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Abstract

In stochastic optimal control the distribution of the exogenous noise is typically
unknown and must be inferred from limited data before dynamic programming
(DP)-based solution schemes can be applied. If the conditional expectations in the
DP recursions are estimated via kernel regression, however, the historical sample
paths enter the solution procedure directly as they determine the evaluation points
of the cost-to-go functions. The resulting data-driven DP scheme is asymptotically
consistent and admits an efficient computational solution when combined with
parametric value function approximations. If training data is sparse, however, the
estimated cost-to-go functions display a high variability and an optimistic bias,
while the corresponding control policies perform poorly in out-of-sample tests. To
mitigate these small sample effects, we propose a robust data-driven DP scheme,
which replaces the expectations in the DP recursions with worst-case expectations
over a set of distributions close to the best estimate. We show that the arising min-
max problems in the DP recursions reduce to tractable conic programs. We also
demonstrate that the proposed robust DP algorithm dominates various non-robust
schemes in out-of-sample tests across several application domains.

1 Introduction

We consider a stochastic optimal control problem in discrete time with continuous state and action
spaces. At any time t the state of the underlying system has two components. The endogenous state
st ∈ Rd1 captures all decision-dependent information, while the exogenous state ξt ∈ Rd2 captures
the external random disturbances. Conditional on (st, ξt) the decision maker chooses a control
action ut ∈ Ut ⊆ Rm and incurs a cost ct(st, ξt,ut). From time t to t+ 1 the system then migrates
to a new state (st+1, ξt+1). Without much loss of generality we assume that the endogenous state
obeys the recursion st+1 = gt(st,ut, ξt+1), while the evolution of the exogenous state can be
modeled by a Markov process. Note that even if the exogenous state process has finite memory, it
can be reduced as an equivalent Markov process on a higher-dimensional space. Thus, the Markov
assumption is unrestrictive for most practical purposes. By Bellman’s principle of optimality, a
decision maker aiming to minimize the expected cumulative costs solves the dynamic program

Vt(st, ξt) = min
ut∈Ut

ct(st, ξt,ut) + E[Vt+1(st+1, ξt+1)|ξt]

s. t. st+1 = gt(st,ut, ξt+1)
(1)

backwards for t = T, . . . , 1 with VT+1 ≡ 0; see e.g. [1]. The cost-to-go function Vt(st, ξt) quanti-
fies the minimum expected future cost achievable from state (st, ξt) at time t.

Stochastic optimal control has numerous applications in engineering and science, e.g. in supply
chain management, power systems scheduling, behavioral neuroscience, asset allocation, emergency
service provisioning, etc. [1, 2]. There is often a natural distinction between endogenous and exoge-
nous states. For example, in inventory control the inventory level can naturally be interpreted as the
endogenous state, while the uncertain demand represents the exogenous state.

1



In spite of their exceptional modeling power, dynamic programming problems of the above type
suffer from two major shortcomings that limit their practical applicability. First, the backward in-
duction step (1) is computationally burdensome due to the intractability to evaluate the cost-to-go
function Vt for the continuum of all states (st, ξt), the intractability to evaluate the multivariate
conditional expectations and the intractability to optimize over the continuum of all control actions
ut [2]. Secondly, even if the dynamic programming recursions (1) could be computed efficiently,
there is often substantial uncertainty about the conditional distribution of ξt+1 given ξt. Indeed,
the distribution of the exogenous states is typically unknown and must be inferred from historical
observations. If training data is sparse—as is often the case in practice—it is impossible to estimate
this distribution reliably. Thus, we lack essential information to evaluate (1) in the first place.

In this paper, we assume that only a set of N sample trajectories of the exogenous state is given,
and we use kernel regression in conjunction with parametric value function approximations to esti-
mate the conditional expectation in (1). Thus, we approximate the conditional distribution of ξt+1

given ξt by a discrete distribution whose discretization points are given by the historical samples,
while the corresponding conditional probabilities are expressed in terms of a normalized Nadaraya-
Watson (NW) kernel function. This data-driven dynamic programming (DDP) approach is concep-
tually appealing and avoids an artificial separation of estimation and optimization steps. Instead, the
historical samples are used directly in the dynamic programming recursions. It is also asymptoti-
cally consistent in the sense that the true conditional expectation is recovered when N grows [3].
Moreover, DDP computes the value functions only on the N sample trajectories of the exogenous
state, thereby mitigating one of the intractabilities of classical dynamic programming.

Although conceptually and computationally appealing, DDP-based policies exhibit a poor perfor-
mance in out-of-sample tests if the training data is sparse. In this case the estimate of the conditional
expectation in (1) is highly noisy (but largely unbiased). The estimate of the corresponding cost-
to-go value inherits this variability. However, it also displays a downward bias caused by the mini-
mization over ut. This phenomenon is reminiscent of overfitting effects in statistics. As estimation
errors in the cost-to-go functions are propagated through the dynamic programming recursions, the
bias grows over time and thus incentivizes poor control decisions in the early time periods.

The detrimental overfitting effects observed in DDP originate from ignoring distributional uncer-
tainty: DDP takes the estimated discrete conditional distribution of ξt+1 at face value and ignores
the possibility of estimation errors. In this paper we propose a robust data-driven dynamic pro-
gramming (RDDP) approach that replaces the expectation in (1) by a worst-case expectation over
a set of distributions close to the nominal estimate in view of the χ2-distance. We will demon-
strate that this regularization reduces both the variability and the bias in the approximate cost-to-go
functions and that RDDP dominates ordinary DDP as well as other popular benchmark algorithms
in out-of-sample tests. Leveraging on recent results in robust optimization [4] and value function
approximation [5] we will also show that the nested min-max problems arising in RDDP typically
reduce to conic optimization problems that admit efficient solution with interior point algorithms.

Robust value iteration methods have recently been studied in robust Markov decision process (MDP)
theory [6, 7, 8, 9]. However, these algorithms are not fundamentally data-driven as their primitives
are uncertainty sets for the transition kernels instead of historical observations. Moreover, they
assume finite state and action spaces. Data-driven approaches to dynamic decision making are rou-
tinely studied in approximate dynamic programming and reinforcement learning [10, 11, 12], but
these methods are not robust (in a worst-case sense) with respect to distributional uncertainty and
could therefore be susceptible to overfitting effects. The robust value iterations in RDDP are facil-
itated by combining convex parametric function approximation methods (to model the dependence
on the endogenous state) with nonparametric kernel regression techniques (for the dependence on
the exogenous state). This is in contrast to most existing methods, which either rely exclusively
on parametric function approximations [10, 11, 13] or nonparametric ones [12, 14, 15, 16]. Due
to the convexity in the endogenous state, RDDP further benefits from mathematical programming
techniques to optimize over high-dimensional continuous action spaces without requiring any form
of discretization.
Notation. We use lower-case bold face letters to denote vectors and upper-case bold face letters
to denote matrices. We define 1 ∈ Rn as the vector with all elements equal to 1, while ∆ = {p ∈
Rn

+ : 1ᵀp = 1} denotes the probability simplex in Rn. The dimensions of 1 and ∆ will usually be
clear from the context. The space of symmetric matrices of dimension n is denoted by Sn. For any
two matrices X,Y ∈ Sn, the relation X < Y implies that X−Y is positive semidefinite.

2



2 Data-driven dynamic programming

Assume from now on that the distribution of the exogenous states is unknown and that we are only
given N observation histories {ξit}Tt=1 for i = 1, . . . , N . This assumption is typically well justified
in practice. In this setting, the conditional expectation in (1) cannot be evaluated exactly. However
it can be estimated, for instance, via Nadaraya-Watson (NW) kernel regression [17, 18].

E[Vt+1(st+1, ξt+1)|ξt] ≈
N∑
i=1

qti(ξt)Vt+1(sit+1, ξ
i
t+1) (2)

The conditional probabilities in (2) are set to

qti(ξt) =
KH(ξt − ξit)∑N

k=1KH(ξt − ξkt )
, (3)

where the kernel function KH(ξ) = |H|− 1
2K(|H|− 1

2 ξ) is defined in terms of a symmetric multi-
variate densityK and a positive definite bandwidth matrix H. For a large bandwidth, the conditional
probabilities qti(ξt) converge to 1

N , in which case (2) reduces to the (unconditional) sample aver-
age. Conversely, an extremely small bandwidth causes most of the probability mass to be assigned
to the sample point closest to ξt. In the following we set the bandwidth matrix H to its best es-
timate assuming that the historical observations {ξit}Ni=1 follow a Gaussian distribution; see [19].
Substituting (2) into (1), results in the data-driven dynamic programming (DDP) formulation

V d
t (st, ξt) = min

ut∈Ut
ct(st, ξt,ut) +

N∑
i=1

qti(ξt)V
d
t+1(sit+1, ξ

i
t+1)

s. t. sit+1 = gt(st,ut, ξ
i
t+1) ∀i ,

(4)

with terminal condition V d
T+1 ≡ 0. The idea to use kernel-based approximations to estimate the

expected future costs is appealing due to its simplicity. Such approximations have been studied, for
example, in the context of stochastic optimization with state observation [20]. However, to the best
of our knowledge they have not yet been used in a fully dynamic setting—maybe for the reasons to be
outlined in § 3. On the positive side, DDP with NW kernel regression is asymptotically consistent for
large N under a suitable scaling of the bandwidth matrix and under a mild boundedness assumption
on V d

t+1 [3]. Moreover, DDP evaluates the cost-to-go function of the next period only at the sample
points and thus requires no a-priori discretization of the exogenous state space, thus mitigating one
of the intractabilities of classical dynamic programming.

3 Robust data-driven dynamic programming

If the training data is sparse, the NW estimate (2) of the conditional expectation in (4) typically
exhibits a small bias and a high variability. Indeed, the variance of the estimator scales with∼O( 1

N )

[21]. The DDP value function V d
t inherits this variability. However, it also displays a significant

optimistic bias. The following stylized example illustrates this phenomenon.

Example 3.1 Assume that d1 = 1, d2 = m = 5, ct(st, ξt,ut) = 0, gt(st,ut, ξt+1) = ξᵀt+1ut,
Ut = {u ∈ Rm : 1ᵀu = 1} and Vt+1(st+1, ξt+1) = 1

10s
2
t+1 − st+1. In order to facilitate a

controlled experiment, we also assume that (ξt, ξt+1) follows a multivariate Gaussian distribution,
where each component has unit mean and variance. The correlation between ξt,k and ξt+1,k is set
to 30%. All other correlations are zero. Our aim is to solve (1) and to estimate Vt(st, ξt) at ξt = 1.

By permutation symmetry, the optimal decision under full distributional knowledge is u∗t = 1
51.

An analytical calculation then yields the true cost-to-go value Vt(st,1) = −0.88. In the following
we completely ignore our distributional knowledge. Instead, we assume that only N independent
samples (ξit, ξ

i
t+1) are given, i = 1, . . . , N . To showcase the high variability of NW estimation,

we fix the decision u∗t and use (2) to estimate its expected cost conditional on ξt = 1. Figure 1
(left) shows that this estimator is unbiased but fluctuates within ±5% around its median even for
N = 500. Next, we use (4) to estimate V d

t (st,1), that is, the expected cost of the best decision
obtained without distributional information. Figure 1 (middle) shows that this cost estimator is even
more noisy than the one for a fixed decision, exhibits a significant downward bias and converges
slowly as N grows.
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Figure 1: Estimated costs of true optimal and data-driven decisions. Note the different scales. All
reported values represent averages over 200 independent simulation runs.

The downward bias in V d
t as an estimator for the true value function Vt is the consequence of an

overfitting effect, which can be explained as follows. Setting Vt+1 ≡ V d
t+1, we find

Vt(st, ξt) = min
ut∈Ut

ct(st, ξt,ut) + E[V d
t+1(gt(st,ut, ξt+1), ξt+1)|ξt]

≈ min
ut∈Ut

ct(st, ξt,ut) + E[

N∑
i=1

qti(ξt)V
d
t+1(gt(st,ut, ξ

i
t+1), ξit+1)|ξt]

≥ E
[

min
ut∈Ut

ct(st, ξt,ut) +

N∑
i=1

qti(ξt)V
d
t+1(gt(st,ut, ξ

i
t+1), ξit+1)

∣∣∣ξt].
The relation in the second line uses our observation that the NW estimator of the expected cost
associated with any fixed decision ut is approximately unbiased. Here, the expectation is with
respect to the (independent and identically distributed) sample trajectories used in the NW estimator.
The last line follows from the conditional Jensen inequality. Note that the expression inside the
conditional expectation coincides with V d

t (st, ξt). This argument suggests that V d
t (st, ξt) must

indeed underestimate Vt(st, ξt) on average. We emphasize that all systematic estimation errors of
this type accumulate as they are propagated through the dynamic programming recursions.

To mitigate the detrimental overfitting effects, we propose a regularization that reduces the decision
maker’s overconfidence in the weights qt(ξt) = [qt1(ξt) . . . qtN (ξt)]

ᵀ. Thus, we allow the condi-
tional probabilities used in (4) to deviate from their nominal values qt(ξt) up to a certain degree.
This is achieved by considering uncertainty sets ∆ (q) that contain all weight vectors sufficiently
close to some nominal weight vector q ∈ ∆ with respect to the χ2-distance for histograms.

∆ (q) = {p ∈ ∆ :

N∑
i=1

(pi − qi)2/pi ≤ γ} (5)

The χ2-distance belongs to the class of φ-divergences [22], which also includes the Kullback-Leibler
distances. Our motivation for using uncertainty sets of the type (5) is threefold. First, ∆(q) is
determined by a single size parameter γ, which can easily be calibrated, e.g., via cross-validation.
Secondly, the χ2-distance guarantees that any distribution p ∈ ∆(q) assigns nonzero probability to
all scenarios that have nonzero probability under the nominal distribution q. Finally, the structure of
∆(q) implied by the χ2-distance has distinct computational benefits that become evident in § 4.

Allowing the conditional probabilities in (4) to range over the uncertainty set ∆(qt(ξt)) results in
the robust data-driven dynamic programming (RDDP) formulation

V r
t (st, ξt) = min

ut∈Ut
ct(st, ξt,ut) + max

p∈∆(qt(ξt))

N∑
i=1

piV
r
t+1(sit+1, ξ

i
t+1)

s. t. sit+1 = gt(st,ut, ξ
i
t+1) ∀i

(6)

with terminal condition V r
T+1 ≡ 0. Thus, each RDDP recursion involves the solution of a robust

optimization problem [4], which can be viewed as a game against ‘nature’ (or a malicious adversary):
for every actionut chosen by the decision maker, nature selects the corresponding worst-case weight
vector from within p ∈ ∆ (qt(ξt)). By anticipating nature’s moves, the decision maker is forced
to select more conservative decisions that are less susceptible to amplifying estimation errors in the
nominal weights qt(ξt). The level of robustness of the RDDP scheme can be steered by selecting
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the parameter γ. We suggest to choose γ large enough such that the envelope of all conditional
CDFs of ξt+1 implied by the weight vectors in ∆(qt(ξt)) covers the true conditional CDF with high
confidence (Figure 2). The following example illustrates the potential benefits of the RDDP scheme.

Example 3.2 Consider again Example 3.1. Assuming that only the samples {ξit, ξit+1}Ni=1 are
known, we can compute a worst-case optimal decision using (6). Fixing this decision, we can then
use (2) to estimate its expected cost conditional on ξt = 1. Note that this cost is generically different
from V r

t (st,1). Figure 1 (right) shows that the resulting cost estimator is less noisy and—perhaps
surprisingly—unbiased. Thus, it clearly dominates V d

t (st,1) as an estimator for the true cost-to-go
value Vt(st,1) (which is not accessible in reality as it relies on full distributional information).

Robust optimization models with uncertainty sets of the type (5) have previously been studied in [23,
24]. However, these static models are fundamentally different in scope from our RDDP formulation.
RDDP seeks the worst-case probabilities of N historical samples of the exogenous state, using the
NW weights as nominal probabilities. In contrast, the static models in [23, 24] rely on a partition
of the uncertainty space into N bins. Worst-case probabilities are then assigned to the bins, whose
nominal probabilities are given by the empirical frequencies. This latter approach does not seem to
extend easily to our dynamic setting as it would be unclear where in each bin one should evaluate
the cost-to-go functions.

0
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b
a
b
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True CDF
Nadaraya−Watson CDF
Envelope of implied CDFs

Figure 2: Envelope of all conditional
CDFs implied by weight vectors in
∆(qt(ξt)).

Instead of immunizing the DDP scheme against estimation
errors in the conditional probabilities (as advocated here),
one could envisage other regularizations to mitigate the
overfitting phenomena. For instance, one could construct
an uncertainty set for (ξit+1)Ni=1 and seek control actions
that are optimal in view of the worst-case sample points
within this set. However, this approach would lead to a
harder robust optimization problem, where the search space
of the inner maximization has dimension O(Nd2) (as op-
posed toO(N) for RDDP). Moreover, this approach would
only be tractable if V r

t+1 displayed a very regular (e.g., lin-
ear or quadratic) dependence on ξt+1. RDDP imposes no
such restrictions on the cost-to-go function; see § 4.

4 Computational solution procedure

In this section we demonstrate that RDDP is computationally tractable under a convexity assumption
and if we approximate the dependence of the cost-to-go functions on the endogenous state through
a piecewise linear or quadratic approximation architecture. This result immediately extends to the
DDP scheme of § 2 as the uncertainty set (5) collapses to a singleton for γ = 0.

Assumption 4.1 For all t = 1, . . . , T , the cost function ct is convex quadratic in (st,ut), the
transition function gt is affine in (st,ut), and the feasible set Ut is second-order conic representable.

Under Assumption 4.1, V r
t (st, ξt) can be evaluated by solving a convex optimization problem.

Theorem 4.1 Suppose that Assumption 4.1 holds and that the cost-to-go function V r
t+1 is convex in

the endogenous state. Then, (6) reduces to the following convex minimization problem.
V r
t (st, ξt) = min ct(st, ξt,ut) + λγ − µ− 2qt(ξt)

ᵀy + 2λqt(ξt)
ᵀ1

s. t. ut ∈ Ut, µ ∈ R, λ ∈ R+, z,y ∈ RN

V r
t+1(gt(st,ut, ξ

i
t+1), ξit+1) ≤ zi ∀i

zi + µ ≤ λ,
√

4y2
i + (zi + µ)2 ≤ 2λ− zi − µ ∀i

(7)

Corollary 4.1 If Assumption 4.1 holds, then RDDP preserves convexity in the exogenous state.
Thus, V r

t (st, ξt) is convex in st whenever V r
t+1(st+1, ξt+1) is convex in st+1.

Note that problem (7) becomes a tractable second-order cone program if V r
t+1 is convex piecewise

linear or convex quadratic in st+1. Then, it can be solved efficiently with interior point algorithms.
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Algorithm 1: Robust data-driven dynamic programming

Inputs: Sample trajectories {skt }Tt=1 for k = 1, . . . ,K;
observation histories {ξit}T+1

t=1 for i = 1, . . . , N .
Initialization: Let V̂ r

T+1(·, ξiT+1) be the zero function for all i = 1, . . . , N .
for all t = T, . . . , 1 do

for all i = 1, . . . , N do
for all k = 1, . . . ,K do

Let V̂ r
t,k,i be the optimal value of problem (7) with input V̂ r

t+1(·, ξjt+1) ∀j.
end for
Construct V̂ r

t (·, ξit) from the interpolation points {(skt , V̂ r
t,k,i)}Kk=1 as in (8a) or (8b).

end for
end for
Outputs: Approximate cost-to-go functions V̂ r

t (·, ξit) for i = 1, . . . , N and t = 1, . . . , T .

We now describe an algorithm that computes all cost-to-go functions {V r
t }Tt=1 approximately. Ini-

tially, we collect historical observation trajectories of the exogenous state {ξit}Tt=1, i = 1, . . . , N ,
and generate sample trajectories of the endogenous state {skt }Tt=1, k = 1, . . . ,K, by simulating the
evolution of st under a prescribed control policy along randomly selected exogenous state trajecto-
ries. Best results are achieved if the sample-generating policy is near-optimal. If no near-optimal
policy is known, an initial naive policy can be improved sequentially in a greedy fashion. The core
of the algorithm computes approximate value functions V̂ r

t , which are piecewise linear or quadratic
in st, by backward induction on t. Iteration t takes V̂ r

t+1 as an input and computes the optimal value
V̂ r
t,k,i of the second-order cone program (7) for each sample state (skt , ξ

i
t). For any fixed i we then

construct the function V̂ r
t (·, ξit) from the interpolation points {(skt , V̂ r

t,k,i)}Kk=1. If the endogenous
state is univariate (d1 = 1), the following piecewise linear approximation is used.

V̂ r
t (st, ξ

i
t) = max

k
(skt − st)/(skt − sk−1

t )V̂ r
t,k−1,i + (st − sk−1

t )/(skt − sk−1
t )V̂ r

t,k,i (8a)

In the multivariate case (d1 > 1), we aim to find the convex quadratic function V̂ r
t (st, ξ

i
t) =

sᵀtMist + 2mᵀ
i st + mi that best explains the given interpolation points in a least-squares sense.

This quadratic function can be computed efficiently by solving the following semidefinite program.

min
∑K

k=1

[
(skt )ᵀMis

k
t + 2mᵀ

i s
k
t +mi − V̂ r

t,k,i

]2
s. t. Mi ∈ Sd1 , Mi < 0, mi ∈ Rd1 , mi ∈ R

(8b)

Quadratic approximation architectures of the above type first emerged in approximate dynamic pro-
gramming [5]. Once the function V̂ r

t (·, ξit) is computed for all i = 1, . . . , N , the algorithm proceeds
to iteration t− 1. A summary of the overall procedure is provided in Algorithm 1.

Remark 4.1 The RDDP algorithm remains valid if the feasible set Ut depends on the state (st, ξt)
or if the control action ut includes components that are of the ‘here-and-now’-type (i.e., they are
chosen before ξt+1 is observed) as well as others that are of the ‘wait-and-see’-type (i.e., they are
chosen after ξt+1 has been revealed). In this setting, problem (7) becomes a two-stage stochastic
program [25] but remains efficiently solvable as a second-order cone program.

5 Experimental results

We evaluate the RDDP algorithm of § 4 in the context of an index tracking and a wind energy
commitment application. All semidefinite programs are solved with SeDuMi [26] by using the
Yalmip [27] interface, while all linear and second-order cone programs are solved with CPLEX.

5.1 Index tracking

The objective of index tracking is to match the performance of a stock index as closely as possible
with a portfolio of other financial instruments. In our experiment, we aim to track the S&P 500
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Statistic LSPI DDP RDDP
Mean 5.692 4.697 1.285

Std. dev. 11.699 15.067 2.235
90th prct. 14.597 9.048 2.851

Worst case 126.712 157.201 18.832

Table 1: Out-of-sample statistics of sum of
squared tracking errors in h.
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Figure 3: Cumulative distribution function of
sum of squared tracking errors.

index with a combination of the NASDAQ Composite, Russell 2000, S&P MidCap 400, and AMEX
Major Market indices. We set the planning horizon to T = 20 trading days (1 month).

Let st ∈ R+ be the value of the current tracking portfolio relative to the value of S&P 500 on day t,
while ξt ∈ R5

+ denotes the vector of the total index returns (price relatives) from day t− 1 to day t.
The first component of ξt represents the return of S&P 500. The objective of index tracking is to
maintain st close to 1 in a least-squares sense throughout the planning horizon, which gives rise to
the following dynamic program with terminal condition VT+1 ≡ 0.

Vt(st, ξt) = min (1− st)2 + E[Vt(st+1, ξt+1)|ξt]
s. t. u ∈ R5

+, 1ᵀu = st, u1 = 0, st+1 = ξt+1
ᵀu/ξt+1,1

(9)

Here, ui/st can be interpreted as the portion of the tracking portfolio that is invested in index i on
day t. Our computational experiment is based on historical returns of the indices over 5440 days
from 26-Aug-1991 to 8-Mar-2013 (272 trading months). We solve the index tracking problem using
the DDP and RDDP algorithms (i.e., the algorithm of § 4 with γ = 0 and γ = 10, respectively)
as well as least-squares policy iteration (LSPI) [10]. As the endogenous state is univariate, DDP
and RDDP employ the piecewise linear approximation architecture (8a). LSPI solves an infinite-
horizon variant of problem (9) with discount factor λ = 0.9, polynomial basis features of degree
3 and a discrete action space comprising 1,000 points sampled uniformly from the true continuous
action space. We train the algorithms on the first 80 and test on the remaining 192 trading months.

Table 1 reports several out-of-sample statistics of the sum of squared tracking errors. We find that
RDDP outperforms DDP and LSPI by a factor of 4-5 in view of the mean, the standard deviation
and the 90th percentile of the error distribution, and it outperforms the other algorithms by an order
of magnitude in view of the worst-case (maximum) error. Figure 3 further shows that the error
distribution generated by RDDP stochastically dominates those generated by DDP and LSPI.

5.2 Wind energy commitment

Next, we apply RDDP to the wind energy commitment problem proposed in [28, 29]. On every
day t, a wind energy producer chooses the energy commitment levels xt ∈ R24

+ for the next 24

Site Statistic Persistence DDP RDDP

NC

Mean 4.039 4.698 7.549
Std. dev. 3.964 6.338 5.133
10th prct. 0.524 -1.463 1.809

Worst case -11.221 -22.666 0.481

OH

Mean 2.746 4.104 5.510
Std. dev. 3.428 5.548 4.500
10th prct. 0.154 0.118 1.395

Worst case -12.065 -21.317 0.280

Table 2: Out-of-sample statistics of profit (in
$100,000).
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Figure 4: Out-of-sample profit distribution for
the North Carolina site.
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hours. The day-ahead prices πt ∈ R24
+ per unit of energy committed are known at the beginning

of the day. However, the hourly amounts of wind energy ωt+1 ∈ R24
+ generated over the day

are uncertain. If the actual production falls short of the commitment levels, there is a penalty of
twice the respective day-ahead price for each unit of unsatisfied demand. The wind energy producer
also operates three storage devices indexed by l ∈ {1, 2, 3}, each of which can have a different
capacity sl, hourly leakage ρl, charging efficiency ρlc and discharging efficiency ρld. We denote
by slt+1 ∈ R24

+ the hourly filling levels of storage l over the next 24 hours. The wind producer’s
objective is to maximize the expected profit over a short-term planning horizon of T = 7 days.

The endogenous state is given by the storage levels at the end of day t, st = {slt,24}3l=1 ∈ R3
+, while

the exogenous state comprises the day-ahead prices πt ∈ R24
+ and the wind energy production levels

ωt ∈ R24
+ of day t − 1, which are revealed to the producer on day t. Thus, we set ξt = (πt,ωt).

The best bidding and storage strategy can be found by solving the dynamic program
Vt(st, ξt) = max πᵀ

t xt − 2πᵀ
t E[eut+1|ξt] + E[Vt+1(st+1, ξt+1)|ξt]

s. t. xt, e
{c,w,u}
t+1 ∈ R24

+ , e
{+,−},l
t+1 , slt+1 ∈ R24

+ ∀l
ωt+1,h = ect+1,h + e+,1

t+1,h + e+,2
t+1,h + e+,3

t+1,h + ewt+1,h ∀h

xt,h = ect+1,h + e−,1t+1,h + e−,2t+1,h + e−,3t+1,h + eut+1,h ∀h

slt+1,h = ρlslt+1,h−1 + ρlce
+,l
t+1,h −

1

ρld
e−,lt+1,h, slt+1,h ≤ sl ∀h, l

(10)

with terminal condition VT+1 ≡ 0. Here, we adopt the convention that slt+1,0 = slt,24 for all l.
Besides the usual here-and-now decisions xt, the decision vector ut now also includes wait-and-see
decisions that are chosen after ξt+1 has been revealed (see Remark 4.1): ec represents the amount
of wind energy used to meet the commitment, e+,l represents the amount of wind energy fed into
storage l, e−,l represents the amount of energy from storage l used to meet the commitment, ew rep-
resents the amount of wind energy that is wasted, and eu represents the unmet energy commitment.

Our computational experiment is based on day-ahead prices for the PJM market and wind speed data
for North Carolina (33.9375N, 77.9375W) and Ohio (41.8125N, 81.5625W) from 2002 to 2011 (520
weeks). As ξt is a 48 dimensional vector with high correlations between its components, we perform
principal component analysis to obtain a 6 dimensional subspace that explains more than 90% of
the variability of the historical observations. The conditional probabilities qt(ξt) are subsequently
estimated using the projected data points. The parameters for the storage devices are taken from
[30]. We solve the wind energy commitment problem using the DDP and RDDP algorithms (i.e.,
the algorithm of § 4 with γ = 0 and γ = 1, respectively) as well as a persistence heuristic that naively
pledges the wind generation of the previous day by setting xt = ωt. Persistence was proposed as
a useful baseline in [28]. Note that problem (10) is beyond the scope of traditional reinforcement
learning algorithms due to the high dimensionality of the action spaces and the seasonalities in
the wind and price data. We train DDP and RDDP on the first 260 weeks and test the resulting
commitment strategies as well as the persistence heuristic on the last 260 weeks of the data set.

Table 2 reports the test statistics of the different algorithms. We find that the persistence heuristic
wins in terms of standard deviation, while RDDP wins in all other categories. However, the higher
standard deviation of RDDP can be explained by a heavier upper tail (which is indeed desirable).
Moreover, the profit distribution generated by RDDP stochastically dominates those generated by
DDP and the persistence heuristic; see Figure 4. Another major benefit of RDDP is that it cuts off
any losses (negative profits), whereas all other algorithms bear a significant risk of incurring a loss.

Concluding remarks The proposed RDDP algorithm combines ideas from robust optimization,
reinforcement learning and approximate dynamic programming. We remark that the NK convex
optimization problems arising in each backward induction step are independent of each other and
thus lend themselves to parallel implementation. We also emphasize that Assumption 4.1 could be
relaxed to allow ct and gt to display a general nonlinear dependence on st. This would invalidate
Corollary 4.1 but not Theorem 4.1. If one is willing to accept a potentially larger mismatch between
the true nonconvex cost-to-go function and its convex approximation architecture, then Algorithm 1
can even be applied to specific motor control, vehicle control or other nonlinear control problems.
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