∗‖ is bounded by R([conv(±X(i)
−k)]o). Moreover, by the the following lemma we

may find the circumradius by analyzing the polar set of [conv(±X(i)
−k)]o instead. By the property of

polar operator, polar of a polar set gives the tightest convex envelope of original set, i.e., (Ko)o =

conv(K). Since conv(±X(i)
−k) is convex in the first place, the polar set is essentially conv(±X(i)

−k).
Lemma A.4.2. For a symmetric convex body P , i.e. P = −P , inradius of P and circumradius of
polar set of P satisfy:

r(P)R(Po) = 1.

By this observation, we have for all j = 1, ..., Ni

‖ν∗j ‖ ≤ (1 + λ)R(conv(±X(i)
−k)) =

1 + λ

r(conv(±X(i)
−k))

.

Then the condition becomes
µ(1 + λ)

r(conv(±X(i)
−k))

< λ ⇔ µ(1 + λ) < λr(conv(±X(i)
−k)), (A.17)

which reduces to the condition of SSC when λ is large (if we take the µ definition in [14]).

With (A.15) and (A.17), the proof for Theorem 1 is complete.

B Proof of Theorem 2 (the randomized result)

Theorem 2 is essentially a corollary of the deterministic results. The proof of it is no more than
providing probabilistic lower bounds of smallest singular value σ (Lemma 1), inradius (Lemma 2)
and upper bounds for minimax subspace incoherence µ (Lemma 3), then use union bound to make
sure all random events happen together with high probability.

B.1 Smallest singular value of unit column random low-rank matrices

We prove Lemma 1 in this section. Assume the following mechanism of random matrix generation.

1. Generate n× r Gaussian random matrix A.
2. Generate r ×N Gaussian random matrix B.
3. Generate rank-r matrix AB then normalize each column to unit vector to get X .

The proof contains three steps. First is to bound the magnitude. When n is large, each column’s
magnitude is bounded from below with large probability. Second we show that if we reduce the
largest magnitude column to smallest column vector, the singular values are only scaled by the same
factor. Thirdly use singular value bound of A and B to show that singular value of X .

2σr(X) > σr(AB) > σr(A)σr(B)
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Lemma B.1.1 (Magnitude of Gaussian vector). For Gaussian random vector z ∈ Rn, if each entry
zi ∼ N(0, σ√

n
), then each column zi satisfies:

Pr((1− t)σ2 ≤ ‖z‖2 ≤ (1 + t)σ2) > 1− en2 (log(t+1)−t) − en2 (log(1−t)+t)

Proof. To show the property, we observe that the sum of n independent square Gaussian random
variables follows χ2 distribution with d.o.f n, in other word, we have

‖z‖2 = |z1|2 + ...+ |zn|2 ∼
σ2

n
χ2(n).

By Hoeffding’s inequality, we have a close upper bound of its CDF [7], which gives us

Pr(‖z‖2 > ασ2) = 1− CDFχ2
n
(α) ≤ (αe1−α)

n
2 for α > 1,

P r(‖z‖2 < βσ2) = CDFχ2
n
(β) ≤ (βe1−β)

n
2 for β < 1.

Substitute α = 1 + t and β = 1 − t, and apply union bound we get exactly the concentration
statement.

To get an idea of the scale, when t = 1/3, the ratio of maximum and minimum ‖z‖ is smaller than
2 with probability larger than 1− 2 exp(−n/20). This proves the first step.

By random matrix theory [e.g., 12, 13, 8] asserts that G is close to an orthonormal matrix, as the
following lemma, adapted from Theorem II.13 of [8], shows:

Lemma B.1.2 (Smallest singular value of random rectangular matrix). Let G ∈ Rn×r has i.i.d.
entries ∼ N(0, 1/

√
n). With probability of at least 1− 2γ,

1−
√
r

n
−
√

2 log(1/γ)

n
≤ σmin(G) ≤ σmax(G) ≤ 1 +

√
r

n
+

√
2 log(1/γ)

n
.

Lemma B.1.3 (Smallest singular value of random low-rank matrix). Let A ∈ Rn×r, B ∈ Rr×N ,
r < N < n, furthermore, Aij ∼ N(0, 1/

√
n) and Bij ∼ N(0, 1/

√
N). Then there exists an

absolute constant C such that with probability of at least 1− n−10,

σr(AB) ≥ 1− 3

√
r

N
− C

√
logN`
N

.

The proof is by simply by σr(AB) ≥ σr(A)σr(B), apply Lemma B.1.1 to both terms and then take
γ = 1

2N10
`

.

Now we may rescale each column of AB to the maximum magnitude and get AB. Naturally,

σr(AB) ≥ σr(AB).

On the other hand, by the results of Step 1,

σr(X) ≥ σr(AB) ≥ 1

2
σr(AB) ≥ 1

2
σr(AB).

Normalizing the scale of the random matrix and plug in the above arguments, we get Lemma 1 in
the main paper.

B.2 Smallest inradius of random polytopes

This bound in Lemma 2 is due to Alonso-Gutiérrez in his proof of lower bound of the volume of a
random polytope[1, Lemma 3.1]. The results was made clear in the subspace clustering context by
Soltanokotabi and Candes[14, Lemma 7.4]. We refer the readers to the references for the proof.
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B.3 Upper bound of Minimax Subspace Incoherence

The upper bound of the minimax subspace incoherence (Lemma 3) we used in this paper is the same
as the upper bound of the subspace incoherence in [14]. This is because for by taking V = V ∗,
the value will be larger by the minimax definition2. For completeness, we include the steps of proof
here.

The argument critically relies on the following lemma on the area of spherical cap in [2].

Lemma B.3.1 (Upper bound on the area of spherical cap). Let a ∈ Rn be a random vector sampled
from a unit sphere and z is a fixed vector. Then we have:

Pr
(
|aT z| > ε‖z‖

)
≤ 2e

−nε2
2

With this result, Lemma 3 is proven in two steps. The first step is to apply Lemma B.3.1 to bound
〈ν∗i , x〉 and every data point x /∈ X(`), where ν∗i (a fixed vector) is the central dual vector cor-

responding to the data point xi ∈ X(`) (see the Definition 3). When ε =
√

6 log(N)
n , the failure

probability for one even is 2
N3 . Recall that ν∗i . The second step is to use union bound across all x

and then all ν∗i . The total number of events is less than N2 so we get

µ <

√
6 logN

n
with probability larger than 1− 2

N
.

B.4 Bound of minimax subspace incoherence for semi-random model

Another bound of the subspace incoherence can be stated under the semi-random model in [14],
where subspaces are deterministic and data in each subspaces are randomly sampled. The upper
bound is given as a log term times the average cosine of the canonical angles between a pair of
subspaces. This is not used in this paper, but the case of overlapping subspaces can be intuitively
seen from the bound. The full statement is rather complex and is the same form as equation (7.6)
of [14], so we refer the readers there for the full proof there and only include what is different from
there: the proof that central dual vector ν∗i distributes uniformly on the unit sphere of S`.
Let U be a set of orthonormal basis of S`. Define rotation RS` := URUT with arbitrary d × d
rotation matrix R. If Λ∗ be the central optimal solution of (A.9), denoted by OptVal(X(`)), it is
easy to see that

RS`Λ
∗ = OptVal(RS`X

(`)).

Since X(`) distribute uniformly, the probability density of getting any X(`) is identical. For each
fixed instance of X(`), consider R a random variable, then the probability density of each column
of Λ∗ be transformed to any direction is the same. Integrating the density over all different X(`),
we completed the proof for the claim that the overall probability density of ν∗i (each column of Λ∗)
pointing towards any directions in S` is the same.

Referring to [14], the upper bound is just a concentration bound saying that the smallest inner prod-
uct is close to the average cosines of the canonical angles between two subspaces, which follows
from the uniform distribution of ν∗i and uniform distribution of x in other subspaces. Therefore,
when the dimension of each subspace is large, the average can still be small even though a small
portion of the two subspaces are overlapping (a few canonical angles being equal to 1).

C Numerical algorithm

Like described in the main text, we will derive Alternating Direction Method of Multipliers
(ADMM)[3] algorithm to solve LRSSC and NoisyLRSSC. We start from noiseless version then
look at the noisy version.

2We did provide proof for some cases where incoherence following our new definition is significantly s-
maller.
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Algorithm 1 ADMM-LRSSC (with optional Adaptive Penalty)
Input: Data points as columns in X ∈ Rn×N , tradeoff parameter λ, numerical parameters
µ

(0)
1 , µ

(0)
2 , µ

(0)
3 and (optional ρ0, µmax, η,ε).

Initialize C1 = 0, C2 = 0, J = 0, Λ1 = 0, Λ2 = 0 and Λ3 = 0.
Pre-compute XTX and H =

[
µ1X

TX + (µ2 + µ3)I
]−1

for later use.
while not converged do

1. Update J by (C.2).
2. Update C1, C2 by (C.3).
3. Update Λ1,Λ2,Λ3 by (C.4).
4. (Optional) Update parameter (µ1, µ2, µ3) = ρ(µ1, µ2, µ3) and the pre-computedH = H/ρ
where

ρ =

{
min (µmax/µ1, ρ0), if µprev

1 max(
√
η‖C1 − Cprev

1 ‖F )/‖X‖F ≤ ε;
1, otherwise.

end while
Output: Affinity matrix W = |C1|+ |C1|T

C.1 ADMM for LRSSC

First we need to reformulate the optimization with two auxiliary terms, C = C1 = C2 as in the
proof to separate the two norms, and J to ensure each step has closed-form solution.

min
C1,C2,J

‖C1‖∗ + λ‖C2‖1
s.t. X = XJ, J = C2 − diag(C2), J = C1

(C.1)

The Augmented Lagrangian is:

L =‖C1‖∗ + λ‖C2‖1 +
µ1

2
‖X −XJ‖2F +

µ2

2
‖J − C2 + diag(C2)‖2F +

µ3

2
‖J − C1‖2F

+ tr(ΛT1 (X −XJ)) + tr(ΛT2 (J − C2 + diag(C2))) + tr(ΛT3 (J − C1)),

where µ1, µ2 and µ3 are numerical parameters to be tuned. By assigning the partial gradien-
t/subgradient of J , C2 and C1 iteratively and update dual variables Λ1,Λ2,Λ3 in every iterations,
we obtain the update steps of ADMM.

J =
[
µ1X

TX + (µ2 + µ3)I
]−1 [

µ1X
TX + µ2C2 + µ3C1 +XTΛ1 − Λ2 − Λ3

]
(C.2)

Define soft-thresholding operator πβ(X) = (|X|−β)+sgn(X) and singular value soft-thresholding
operator Πβ(X) = Uπβ(Σ)V T , where UΣV T is the skinny SVD of X . The update steps for C1

and C2 followed:

C2 = π λ
µ2

(
J +

Λ2

µ2

)
, C2 = C2 − diag(C2), C1 = Π 1

µ3

(
J +

Λ3

µ3

)
. (C.3)

Lastly, the dual variables are updated using gradient ascend:

Λ1 = Λ1 + µ1(X −XJ), Λ2 = Λ2 + µ2(J − C2), Λ3 = Λ3 + µ3(J − C1). (C.4)

The full steps are summarized in Algorithm 1, with an optional adaptive penalty step proposed by
Lin et. al[11]. Note that we deliberately constrain the proportion of µ1, µ2 and µ3 such that the[
µ1X

TX + (µ2 + µ3)I
]−1

need to be computed only once at the beginning.

C.2 ADMM for NoisyLRSSC

The ADMM version of NoisyLRSSC is very similar to Algorithm 1 in terms of its Lagrangian and
update rule. Again, we introduce dummy variable C1, C2 and J to form

min
C1,C2,J

1

2
‖X −XJ‖2F + β1‖C1‖∗ + β2‖C2‖1

s.t. J = C2 − diag(C2), J = C1.

(C.5)
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Its Augmented Lagrangian is

L =‖C1‖∗ + λ‖C2‖1 +
1

2
‖X −XJ‖2F +

µ2

2
‖J − C2 + diag(C2)‖2F

+
µ3

2
‖J − C1‖2F + tr(ΛT2 (J − C2 + diag(C2))) + tr(ΛT3 (J − C1)),

and update rules are:

J =
[
XTX + (µ2 + µ3)I

]−1 [
XTX + µ2C2 + µ3C1 − Λ2 − Λ3

]
(C.6)

C2 = π β2
µ2

(
J +

Λ2

µ2

)
, C2 = C2 − diag(C2), C1 = Π β1

µ3

(
J +

Λ3

µ3

)
. (C.7)

Update rules for Λ2 and Λ3 are the same as in (C.4). Note that the adaptive penalty scheme also
works for NoisyLRSSC but as there is a fixed parameter in front ofXTX in (C.6) now, we will need
to recompute the matrix inversion every time µ2, µ3 get updated.

C.3 Convergence guarantee

Note that the general ADMM form is

min
x,z

f(x) + g(z)

s.t. Ax+Bz = c.
(C.8)

In our case, x = J , z = [C1, C2], f(x) = 1
2‖X − XJ‖2F , g(z) = β1‖C1‖∗ + β2‖C2‖1 and

constraints can be combined into a single linear equation after vectorizing J and [C1, C2]. Verify
that f(x) and g(z) are both closed, proper and convex and the unaugmented Lagrangian has a saddle
point, then the convergence guarantee follows directly from Section 3.2 in [3].

Note that the reason we can groupC1 andC2 is because the update steps ofC1 andC2 are concurrent
and do not depends on each other (see (C.3) and (C.7) and verify). This trick is important as the
convergence guarantee of the three-variable alternating direction method is still an open question.

D Additional experimental results

D.1 Numerical Simulation

Exp1: Disjoint 11 Subspaces Experiment

Randomly generate 11 subspaces of dimension 10 from R50. 50 unit length random samples are
drawn from each subspace and we concatenate into a 50× 550 data matrix. Besides what is shown
in the main text, we provide a qualitative illustration of the separation-sparsity trade-off in Figure 1.

Exp2: when exact SEP is not possible

In this experiment, we randomly generate 10 subspaces of rank 3 from a 10 dimensional subspace,
each sampled 15 data points. All data points are embedded to the ambient space of dimension 50.

This is to illustrate the case when perfect SEP is not possible for any λ. In other word, the smallest
few singular values of the normalized Laplacian matrix is not exactly 0. Hence we will rely on
heuristics such as Spectral Gap and Spectral Gap Ratio to tell how many subspaces there are and
hopefully spectral clustering will return a good clustering. Figure 2 gives an qualitative illustration
how the spectral gap emerges as λ increases. Figure 3 shows quantitatively the same thing with the
actual values of the two heuristics changes. Clearly, model selection is much easier in the SSC-side
comparing to the LRR side, when SEP is the main issue (see the comparison in Figure 4).
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Figure 1: Qualitative illustration of the 11 Subspace Experiment. From left to right, top to bottom:
λ = [0, 0.05, 1, 1e4], corresponding RelViolation is [3.4, 1.25, 0.06, 0.03] and Gini Index is [0.41,
0.56, 0.74, 0.79]

Figure 2: Last 50 Singular values of the normalized Laplacian in Exp2. See how the spectral gap
emerges and become larger as λ increases.
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Figure 3: Spectral Gap and Spectral Gap Ratio for Exp2. When perfect SEP is not possible, model
selection is easier on the SSC side, but the optimal spot is still somewhere between LRR and SSC.

Figure 4: Illustration of representation matrices. Left: λ = 0, Right: λ = 1e4. While it is still not
SEP, there is significant improvement in separation.

Exp3: Independent-Skewed data distribution

Assume ambient dimension n = 50, 3 subspaces. The second and the third 3-d subspaces are
generated randomly, each sampled 15 points. The first subspace is a 6-d subspace spanned by two
random 3-d subspaces. 15 data points are randomly generated from each of the two spanning 3-d
subspaces and only 3 data points are randomly taken from the spanned 6-D subspace two glue them
together.

As a indication of model selection, the spectral gap and spectral ratio for all λ is shown in Figure 5.
While all experiments return clearly defined three disjoint components (smallest three singular val-
ues equal to 0 for all λ), the LRR side gives the largest margin of three subspaces (when λ = 0,
the result gives the largest 4th smallest singular value). This illustrates that when Skewed-Data-
Distribution is the main issue, LRR side is better than SSC side. This can be qualitatively seen in
Figure 6

Exp4: Disjoint-Skewed data distribution

In this experiment, we illustrate the situation when subspaces are not independent and one of them
has skewed distribution, hence both LRR and SSC are likely to to encounter problems. The setup
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Figure 5: Spectral Gap and Spectral Gap Ratio for Exp3. The independent subspaces have no
separation problem, SEP holds for all λ. Note that due to the skewed data distribution, the spectral
gap gets quite really small at the SSC side.

Figure 6: Illustration of representation matrices. Left: λ = 0, Right: λ = 1e4. The 3 diagonal block
is clear on the LRR side, while on the SSC side, it appear to be more like 4 blocks plus some noise.

is the same as the 6 Subspace experiment except the first two subspaces are combined into a 20-
dimensional subspace moreover 10 more random points are sampled from the spanned subspace.
Indeed, as Figure 2 and 3 in the main paper suggest, taking λ somewhere in the middle gives the
largest spectral gap and spectral gap ratio, which indicates with large margin that the correct model
is a 5 Subspace Model.

In addition to that, we add Figure 7 here to illustrate the ranges of λwhere two heuristics give correct
model selection. It appears that “spectral gap” suggests a wrong model for all λ despite the fact that
the 5th “spectral gap” enlarges as λ increase. On the other hand, the “spectral gap ratio” reverted its
wrong model selection at the LRR side quickly as λ increases and reaches maximum margin in the
blue region (around λ = 0.5). This seems to imply that “spectral gap ratio” is a better heuristic in
the case when one or more subspaces are not well-represented.

D.2 Real Experiments on Hopkins155

To complement the numerical experiments, we also run our NoisyLRSSC on the Hopkins155 motion
segmentation dataset[16]. The dataset contains 155 short video sequence with temporal trajectories
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Figure 7: Illustration of model selection with spectral gap (left) and spectral gap ratio (right) heuris-
tic. The highest point of each curve corresponds to the inferred number of subspaces in the data. We
know the true number of subspace is 5.

Figure 8: Snapshots of Hopkins155 motion segmentation data set.

of the 2D coordinates of the feature points summarizing in a data matrix. The task is to unsupervis-
edly cluster the given trajectories into blocks such that each block corresponds to one rigid moving
objects. The motion can be 3D translation, rotation or combination of translation and rotation.
Ground truth is given together with the data so evaluation is simply by the misclassification rate. A
few snapshots of the dataset is given in Figure 8.

D.2.1 Why subspace clustering?

Subspace clustering is applicable here because collections of feature trajectories on a rigid body
captured by a moving affine camera can be factorized into camera motion matrix and a structure
matrix as follows

X =

(
x11 ... x1n

... ... ...
xm1 ... xmn

)
=

(
M1

...
Mm

)
( S1 ... Sn ) ,

where Mi ∈ R2×4 is a the camera projection matrix from 3D homogeneous coordinates to 2D
image coordinates and Sj ∈ R4 is one feature points in 3D with 1 added at the back to form the
homogeneous coordinates. Therefore, the inner dimension of the matrix multiplication ensures that
all column vectors of X lies in a 4 dimensional subspace (see [10, Chapter 18] for details).

Depending on the types of motion, and potential projective distortion of the image (real camera is
never perfectly affine) the subspace may be less than rank 4 (degenerate motion) or only approxi-
mately rank 4.
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Figure 9: Average misclassification rates vs. λ.

D.2.2 Methods

We run the ADMM version of the NoisyLRSSC (C.5) using the same parameter scheme (but with
different values) proposed in [9] for running Hopkins155. Specifically, we rescaled the original
problem into:

min
C1,C2,J

α

2
‖X −XJ‖2F + αβ1‖C1‖∗ + αβ2‖C2‖1

s.t. J = C2 − diag(C2), J = C1,

and set

α =
αz
µz
, β1 =

1

1 + λ
, β2 =

λ

1 + λ
.

with αz = 150003, and
µz = min

i
max
i 6=j
〈xi, xj〉.

Numerical parameters in the Lagrangian are set to µ2 = µ3 = 0.1α. Note that we have a simple
adaptive parameter that remains constant for each data sequence.

Also note that we do not intend to tune the parameters to its optimal and outperform the state-of-
the-art. This is just a minimal set of experiments on the real data to justify how the combinations of
the two objectives may be useful when all other factors are equal.

D.2.3 Results

Figure 9 plots how average misclassification rate changes with λ. While it is not clear on the two-
motion sequences, the advantage of LRSSC is drastic on three motions.

To see it more clearly, we plot the RelViolation, Gini index and misclassification of all sequence
for all λ in Figure 11, Figure 12 and Figure 10 respectively. From Figure 11 and 12, we can tell
that the shape is well predicted by our theorem and simulation. Since a correct clustering depends
on both inter-class separation and intra-class connections, it is understandable that we observe the
phenomena in Figure 10 that some sequences attain zero misclassification on the LRR side, some
on the SSC side, and to our delight, some reaches the minimum misclassification rate somewhere in
between.

3In [9], they use αz = 800, but we find it doesn’t work out in our case. We will describe the difference to
their experiments on Hopkins155 separately later.
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Figure 10: Misclassification rate of the 155 data sequence against λ. Black regions refer to perfect
clustering, and white regions stand for errors.

Figure 11: RelViolation of representation matrix C the 155 data sequence against λ. Black regions
refer to zero RelViolation (namely, SEP), and white regions stand for large violation of SEP.

Figure 12: GiniIndex of representation matrix C the 155 data sequence againt λ. Darker regions
represents denser intra-class connections, lighter region means that the connections are sparser.
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Figure 13: The illustration of dual direction and its geometric meaning (figure extracted from [14]).

D.2.4 Comparison to SSC results in [9]

After carefully studying the released SSC code that generates Table 5 in [9], we realized that they
use two post processing steps on the representation matrix C before constructing affinity matrix
|C| + |CT | for spectral clustering. First, they use a thresholding step to keep only the largest non-
zero entries that sum to 70% of the `1 norm of each column. Secondly, there is a normalization step
that scales the largest entry in each column to one (and the rest accordingly). The results with 4.4%
and 1.95% misclassification rates for respectively 3-motion and 2-motion sequences essentially refer
to the results with postprocessing.

Without postprocessing, the results we get are 5.67% for 3-motions and 1.91% for 2-motions. Due
to the different implementation of the numerical algorithms (in stopping conditions and etc), we are
unable to reproduce the same results on the SSC end (when λ is large) with the same set of weight-
ing factor, but we managed to make the results comparable (slightly better) with a different set of
weighting even without any post-processing steps. Moreover, when we choose λ such that we have a
meaningful combination of `1 norm and nuclear norm regularization, the 3-motion misclassification
rate goes down to 3%.

Since the Hopkins155 dataset is approaching saturation, it is not our point to conclude that a few
percentage of improvement is statistically meaningful, since one single failure case that has 40% of
misclassification will already raise the overall misclassification rate by 1.5%. Nevertheless, we are
delighted to see LRSSC in its generic form performs in a comparable level as other state-of-the-art
algorithms.

E Discussions and bounds of minimax subspace incoherence property

In this section, we will explain the notion of minimax subspace incoherence property here (Def-
inition 3) and highlight the difference between the new definition and the subspace incoherence
property in [14].

E.1 Non-uniqueness of the dual directions

Since the concept critically depends on the normalized dual direction matrix (Definition 2). That
is what we we start with. V (X) is essentially an optimal solution to the dual problem of LRSSC
with data X . When λ = ∞, namely, in SSC’s case, the dual problem is an LP, hence its solution
may be obtained geometrically on the vertices of the dual polytope in a column-by-column fashion.
This is illustrated in Figure 13, where the dual direction of data point x(`)

i is obtained from its low-
dimensional representation y. Note that x(`)

i = Uy for some orthonormal basis U of S`. Other data
points in S` can be similarly represented as X(`)

−i = UA. Note that the reduced dimensional primal

constraint y = Ac is equivalent to the original x(`)
i = X

(`)
−i c. Dual point of the reduced dimensional

dual problem is obtained and denoted as λ(A, y) and the dual direction v(`)
i corresponding to x(`)

i is
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hence defined as the embedding of the low-dimensional dual point λ(y,A) to the ambient space via

v
(`)
i = Uλ(y,A)/‖λ(y,A)‖.

In the general LRSSC case it is an SDP, hence there is no simple geometric illustration of where the
optimal dual variable will be. In addition, since nuclear norm cannot be separated into column by
column optimization, the dual variable is defined as a matrix. Nevertheless, the key idea is the same.
We may still represent the data in the low-dimensional space and obtain a dual matrix V ∗(X(`))
where all columns of which are within the subspace of X(`).

The key observation here in this paper is that the dual matrix constructed in this way is NOT the only
optimal dual matrix. Essentially, in the ambient space, we may add any arbitrary matrix V ⊥(X(`))
to V ∗(X(`)) as long as each column of V ⊥(X(`)) belongs to the orthogonal complement of S`. The
so-called normalized dual matrix set is just the collection of all possible dual matrices with each
column’s central component in S` normalized to 1.

E.2 The advantages of the minimax subspace incoherence property

The minimax subspace incoherence (Definition 3) is simply defined as the minimum subspace inco-
herence over all possible dual matrix

V ⊥(X(`)) = V ∗(X(`)) + V ⊥(X(`)).

It differs from the original definition in [14] in that [14] takes V ⊥(X(`)) = 0. There is two effects of
using a non-zero V ⊥(X(`)). First, the magnitude of each column will be larger. This is undesirable
since we would like ‖[V (X(`)]Tx‖∞ to be as small as possible. Another effect is on the angles
between each column of V (X(`) and x. This is something desirable since we may choose a direction
such that the angles approach π/2 for all x. This is the property we will leverage upon in the proof
of Example 1 and 2, which demonstrate that in many cases, using a non-zero V ⊥(X(`)) leads to
substantially smaller incoherence µ.

E.2.1 Proof of Example 1(Independent subspace)

We claim in Example 1 that µ = 0 when subspaces are independent without detailed justification.
Here we provide the proof and an illustration. By definition of independent subspaces, dim(S1 ⊕
...⊕SL) =

∑
`=1,...,L dim(S`) ≤ n where n is the ambient dimension. Then for data point x in Si,

we may choose a corresponding dual vector ν = ν∗ + ν⊥ such that

ν ∈ Null(S1 ⊕ ...⊕ Si−1 ⊕ Si+1 ⊕ ...⊕ SL)).

The nullspace is of dimension larger than 1 if we remove any Si, so we can always construct such ν
(with potentially very large ν⊥). Then by definition of subspace incoherence ν = 0 is proven. The
construction is illustrated in Figure 14.

E.2.2 Proof of Example 2 (Random except 1)

Recall that the setup is L disjoint 1-dimensional subspaces in Rn (L > n). S1, ...,SL−1 subspaces
are randomly drawn. SL is chosen such that its angle to one of the L − 1 subspace, say S1, is π/6.
There is at least one samples in each subspace, so N ≥ L. Our claim is that
Proposition E.2.1. Assume the above problem setup and Definition 3, then with probability at least
1− 2L/N3

µ ≤ 2

√
6 log(L)

n
.

Proof. The proof is simple. For xi ∈ S` with ` = 2, ..., L− 1, we simply choose νi = ν∗i . Note that
ν∗i is uniformly distributed, so by Lemma B.3.1 and union bound, the maximum of |〈x, νi〉| is upper

bounded by 2
√

6 log(N)
n with probability at least 1− 2(L−2)2

N12 . Then we only need to consider νi in
S1 and SL, denoted by ν1 and νL. We may randomly choose any ν1 = ν∗1 + ν⊥1 obeying ν1 ⊥ SL
and similarly νL ⊥ S1.
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S1

S1

ν∗ ∈ S3

ν⊥ ⊥ S3

ν ⊥ span(S1,S2)

S1,S2 ∈xy-plane

Figure 14: Illlustration of how dual vector ν can be constructed to get minimax subspace incoherence
µ = 0 under independent subspace assumption. Note that we can always find a ν perpendicular to
the span to the remaining subspaces no matter how closely affiliated the subspaces are.

By the assumption that ∠(S1,SL) = π/6,

‖ν1‖ = ‖νL‖ =
1

sin(π/6)
= 2.

Also note that they are considered a fixed vector w.r.t. all random data samples in S2, ..,SL, so the

maximum inner product is 2
√

6 log(N)
n , summing up the failure probability for the remaining 2L−2

cases, we get

µ ≤ 2

√
6 log(N)

n
with probability 1− 2L− 2

N3
− 2(L− 2)2

N12
> 1− 2L

N3
.

E.3 “Sufficiently Independent”: Take-K-out-Independence

We mention in the Example 3 of the main paper that as long as the subspaces are “sufficiently
Independent”, subspace incoherence µ will be significantly smaller under our minimax definition
than the original subspace incoherence definition in [14]. In this section, we formalize our claim with
by introducing the novel Take-K-out-Independence condition and providing a bound of incoherence
µ under both deterministic and randomized model.
Definition E.3.1 (Take-K-out-Independence). Suppose there are L disjoint subspaces, if we take
out any K subspaces from it, then it becomes independent, then we say these L subspaces obey
“Take-K-Out-Independence”.
Definition E.3.2 (Take-K-out-Angle). Correspondingly, let the indices of K subspaces taken out
be K and the remaining subspaces indices be Kc := {1, ..., L}/K, furthermore, denote each

(
L
K

)
experiment with index i such that Ki and Kci represents the particular indices set for experiment i
and A−`(i) := span(Sk|k ∈ Kci/`). Then we may we define “Take-K-out-Angle” as

θ = arcsin

[
min
i

min
`∈Kci

min
{j|xj∈X(`)}

‖ProjNull(A−`
(i)

)

(
ν∗j
)
‖
]
,

where ν∗j ∈ S is the central dual vector corresponding to xj . ProjA is the Euclidean projection to
subspace A and Null(A) gives the null space of subspace A. Note that if S1, ...,SL obeys Take-K-
Out-Independence, then dim[Null(A−`(i))] ≥ 1.
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Proposition E.3.1 (µ bound for deterministic Take-K-Out-Independent subspaces). If L subspaces
obey Take-K-out-Independence with Take-K-out-Angle θ, then the minimax subspace incoherence
property in Definition 3 is upper bounded with

µ ≤ K

(L− 1) sin θ
. (E.1)

Example E.3.1 (Trivial cases). If subspaces are independent, K = 0, then µ = 0. If subspaces are
“near independent” by K the smaller K is, the better the bound. There might be a range of K under
which this bound of µ is meaningful.

Proof of Proposition E.3.1. We prove the inequality by constructing a normalized dual matrix V (`)

for each subspace S`. For all
(
L−1
K

)
cases that include S`, the L − K remaining subspaces are

independent. So we may take V (`) = [V (`)]∗ + [V (`)]⊥ such that V (`) is orthogonal to all other
L−K − 1 subspaces. By the angle assumption, each column is bounded above by 1

sin θ .

It follows that, ‖[V (`)]TX(k)‖∞ is 0 if Sk is not taken out. Otherwise,

‖[V (`)]TX(k)‖∞ ≤ max
i
‖V (`)

i ‖ ≤
1

sin θ
.

Now if we take V (`) to be the average of all N =
(
L−1
K

)
cases, for each k,

[V (`)]TX(k) =
1

N

N∑
i=1

[V (`)]Ti X
(k),

Note that in only
(
L−2
K−1

)
cases out of all N , [V (`)]Ti X

(k) is non-zero (when k is chosen to be one of
the K taken out). With this observation,

‖[V (`)]TX(k)‖∞ ≤
(
L− 2

K − 1

)
/

(
L− 1

K

)
(

1

sin θ
) =

K

(L− 1) sin θ
.

Verify that V (`) constructed this way can still be decomposed into unit column [V (`)]∗ and [V (`)]⊥

orthogonal to S`, so it is a valid normalized dual matrix for X`.

By construct such V (`) for each subspace S`, we complete the proof.

By assuming the data are randomly generated, we are able to obtain a much better bound. It uses a
similar way of constructing dual variables as above, but is in a sense adaptive to the size of sin θ in
each trial. Moreover, to get rid of the sin θ all together, we derived a bound of the probability that
sin θ is greater than any positive value. The result is essentially a lower bound of the area of spherical
cap (the opposite of Lemma B.3.1) and is interesting in its own light. To not get distracted, we state
the results in Section F.3 focus here on results for random “Take-K-Out-Independent” subspaces.
Proposition E.3.2 (µ bound for random Take-K-Out-Independent subspaces). Suppose ambient
dimension is n, if L subspaces and a total of N data points are randomly generated, furthermore
they obeys “Take-K-Out-Independence” (e.g., sufficiently each subspace is rank-d and n < Ld <
n + Kd) and M :=

(
L−1
K

)
, then with probability larger than 1 − 3/N , the minimax subspace

incoherence

µ ≤ K
√

6 logN

α(L− 1)
+

√
6 logN

n

[
1− (1− δ(α, n))e−3α2/2

]
+

√
12 logN√
nM

, (E.2)

for any α > 0. Small residual

δ(α, n) <

 e
2(n+1)! + α2

n , when 0 < α <
√

2
3 ;

e
2(n+1)! + α4

n , otherwise.

Moreover, when α > Θ(
√

logN
n ) is sufficiently large or if α < o(e−n), then for the same probability,

µ satisfies respectively

µ ≤
√

6 logN

n
, µ <

K
√

6 logN

α(L− 1)
,

for probability larger then 1− 3/N .
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Example E.3.2 (n + 1 i.i.d 1D subspaces). In this case, K = 1,L = n + 1, M = n, suppose n is
large such that logN/n�

√
logN/n, we may take α = 0.1 and get

µ <
24.5 logN

n− 1
+ 0.015

√
6 logN

n
+

√
12 logN

n
< 0.03

6 logN√
n

.

This is more than 20 times smaller than the bound in Lemma 3.
Example E.3.3 (bn/d+Kc i.i.d. rank-d subspaces). This is a generalization of previous example.
L = bn/d+Kc = bn/dc+K, M =

(
L−1
K

)
. As K and d increases,

As Kd increases , the first term of (E.2) gets larger. Orderly speaking, whenever Kd = o(
√
n), the

bound here is better than Lemma 3.

We may verify that this indeed happens by checking M =
(bn/dc+K−1

K

)
increases monotonically

w.r.t. the increase ofK and the decrease of d in the range of Kd = o(
√
n). The smallest M occur at

K = 1 and d = b√nc, whereM = b√nc. This implies that the third term of (E.2) is small compare
to the first term in all interesting cases.
Example E.3.4 (Independent subspaces). Note that when subspaces are independent, K = 0, then
we may choose arbitrarily small α so that naturally the upper bound approaches 0.
Example E.3.5 (Large K). When K is large, meaning that it is by no means near independent, then
we may choose α =∞, then the bound is the same as that in Lemma 3.

Proof of Proposition E.3.2. We prove the inequality by constructing a normalized dual vector ν for
data x in subspace data X1 and then take the minimum over the normalized dual vector for all data
points. To find the inner product of ν against all other y ∈ X` 6=1, again we pick one such y and
consider 〈ν, y〉 only.

Now consider the procedure of “Take-K-Out” experiments, there are M =
(
L−1
K

)
experiments with

S1 not taken out. Among them, there are respectively M1 =
(
L−2
K−1

)
and M2 =

(
L−2
K

)
trials when

one particular y is inside the K and inside the L− 1−K remaining subspaces. Conveniently,

M1

M
=

K

L− 1
,

M2

M
=
L−K − 1

L− 1
, M1 +M2 = M.

Let the ν = ν∗ + ν⊥, where ν∗ ∈ S1 is the central dual vector with unit norm and ν⊥ ∈ S⊥1 . Here
we are going to construct ν1, ..., νM for each and every experiments then derive a bound for |〈ν, y〉|
with

ν =
1

M

M∑
i=1

νi = ν∗ +

M∑
i=1

ν⊥i .

For each experiment, the L − K subspaces are independent, so by taking out S1, the span of the
remaining L −K − 1 subspaces do not cover the full ambient space, in other word, there is a null
space Null(Ai) for the data matrixAi containing all samples in the L−K−1 subspaces. Project ν∗
to Null(Ai) and normalize it to unit vector ni. Note that ni is the normal vector of the hyperplane
span(Ai) that is closest to ν∗.

Then we can construct νi by considering only ν⊥i in the 2-D plane spanned by ν∗ and ni. Because it
is planar, we can use simple trigonometry to express 〈y, νi〉 analytically. The procedure is illustrated
in Figure 15. Note that θi is the angle between ν∗ and the intersecting line L =: span(ν∗, ni) ∩
span(Ai) and φi is the angle between ν∗ and νi. The angle φi characterizes how much we want to
push νi from ν∗ towards ni.

Note that if we project ν∗ and ν⊥i to the intersecting line, the inner product can be Now we consider
the inner product

〈y, νi〉 = 〈y, ν∗〉+ 〈y, ν⊥i 〉.
When y is inside the K subspaces taken out, there is nothing we can do to simplify the form.
Otherwise, we can express it by ν∗ alone. The mechanism ν⊥i reduces the inner product is essentially
reducing the magnitude of ν’s projection to the line L by a factor (see Figure 15). Algebraically, we
have

〈y, νi〉 = 〈y,ProjL(ν∗ + ν⊥i )〉 = 〈y,ProjL(ν∗)〉+ 〈y,ProjL(ν⊥i )〉.
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θi

θi

φi S2

S3

ν∗

S1

ν⊥iνi

ni

0

L

Figure 15: Illustration of how νi is constructed with ν∗i and φi in the plane spanned by ni and
ν∗i . Note that i is the index of this experiment where S4 is taken out. S1, S2 and S3 are hereby
independent. Also note that we can tune φi to obtain the optimal incoherence value.

Since the direction ν⊥i is always chosen to reduce this inner product,

〈y, νi〉 = (‖ProjL(ν∗)‖ − ‖ProjL(ν⊥i )‖)〈y,ProjL(ν∗)/‖ProjL(ν∗)‖〉
= (cos θi − sin θi tanφi)〈y,ProjL(ν∗)/ cos θi〉 = (1− tan θi tanφi)〈y,ProjL(ν∗)〉
= (1− tan θi tanφi)〈y, ν∗〉.

Moreover, we choose the value of φi = φ(θi, L,K) defined in the following manner

φ(θ, L,K) =

{ π
2 − θ, if sin θ ≥ α√

n
;

0, otherwise.
(E.3)

Note that in the first case, φi = π/2− θi, then

〈y, νi〉 = 〈y, ν∗〉+ 〈y, ν⊥i 〉 = 〈y, ν∗〉+ 〈y, 1

sin θi
ni − ν∗〉 =

1

sin θi
〈y, ni〉.

In the second case, tanφi = 0. For simplicity, denote the event that sin θi ≥ α√
n

to be E1 and let
E2 to be its complement, then we have

〈y, νi〉 =


〈y, ν∗〉, if E2;

1
sin θi
〈y, ni〉, if E1 AND y ∈ {K};

0, Otherwise.

We count the total number of E1 among all M experiments and obtain the empirical probability

p̂ =
1

M

∑
i=1,...,M

1

{
sin θi ≥

α√
n

}
.

Note that 1{·} is the indicator function. Denote p̂1 and p̂2 to be the corresponding empirical proba-
bility of E1 in the M1 cases when y ∈ {K} and in the M2 cases when y /∈ {K} respectively. Verify
that

p̂1M1 + p̂2M2 = p̂M.
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Also note that the empirical probability of E2 is exactly 1− p̂. Then it follows that

〈y, ν〉 =〈y, 1

M

M∑
i=1

νi〉 =
1

M

 ∑
{i|y∈{K}}

〈y, νi〉+
∑

{i|y∈{K}c}
〈y, νi〉


=

1

M

 ∑
{i|y∈{K}∩E1}

1

sin θi
〈y, ni〉+

∑
{i|y∈{K}∩E2}

〈y, ν∗〉+
∑

{i|y∈{K}c∩E2}
〈y, ν∗〉


=
p1M1

M

 1

p1M1

∑
{i|y∈{K}∩E1}

1

sin θi
〈y, ni〉

+ (1− p̂)〈y, ν∗〉 = 〈y, ν̃〉

where
ν̃ =

1

M

∑
{i|y∈{K}∩E1}

ni
sin θi

+ (1− p̂)ν∗. (E.4)

To bound |〈y, ν〉|, we only need to bound ‖ν̃‖. By the definition of event E1,

sin θi >
α√
n
,

then

‖ν̃‖ ≤
√
nM1p̂1

αM
+ 1− p̂ =

K
√
np̂1

α(L−K − 1)
+ 1− p̂

Under the fully random assumption, ν̃ is independent to y. This can be seen from (E.4) that ni and
ν∗ are both independent to the sampling of y (since y is among the data points of K subspaces taken
out). Thus we may apply Lemma B.3.1 to bound the inner product then use union bound to cover a
total of less than N2 number of events. With probability larger than 1− 2

N , every event obeys

|〈y, ν〉| ≤ Kp̂1

√
6 logN

α(L− 1)
+

√
6 logN(1− p̂)√

n
. (E.5)

At this stage, we discuss three different cases of α, corresponding to the three statements in Propo-
sition E.3.2.

(1) The general statement: The general statement (E.2) by substituting the two empirical probabil-
ity p̂1 and p̂ by

p̂1 ≤ 1, p̂ ≥ (1− δ(α, n))e−3α2/2 − ε
The first inequality is trivial. To prove the second, we consider M i.i.d. Bernoulli experiments that
get 1 if the event is E1 and 0 otherwise. By Hoeffding’s inequality, empirical expectation

p̂ > p− ε

with probability larger than 1− e−ε2M . By Corollary F.3.1, we have p > (1− δ(α, n))e−
3α2

2 . Also,

we may choose ε =
√

3 logN
M such that the failure probability over all N2 events are less than 1/N .

Substitute the bounds into (E.5) and combine all failure probabilities with union bound, we get

µ ≤ K
√

6 logN

α(L− 1)
+

√
6 logN

[
1− (1− δ(α, n))e−3α2/2

]
√
n

+

√
12 logN√
nM

. (E.6)

with probability larger than 1− 3/N . This gives us the general statement in Proposition E.3.2.

Now we will discuss two boundary cases of interest without using Hoeffding’s inequality.

(2)When α is large : When α is sufficiently large, the last term in (E.6) can be removed. Denote
the pdf of random inner product of Lemma F.3.1 as f(x), then by definition

pα = 2

∫ ∞
α

f(x)dx.
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Naturally, there exists an α̃ such that pα̃ = 1
MN3 (in particular, by Lemma B.3.1, we may show

pα ≤ 1
MN3 when α =

√
6 logN+2 logM

n . By union bound, the probability that E1 does not occur in
all M events for all N2 pairs (x, ν), is greater than 1− 1/N . So we may take p̂ = 0 and p̂1 = 0 in
(E.5) and get directly the result

µ ≤
√

6 logN

n
with probability larger than 1− 3/N for some sufficiently large α.

(3)When α goes to 0: Using a similar argument, when α is sufficiently small (typically smaller than
e−n), we can show that with probability larger than 1− 1/N , E2 does not occur at all, hence p̂ = 1
and p̂1 = 1. Then from (E.5) directly, we may get

µ ≤ K
√

6 logN

α(L− 1)

with probability larger than 1−3/N . As α appear in the denominator, this bound is only meaningful
when K = 0, which reflects the fact that µ = 0 for independent subspace. The proof is now
complete.

F Other results and proofs

F.1 Proof of Proposition 1 (LRR is dense)

For easy reference, we copy the statement of Proposition 1 here.
Proposition F.1.1. When the subspaces are independent and X is not full rank and the data points
are randomly sampled from a unit sphere in each subspace, then the solution to LRR is class-wise
dense, namely each diagonal block of the matrix C is all non-zero.

Proof. The proof is of two steps. First we prove that because the data samples are random, the
shape interaction matrix V V T in Lemma 4 is a random projection to a rank-d` subspace in RN` .
Furthermore, each column is of a random direction in the subspace.

Second, we show that with probability 1, the standard bases are not orthogonal to these N` vectors
inside the random subspace. The claim that V V T is dense can hence be deduced by observing that
each entry is the inner product of a column or row4 of V V T and a standard basis, which follows
a continuous distribution. Therefore, the probability that any entries of V V T being exactly zero is
negligible.

F.2 Condition (2) in Theorem 1 is computational tractable

First note that µ(X(`)) can be computed by definition, which involves solving one quadratically
constrained linear program (to get dual direction matrix [V (`)]∗) then finding µ(X(`)) by solving
the following linear program for each subspace

min
V (`)

‖[V (`)]TX(`)‖∞ s.t. ProjS`V
(`) = [V (`)]∗,

where we use X(`) to denote [X(1), ..., X(`−1), X(`+1), ..., X(L)].

To compute σd`(X
(`)
−k), one needs to compute N` SVD of the n× (N` − 1) matrix. The complexity

can be further reduced by computing a close approximation of σd`(X
(`)
−k). This can be done by

finding the singular values of X(`) and use the following inequality

σd`(X
(`)
−k) ≥ σd`(X(`))− 1.

This is a direct consequence of the SVD perturbation theory [15, Theorem 1].
4It makes no difference because V V T is a symmetric matrix
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Figure 16: Illustration of how Corollary F.3.1 approximates Lemma F.3.2 as n increases for all
values of α.

F.3 Lower bound of random inner product

Lemma F.3.1 (pdf of inner product of random unit vectors[6]). Let u, v be random vectors uniformly
distributed on the standard unit n-sphere and then the pdf of z = 〈u, v〉 is given as

fn(z) =

{
Γ(n+1

2 )

Γ(n2 )
√
π

√
1− z2

n−2
, for −1 < z < 1;

0, elsewhere,
(F.1)

for n = 1, 2, 3, ...

Lemma F.3.2 (Lower bound of inner product of random unit vectors). Suppose x is independently
sampled from unit n-sphere Sn−1. y is a fixed vector. Then

Pr(|〈x, y〉| > z0‖y‖) >
(

1− e

2(n+ 1)!

)
(1− z2

0)
3n
2 .

Corollary F.3.1. A special case of interest is that when z0 = α√
n
,

Pr

(
|〈x, y〉| > α√

n
‖y‖
)
> (1− δ(α, n))e−

3α2

2 .

where

δ(α, n) <

 e
2(n+1)! + α2

n , when α <
√

2
3 ;

e
2(n+1)! + α4

n , otherwise.

The bound is tighter when α is small and when n is large. A numerical comparison of the Corol-
lary F.3.1 against the Lemma F.3.2 for different α and different n are given in Figure 16.
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Proof of Corollary F.3.1. This is a simple use of (1 − 1
n )n → e−1 when n is large. First note that

when x > 1,
(1− 1/x)x > (1− 1/x)(1− 1/x)x−1 > (1− 1/x)e−1.

Then substitute x = n
α2 we get

(1− α2

n
)
n
α2 > (1− α2

n
)e−1.

Then we may simplify the result in Lemma F.3.2.

Pr

(
|〈x, y〉| > α√

n
‖y‖
)
>

(
1− e

2(n+ 1)!

)(
1− α2

n

) 3n
2

=

(
1− e

2(n+ 1)!

)[(
1− α2

n

) n
α2

] 3α2

2

>

(
1− e

2(n+ 1)!

)(
1− α2

n

) 3α2

2

e
−3α2

2

When x ≥ 1, it holds that (1 − δ)x > (1 − δx). Also, (1 − a)(1 − b) > 1 − a − b when a, b > 0.

So when 3α2/2 > 1, or equivalently α >
√

2
3(

1− e

2(n+ 1)!

)(
1− α2

n

) 3α2

2

>

(
1− e

2(n+ 1)!
− 3α4

2n

)
otherwise we may simply drop the exponent and get(

1− e

2(n+ 1)!

)(
1− α2

n

) 3α2

2

>

(
1− e

2(n+ 1)!
− α2

n

)

Proof of Lemma F.3.2. The probability p1 of random inner product greater than z0 is given by the
following integral

p1(z0) =
2Γ(n+1

2 )

Γ(n2 )
√
π

∫ 1

z0

√
1− z2

n−2
dz

=
2Γ(n+1

2 )

Γ(n2 )
√
π

∫ π/2

arcsin z0

cosn−2 θ d sin θ

=
2Γ(n+1

2 )

Γ(n2 )
√
π

∫ π/2

arcsin z0

cosn−1 θ dθ

By the table of integral,∫
cosn−1 θ dθ = − 1

n
cosn θ × 2F1

(
n

2
,

1

2
,
n+ 1

2
, cos2(θ)

)
+ C,

where 2F1 [a, b; c; z] is the so-called Gauss’s hypergeometric function, defined as follows:

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

where

(q)n =

{
1, if n = 0;
q(q + 1)...(q + n+ 1), if n > 0.

28



Then

p1(z0) =
2Γ(n+1

2 )

Γ(n2 )
√
π

[
− 1

n
cosn θ × 2F1

(
n

2
,

1

2
,
n+ 1

2
, cos2(θ)

)]π/2
θ=θ0

=
2Γ(n+1

2 )

Γ(n2 )
√
π

1

n
(1− z2

0)
n
2 × 2F1

(
n

2
,

1

2
,
n+ 1

2
, 1− z2

0

)
.

Let z0 = 0, we know that p1(z0) = 1 by the definition of probability, hence

2Γ(n+1
2 )

Γ(n2 )
√
π

1

n

∞∑
k=0

(n2 )( 1
2 )

(n+1
2 )k!

= 1.

Taking the small residuals to the right hand side, we get

2Γ(n+1
2 )

Γ(n2 )
√
π

1

n

n∑
k=0

(n2 )( 1
2 )

(n+1
2 )k!

> 1−
∞∑

k=n+1

1

2k!
= 1− e

2(n+ 1)!
.

Then we get a lower bound of p1(z0)

p1(z0) ≥ 2Γ(n+1
2 )

Γ(n2 )
√
π

1

n
(1− z2

0)
n
2

n∑
k=0

[
(n2 )( 1

2 )

(n+1
2 )k!

(1− z2
0)k
]

≥ 2Γ(n+1
2 )

Γ(n2 )
√
π

1

n
(1− z2

0)
n
2 (1− z2

0)n
n∑
k=0

[
(n2 )( 1

2 )

(n+1
2 )k!

]
≥
(

1− e

2(n+ 1)!

)
(1− z2

0)
3n
2 .

This gives the statement in Lemma F.3.2.
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Table of Symbols and Notations

Table 1: Summary of Symbols and Notations
| · | Either absolute value or cardinality.
‖ · ‖ 2-norm of vector/spectral norm of matrix.
‖ · ‖1 1-norm of a vector or vectorized matrix.
‖ · ‖∗ Nuclear norm/Trace norm of a matrix.
‖ · ‖F Frobenious norm of a matrix.
S` for ` = 1, .., L The L subspaces of interest.
n,d` Ambient dimension, dimension of S`.
X(`) n×N` matrix collecting all points from S`.
X n×N data matrix, containing all X(`).
C N ×N Representation matrix X = XC. In some context, it may also

denote an absolute constant.
λ Tradeoff parameter betwenn 1-norm and nuclear norm.
A,B Generic notation of some matrix.
Λ1,Λ2,Λ3 Dual variables corresponding to the three constraints in (A.1).
ν, νi, ν

(`)
i Columns of a dual matrix.

Λ∗, ν∗i Central dual variables defined in Definition 2.
V (X), {V (X)} Normalized dual direction matrix, and the set of all V (X) (Definition 2).
V (`) An instance of normalized dual direction matrix V (X(`)).

vi, v
(`)
i Volumns of the dual direction matrices

µ, µ(X(`)) Incoherence parameters in Definition 3
σd, σd(A) dth singular value (of a matrix A).
X

(`)
−k X(`) with kth column removed.

r, r(conv(±X(`)
−k)) Inradius (of the symmetric convex hull of X(`)

−k).
RelViolation(C,M) A soft measure of SEP/inter-class separation.
GiniIndex(vec(CM)) A soft measure of sparsity/intra-class connectivity.
Ω, Ω̃,M,D Some set of indices (i, j) in their respective context.
U,Σ, V Usually the compact SVD of a matrix, e.g., C.
C

(`)
1 , C

(`)
2 Primal variables in the first layer fictitious problem.

C̃
(`)
1 , C̃

(`)
2 Primal variables in the second layer fictitious problem.

Λ
(`)
1 ,Λ

(`)
2 ,Λ

(`)
3 Dual variables in the first layer fictitious problem.

Λ̃
(`)
1 , Λ̃

(`)
2 , Λ̃

(`)
3 Dual variables in the second layer fictitious problem.

U (`),Σ(`), V (`) Compact SVD of C(`).
Ũ (`), Σ̃(`), Ṽ (`) Compact SVD of C̃(`).
diag(·)/diag⊥(·) Selection of diagonal/off-diagonal elements.
supp(·) Support of a matrix.
sgn(·) Sign operator on a matrix.
conv(·) Convex hull operator.
(·)o Polar operator that takes in a set and output its polar set.
span(·) Span of a set of vectors or matrix columns.
null(·) Nullspace of a matrix.
PT /PT⊥ Projection to both column and row space of a low-rank matrix / Projec-

tion to its complement.
PD Projection to index set D.
ProjS(·) Projection to subspace S.
β1, β2 Tradeoff parameters for NoisyLRSSC.
µ1, µ2, µ3 Numerical parameters for the ADMM algorithm.
J Dummy variable to formulate ADMM.
K Used in Take-K-out Independence (Definition E.3.1).
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