
6 Appendix

6.1 An Example to Show Training Stability is not a Direct Consequence of Differential
Privacy

We now present an example to illustrate that training stability is a property of the training algorithm
and not a direct consequence of differential privacy. We present a problem and two α-differentially
private training algorithms which approximately optimize the same function; the first algorithm
is based on exponential mechanism, and the second on a maximum of Laplace random variables
mechanism. We show that while both provide α-differential privacy guarantees, the first algorithm
does not satisfy training stability while the second one does.

Let i ∈ {1, . . . , l}, and let f : Xn ×R → [0, 1] be a function such that for all i and all datasets D
and D

� of size n that differ in the value of a single individual, |f(D, i)− f(D�
, i)| ≤ 1

n .

Consider the following training and validation problem. Given a sensitive dataset D, the private
training procedure A outputs a tuple (i∗, t1, . . . , tl), where i

∗ is the output of the α/2-differentially
private exponential mechanism [20] run to approximately maximize f(D, i), and each ti is equal to
f(D, i) plus an independent Laplace random variable with standard deviation 2l

αn . For any validation
dataset V , the validation score q((i∗, t1, . . . , tl), V ) = ti∗ .

It follows from standard results that A is α-differentially private. Moreover, A can be represented
by a tuple TA = (GA, FA), where GA is the following density over sequences of real numbers of
length l + 1:

GA(r0, r1, . . . , rl) = 10≤r0≤1 ·
1

2l
e
−(|r1|+|r2|+...+|rl|)

Thus GA is the product of the uniform density on [0, 1] and l standard Laplace densities. Consider
the following map E0. For r ∈ [0, 1], let

E0(r) = i, if
�

j<i e
nαf(D,j)/4

�
j e

nαf(D,j)/4
≤ r ≤

�
j≤i e

nαf(D,j)/4

�
j e

nαf(D,j)/4

In other words, E0(r) is the map that converts a random number r drawn from the uniform distribu-
tion on [0, 1] to the α/2-differentially private exponential mechanism distribution that approximately
maximizes f(D, i). Given a l + 1-tuple R = (R0, R1, . . . , Rl), FA is now the following map:

FA(D,α,R) =

�
E(R0), f(D, 1) +

2lR1

αn
, f(D, 2) +

2lR2

αn
, . . . , f(D, l) +

2lRl

αn

�

Let l = 2 and D and D
� be two datasets that differ in the value of a single individual. Suppose it

is the case that f(D, 1) = 1, f(D, 2) = 1
2 and f(D�

, 1) = 1 − 1
n , f(D�

, 2) = 1
2 + 1

n . Observe
that for D, the exponential mechanism picks 1 with probability enα/4

enα/4+enα/8 , and 2 with probability
enα/8

enα/4+enα/8 , where as for D
�, it picks 1 with probability e(n−1)α/4

e(n−1)α/4+e(n+2)α/8 and 2 with proba-

bility e(n+2)α/8

e(n−1)α/4+e(n+2)α/8 . Thus, if R0 lies in the interval [ e(n−1)α/4

e(n−1)α/4+e(n+2)α/8 ,
enα/4

enα/4+enα/8 ], then,
FA(D,α,R) = t1 whereas FA(D�

, α,R) = t2. When n is large enough, with high probabil-
ity, |t1 − t2| ≥ 1

3 ; thus, the training stability condition does not hold for A for β1 = o(n) and

δ <
enα/8(eα/2−1)

(enα/8+1)(enα/8+eα/2)
.

Consider a different algorithm A
� which computes t1, . . . , tl first, and then outputs the index i

∗ that
maximizes ti∗ . Then A

� can be represented by a tuple TA� = (GA� , FA�), where GA� is a density
over sequences of real numbers of length l as follows:

GA(r1, . . . , rl) =
1

2l
e
−(|r1|+...+|rl|)

and FA� is the map:

FA�(D,α,R) =

�
argmaxi(f(D, i) +

lRi

αn
), f(D, 1) +

lR1

αn
, f(D, 2) +

lR2

αn
, . . . , f(D, l) +

lRl

αn

�

10



For the same value of R1, . . . , Rl, if i∗ = i on input dataset D and if i∗ = i
� on input dataset D�,

then, |f(D, i)− f(D, i
�)| ≤ 1

n ; this implies that

|q(FA�(D,α,R), V )− q(FA�(D�
, α,R), V )| = |ti − ti� | = |f(D, i)− f(D�

, i
�)| ≤ 1

n

with probability 1 over GA� . Thus the training stability condition holds for β1 = 1 and δ = 0.

6.2 Output Perturbation Algorithm

We present the output perturbation algorithm for regularized linear classification.

Algorithm 4 Output Perturbation for Differentially Private Linear Classification

1: Inputs: Regularization parameter λ, training set T = {(xi, yi), i = 1, . . . , n}, privacy parame-
ter α.

2: Let G be the following density over Rd: ρG(r) ∝ e
−�r�. Draw R ∼ G.

3: Solve the convex optimization problem:

w
∗ = argminw∈Rd

1

2
λ�w�2 + 1

n

n�

i=1

�(w, xi, yi) (4)

4: Output w∗ + 2
λαnR.

6.3 Case Study: Histogram Density Estimation

Our second case study is developing an end-to-end differentially private solution for histogram-
based density estimation. In density estimation, we are given n samples x1, . . . , xn drawn from
an unknown density f , and our goal is to build an approximation f̂ to f . In a histogram density
estimator, we divide the range of the data into equal-sized bins of width h; if ni out of n of the input
samples lie in bin i, then f̂ is the density function: f̂(x) =

�1/h
i=1

ni
hn · 1(x ∈ Bin i).

A critical parameter while constructing the histogram density estimator is the bin size h. There is
much theoretical literature on how to choose h – see [15, 24] for surveys. However, the choice
of h is usually data-dependent, and in practice, the optimal h is often determined by building a
histogram density estimator for a few different values of h, and selecting the one which has the best
performance on held-out validation data.

The most popular measure to evaluate the quality of a density estimator is the L2-distance or the
Integrated Square Error (ISE) between the density estimate and the true density:

�f̂ − f�2 =

�

x
(f̂(x)− f(x))2dx =

�

x
f
2(x)dx+

�

x
f̂
2(x)dx− 2

�

x
f(x)f̂(x)dx (5)

f is typically unknown, so the ISE cannot be computed exactly. Fortunately it is still possible to
compare multiple density estimates based on this distance. The first term in the right hand side of
Equation 5 depends only on f , and is equal for all f̂ . The second term is a function of f̂ only and can
thus be computed. The third term is 2Ex∼f [f̂(x)], and even though it cannot be computed exactly
without knowledge of f , we can estimate it based on a held out validation dataset. Thus, given a
density estimator f̂ and a validation dataset V = {z1, . . . , zm}, we will use the following function
to evaluate the quality of f̂ on V :

q(f̂ , V ) = −
�

x
f̂
2(x)dx+

2

m

m�

i=1

f̂(zi) (6)

A higher value of q indicates a smaller distance �f̂−f�2, and thus a higher quality density estimate.
For other measures, see [5].

In the sequel, we assume that the data lies in the interval [0, 1] and that this interval is known in
advance. For ease of notation, we also assume without loss of generality that 1

h is an integer. For
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ease of exposition, we confine ourselves to one-dimensional data, although the general techniques
can be easily extended to higher dimensions. Given n samples and a bin size h, several works,
including [6, 18, 25, 26, 19, 27, 13] have shown different ways of constructing and sampling from
differentially private histograms. The most basic approach is to construct a non-private histogram
and then add Laplace noise to each cell, followed by some post-processing. Algorithm 5 presents a
variant of a differentially private histogram density estimator due to [18] in our framework.

Algorithm 5 Differentially Private Histogram Density Estimator

1: Inputs: Bin size h (such that 1/h is an integer), data T = {x1, . . . , xn}, privacy parameter α.
2: for i = 1, . . . , 1

h do
3: Draw Ri independently from the standard Laplace density: ρG(r) = 1

2e
−|r|.

4: Let Ii =
�
i−1
h ,

i
h

�
. Define: ni =

�n
j=1 1(xj ∈ Ii), and let ñi = max

�
0, ni +

2Ri
α

�
.

5: end for
6: Let ñ =

�
i ñi. Return the density estimator: f̂(x) =

�1/h
i=1

ñi
hñ · 1(x ∈ Ii)

The following theorem shows stability guarantees on the differentially private histogram density
estimator described in Algorithm 5.

Theorem 6 (Stability of Private Histogram Density Estimator) Let H = {h1, . . . , hk} be a set

of bin sizes, and let hmin = mini hi. For any fixed δ, if the sample size n ≥ 1 + 2 ln(4k/δ)
α
√
hmin

, then,

the validation score q in Equation 6 is (β1, β2,
δ
k )-Stable with respect to Algorithm 5 and H for:

β1 = 6
(1−ν)hmin

, β2 = 2
hmin

, where: ν = 2 ln(4k/δ)
nα

√
hmin

.

6.4 Proofs of Theorems 1, 2 and 3

We now present the proofs of Theorems 1, 2 and 3. Our proofs involve ideas similar to those in
the analysis of the multiplicative weights update method for answering a set of linear queries in a
differentially private manner [12].

Let A(D) denote the output of Algorithm 1 when the input is a sensitive dataset D = (T, V ), where
T is the training part and V is the validation part. Let D� = (T �

, V ) where T and T
� differ in the

value of a single individual, and let D�� = (T, V �) where V and V
� differ in the value of a single

individual. The proof of Theorem 1 is a consequence of the following two lemmas.

Lemma 1 Suppose that the conditions in Theorem 1 hold. Then, for all D = (T, V ), all D
� =

(T �
, V ), such that T and T

�
differ in the value of a single individual, and for any set of outcomes S:

Pr(A(D) ∈ S) ≤ e
α2 Pr(A(D�) ∈ S) + δ (7)

Lemma 2 Suppose that the conditions in Theorem 1 hold. Then, for all D = (T, V ), all D
�� =

(T, V �) such that V and V
�

differ in the value of a single individual, and for any set of outcomes S,

Pr(A(D) ∈ S) ≤ e
α2 Pr(A(D��) ∈ S) + δ (8)

PROOF: (Of Lemma 1) Let S = (I, C), where I ⊆ [k] is a set of indices and C ⊆ C. Let E be the
event that all of R1, . . . , Rk lie in the set Σ. We will first show that conditioned on E, for all i, it
holds that:

Pr(i∗ = i|D,E) ≤ e
α2 Pr(i∗ = i|D�

, E) (9)
Since Pr(E) ≥ 1− δ, from the conditions in Theorem 1, for any subset I of indices, we can write:

Pr(i∗ ∈ I|D) ≤ Pr(i∗ ∈ I|D,E) Pr(E) + (1− Pr(E))

≤ e
α2 Pr(i∗ ∈ I|D�

, E) Pr(E) + δ

≤ e
α2 Pr(i∗ ∈ I, E|D�) + δ

≤ e
α2 Pr(i∗ ∈ I|D�) + δ (10)

12



We will now prove Equation 9. For this purpose, we adopt the following notation. We use the
notation Z\i to denote the random variables Z1, . . . , Zi−1, Zi+1, . . . , Zk and z\i to denote the set of
values z1, . . . , zi−1, zi+1, . . . , zk. We also use the notation h(·) to represent the density induced on
the random variables Z1, . . . , Zk by Algorithm 1. In addition, we use the notation R to denote the
vector (R1, . . . , Rk). We first fix a value z\i for Z\i, and a value of R such that R1, . . . , Rk all lie
in Σ, and consider the ratio of probabilities:

Pr(i∗ = i|Z\i = z\i, D,R)

Pr(i∗ = i|Z\i = z\i, D�, R)

Observe that this ratio of probabilities is equal to:

Pr(Zi + q(F (T, θi, α1, Ri), V ) ≥ supj �=i zj + q(F (T, θj , α1, Rj), V ))

Pr(Zi + q(F (T �, θi, α1, Ri), V ) ≥ supj �=i zj + q(F (T �, θj , α1, Rj), V ))

which is in turn equal to:

Pr(Zi ≥ supj �=i zj + q(F (T, θj , α1, Rj), V )− q(F (T, θi, α1, Ri), V ))

Pr(Zi ≥ supj �=i zj + q(F (T �, θj , α1, Rj), V )− q(F (T �, θi, α1, Ri), V ))

Observe that from the stability condition,

|(q(F (T, θj , α1, Rj), V )− q(F (T, θi, α1, Ri), V ))− (q(F (T �
, θj , α1, Rj), V )− q(F (T �

, θi, α1, Ri), V ))|
≤ |q(F (T, θj , α1, Rj), V )− q(F (T �

, θj , α1, Rj), V
�)|+ |q(F (T, θi, α1, Ri), V )− q(F (T �

, θi, α1, Ri), V )|

≤ 2β1

n
≤ 2β

Thus, the ratio of the probabilities is at most the ratio Pr(Zi ≥ γ)/Pr(Zi ≥ γ + 2β) where
γ = supj �=i zj+q(F (T, θj , α1, Rj), V )−q(F (T, θi, α1, Ri), V ), which is at most eα2 by properties
of the exponential distribution. Thus, we have established that for all z\i, for all R in Σk,

Pr(i∗ = i|Z\i = z\i, D,R) ≤ e
α2 · Pr(i∗ = i|Z\i = z\i, D

�
, R)

Equation 9 follows by integrating over z\i and R. The lemma follows. �

PROOF:(Of Lemma 2) Let S = (I, C), where I ⊆ [k] is a set of indices and C ⊆ C. Let E be the
event that all of R1, . . . , Rk lie in Σ. We will first show that conditioned on E, for all i, it holds that:

Pr(i∗ = i|D,E) ≤ e
α2 Pr(i∗ = i|D��

, E) (11)

Since Pr(E) ≥ 1− δ, from the conditions in Theorem 1, for any subset I of indices, we can write:

Pr(i∗ ∈ I|D) ≤ Pr(i∗ ∈ I|D,E) Pr(E) + (1− Pr(E))

≤ e
α2 Pr(i∗ ∈ I|D��

, E) Pr(E) + δ

≤ e
α2 Pr(i∗ ∈ I, E|D��) + δ

≤ e
α2 Pr(i∗ ∈ I|D��) + δ (12)

We will now focus on showing Equation 11. We first consider the case when event E holds, that is,
Rj ∈ R, for j = 1, . . . , k. In this case, the stability definition and the conditions of the theorem
imply that for all θj ∈ Θ,

|q(F (T, θj , α1, Rj), V )− q(F (T, θj , α1, Rj), V
�)| ≤ β2

m
≤ β (13)

In what follows, we use the notation Z\i to denote the random variables Z1, . . . , Zi−1, Zi+1, . . . , Zk

and z\i to denote the set of values z1, . . . , zi−1, zi+1, . . . , zk. We also use the notation h(·) to
represent the density induced on the random variables Z1, . . . , Zk by Algorithm 1. In addition, we
use the notation R to denote the vector (R1, . . . , Rk). We first fix a value z\i for Z\i, and a value of
R such that E holds, and consider the ratio of probabilities:

Pr(i∗ = i|Z\i = z\i, D,R)

Pr(i∗ = i|Z\i = z\i, D��, R)
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Observe that this ratio of probabilities is equal to:

Pr(Zi + q(F (T, θi, α1, Ri), V ) ≥ supj �=i zj + q(F (T, θj , α1, Rj), V ))

Pr(Zi + q(F (T, θi, α1, Ri), V �) ≥ supj �=i zj + q(F (T, θj , α1, Rj), V �))

which is in turn equal to:

Pr(Zi ≥ supj �=i zj + q(F (T, θj , α1, Rj), V )− q(F (T, θi, α1, Ri), V ))

Pr(Zi ≥ supj �=i zj + q(F (T, θj , α1, Rj), V �)− q(F (T, θi, α1, Ri), V �))

Observe that from Equation 13,

|(q(F (T, θj , α1, Rj), V )−q(F (T, θi, α1, Ri), V ))−(q(F (T, θj , α1, Rj), V
�)−q(F (T, θi, α1, Ri), V

�))| ≤ 2β2

m
≤ 2β

Thus, the ratio of the probabilities is at most the ratio Pr(Zi ≥ γ)/Pr(Zi ≥ γ + 2β) for γ =
supj �=i zj + q(F (T, θj , α1, rj), V ) − q(F (T, θi, α1, ri), V ), which is at most eα2 by properties of
the exponential distribution. Thus, we have established that when R ∈ Σk, for all j,

Pr(i∗ = i|Z\i = z\i, D,R)

Pr(i∗ = i|Z\i = z\i, D��, R)
≤ e

α2

Thus for any such R, we can write:

Pr(i∗ = i|D,R)

Pr(i∗ = i|D��, R)
=

�
z\i

Pr(i∗ = i|Z\i = z\i, D,R)h(z\i)dz\i
�
z\i

Pr(i∗ = i|Z\i = z\i, D��, R)h(z\i)dz\i
≤ e

α2

Equation 11 now follows by integrating R over E. �

PROOF:(Of Theorem 1) The proof of Theorem 1 follows from a combination of Lemmas 1 and 2.
�

PROOF:(Of Theorem 2) The proof of Theorem 2 follows from privacy composition; Theorem 1
ensures that Step (2) of Algorithm 2 is (α2, δ)-differentially private; moreover the training procedure
T is α1-differentially private. The theorem follows by composing these two results. �

PROOF:(Of Theorem 3) Observe that:

Pr

�
q(hi∗ , V ) < max

1≤i≤k
q(hi, V )− 2β log(k/δ0)

α2

�
≤ Pr

�
∃j s.t. Zj ≥

log(k/δ0)

α2

�

By properties of the exponential distribution, for any fixed j, Pr(Zj ≥ log(k/δ0)
α2

) ≤ δ0
k . Thus the

theorem follows by an Union Bound. �

6.5 Proof of Theorem 4

PROOF: (Of Theorem 4 for Output Perturbation) Let T and T
� be two training sets which differ in

a single labelled example ((xn, yn) vs. (x�
n, y

�
n)), and let w∗(T ) and w

∗(T �) be the solutions to the
regularized convex optimization problem in Equation 1 when the inputs are T and T

� respectively.
We observe that for fixed λ, α and R,

F (T, λ, α,R)− F (T �
, λ, α,R) = w

∗(T )− w
∗(T �)

When the training sets are T and T
�, the objective functions in the regularized convex optimization

problems are both λ-strongly convex, and they differ by 1
n (�(w, xn, yn)−�(w, x�

n, y
�
n)). Combining

this fact with Lemma 1 of [3], and using the fact that � is 1-Lipschitz, we have that for all λ and R,

�F (T, λ, α,R)− F (T �
, λ, α,R)� ≤ 2

λn

Since g is L-Lipschitz, this implies that for any fixed validation set V , and for all λ, α and R,

|q(F (T, λ, α,R), V )− q(F (T �
, λ, α,R), V )| ≤ 2L

λn
(14)
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Now let V and V
� be two validation sets that differ in the value of a single labelled example

(x̄m, ȳm). Since g ≥ 0 for all inputs, for any such V and V
�, and for a fixed Λ, α and R,

|q(F (T, λ, α,R), V )− q(F (T, λ, α,R), V �)| ≤ gmax

m , where

gmax = sup
(x,y)∈X

g(F (T, λ, α,R), x, y)

By definition, gmax ≤ g
∗. Moreover, as g is L-Lipschitz,

gmax ≤ L · �F (T, λ, α,R)�

Now, let E be the event that �R� ≤ d log(dk/δ). From Lemma 4 of [3], Pr(E) ≥ 1 − δ/k. Thus,
provided E holds, we have that:

�F (T, λ, α,R)� ≤ �w∗�+ d log(dk/δ)

λαn
≤ 1

λ
+

d log(dk/δ)

λαn
=

1

λ

�
1 +

d log(dk/δ)

nα

�

where the bound on �w∗� follows from an application of Lemma 1 of [3] on the functions 1
2λ�w�

2

and 1
2λ�w�

2 + 1
n

�n
i=1 �(w, xi, yi). This implies that provided E holds, for all training sets T , and

for all λ,

|q(F (T, λ, α,R), V )− q(F (T, λ, α,R), V �)| ≤ L

λm

�
1 +

d log(dk/δ)

nα

�
(15)

The theorem now follows from a combination of Equations 14 and 15, and the definition of g∗. �

PROOF: (Of Theorem 4 for Objective Perturbation) Let T and T
� be two training sets which differ in

a single labelled example (xn, yn). We observe that for a fixed R and λ, the objective of the regular-
ized convex optimization problem in Equation 2 differs in the term 1

n (�(w, xn, yn)− �(w, x�
n, y

�
n)).

Combining this with Lemma 1 of [3], and using the fact that � is 1-Lipschitz, we have that for all λ,
α, R,

�F (T, λ, α,R)− F (T �
, λ, α,R)� ≤ 2

λn

Since g is L-Lipschitz, this implies that for any fixed validation set V , and for all λ and r,

|q(F (T, λ, α,R), V )− q(F (T �
, λ, α,R), V )| ≤ 2L

λn
(16)

Now let V and V
� be two validation sets that differ in the value of a single labelled example

(x̄m, ȳm). Since g ≥ 0, for any such V and V
�, |q(F (T, λ, α,R), V ) − q(F (T, λ, α,R), V �)| ≤

gmax

m , where
gmax = sup

(x,y)∈X
g(F (T, λ, α,R), x, y)

By definition gmax ≤ g
∗. Moreover, as g is L-Lipschitz,

gmax ≤ L · �F (T, λ, α,R)�

Let E be the event that �R� ≤ d log(dk/δ). From Lemma 4 of [3], Pr(E) ≥ 1 − δ/k. Thus,
provided E holds, we have that:

�F (T, λ, α,R)� ≤ 1 + �R�/(αn)
λ

≤ 1

λ

�
1 +

d log(dk/δ)

nα

�

This implies that provided E holds, for all training sets T , and for all λ,

|q(F (T, λ, α,R), V )− q(F (T, λ, α,R), V �)| ≤ L

λm

�
1 +

d log(dk/δ)

nα

�
(17)

The theorem now follows from a combination of Equations 16 and 17, and the definition of g∗. �

15



6.6 Proof of Theorem 6

Lemma 3 (Concentration of Sum of Laplace Random Variables) Let Z1, . . . , Zs be s ≥ 2 iid

standard Laplace random variables, and let Z = Z1 + . . .+ Zs. Then, for any θ,

Pr(Z ≥ θ) ≤
�
1− 1

s

�−s

e
−θ/

√
s ≤ 4e−θ/

√
s

PROOF: The proof follows from using the method of generating functions. The generating function
for the standard Laplace distribution is: ψ(X) = E[etX ] = 1

1−t2 , for |t| ≤ 1. As Z1, . . . , Zs are
independently distributed, the generating function for Z is E[etZ ] = (1− t

2)−s. Now, we can write:

Pr(Z ≥ θ) = Pr(etZ ≥ e
tθ)

≤ E[etZ ]
etθ

= e
−tθ · (1− t

2)−s

Plugging in t = 1√
s
, we get that:

Pr(Z ≥ θ) ≤
�
1− 1

s

�−s

e
−θ/

√
s

The lemma follows by observing that for s ≥ 2, (1− 1
s )

s ≥ 1
4 . �

PROOF: (Of Theorem 6) Let V = {z1, . . . , zm} be a validation dataset, and let V � be a valida-
tion dataset that differs from V in a single sample (zm vs z

�
m). We use the notation R to denote

the sequence of values R = (R1, R2, . . . , R1/h). Given an input sample T , a bin size h, a pri-
vacy parameter α, and a sequence R, we use the notation f̂T,h,α,R to denote the density estimator
F (T, h, α,R). For all such T , all h, all α and all R, we can write:

|q(F (T, h, α,R), V )− q(F (T, h, α,R), V �)| =
2

m
(f̂T,h,α,R(zm)− f̂T,h,α,R(z

�
m))

≤ 2

m
· maxi ñi

hñ
≤ 2

mh
(18)

For a fixed value of h, we define the following event E:
1/h�

i=1

Ri ≥ − ln(4k/δ)√
h

Using the symmetry of Laplace random variables and Lemma 3, we get that Pr(E) ≥ 1− δ/k. We
observe that provided the event E holds,

ñ ≥ n−
1/h�

i=1

Ri ≥ n− 2 ln(4k/δ)

α
√
h

≥ n(1− ν) (19)

Let T and T
� be two input datasets that differ in a single sample (xn vs x�

n). We fix a bin size h, a
value of α, and a sequence R, and for these fixed values, we use the notation ñi and ñ

�
i to denote the

value of ñi in Algorithm 5 when the inputs are T and T
� respectively. Similarly, we use ñ =

�
i ñi

and ñ
� =

�
i ñ

�
i.

For any V , we can write:

q(F (T, h, α,R), V )− q(F (T �
, h, α,R), V ) =

2

m

m�

j=1

(f̂T,h,α,R(zj)− f̂T �,h,α,R(zj))

−
1/h�

i=1

h ·
�

ñ
2
i

h2ñ2
− ñ

�2
i

h2ñ�2

�
(20)

We now look at bounding the right hand side of Equation 20 term by term. Suppose T
� is obtained

rom T by moving a single sample xn from bin a to bin b in the histogram. Then, depending on the
relative values of ña and ñb, there are four cases:
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1. ñ
�
a = ña − 1, ñ�

b = ñb + 1. Thus ñ� = ñ.
2. ñ

�
a = ña = 0, ñ�

b = ñb + 1. Thus ñ� = ñ+ 1.
3. ñ

�
a = ña − 1, ñ�

b = ñb = 0. Thus ñ� = ñ− 1.
4. ñ

�
a = ña = 0, ñ�

b = ñb = 0. Thus ñ� = ñ.

In the fourth case, f̂T,h,α,R = f̂T �,h,α,R, and thus the right hand side of Equation 20 is 0. Moreover,
the second and the third cases are symmetric. We thus focus on the first two cases.

In the first case, the first term in the right hand side of Equation 20 can be written as:
���
2

m
·

m�

j=1

1/h�

i=1

1(zj ∈ Ii) ·
�
ñi

hñ
− ñ

�
i

hñ�

� ��� =
���
2

m
·

m�

j=1

1/h�

i=1

1(zj ∈ Ii) ·
ñi − ñ

�
i

hñ

���

≤ 2

m
·m · 1

hñ
≤ 2

hñ

The second term on the right hand side of Equation 20 can be written as:
���
1/h�

i=1

�
ñ
2
i

hñ2
− ñ

�2
i

hñ�2

� ��� =
ñ
2
a + ñ

2
b − (ña − 1)2 − (ñb + 1)2

hñ2

=
���
2ña − 2ñb − 2

hñ2

��� ≤
2

hñ

where the last step follows from the fact that ñ�
b = ñb + 1 ≤ ñ. Thus, for the first case, the right

hand side of Equation 20 is at most 4
hñ .

We now consider the second case. The first term on the right hand side of Equation 20 can be written
as:

���
2

m
·

m�

j=1

1/h�

i=1

1(zj ∈ Ii) ·
�
ñi

hñ
− ñ

�
i

hñ�

� ���

=
���
2

mh
·

m�

j=1

1/h�

i=1

1(zj ∈ Ii) ·
�
ñi

ñ
− ñ

�
i

ñ+ 1

� ���

≤ 2

hm
·m · 1

ñ(ñ+ 1)
·max(|ñi(ñ+ 1)− ñiñ|, |ñi(ñ+ 1)− ñ(ñi + 1)|)

≤ 2

h
· 1

ñ(ñ+ 1)
·max(|ñi|, |ñ− ñi|) ≤

2

h(ñ+ 1)

where the last step follows from the fact that max(|ñi|, |ñ− ñi|) ≤ ñ. The second term on the right
hand side of Equation 20 can be written as:

���
1/h�

i=1

�
ñ
2
i

hñ2
− ñ

�2
i

hñ�2

� ��� =
�

i �=b

�
ñ
2
i

hñ2
− ñ

2
i

h(ñ+ 1)2

�
+
���
ñ
2
b

hñ2
− (ñb + 1)2

h(ñ+ 1)2

���

=
2ñ+ 1

hñ2(ñ+ 1)2
·
�

i �=b

ñ
2
i +

���
(ñb − ñ)(2ñbñ+ ñ+ ñb)

hñ2(ñ+ 1)2

���

≤ 2ñ+ 1

h(ñ+ 1)2
+

ñ · 2ñ(ñ+ 1)

hñ2(ñ+ 1)2
≤ 4

h(ñ+ 1)

Thus, in the second case, the right hand side of Equation 20 is at most 6
h(ñ+1) . We observe that the

third case is symmetric to the second case, and thus we can carry out very similar calculations in
the third case to show that the right hand side is at most 6

hñ . Thus, we have that for any T and T
�,

provided the event E holds,

|q(F (T, h, α,R), V )− q(F (T �
, h, α,R), V )| ≤ 6

hñ
(21)

The theorem now follows by combining Equation 21 with Equation 19. �
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6.7 Proof of Theorem 5

Lemma 4 (Parallel construction) Let A = {A1,A2, . . . ,Ak} be a list of k independently random-

ized functions, and let Ai be αi-differentially private. Let {D1, D2, . . . , Dk} be k subsets of a set

D such that i �= j =⇒ Di ∩Dj = ∅. Algorithm B(D,A) = (A1(D1),A2(D2), . . . ,Ak(Dk)) is

max1≤i≤k αi-differentially private.

PROOF: Let D,D
� be two datasets such that their symmetric difference contains one element. We

have that
P (B(D,A) ∈ S)

P (B(D�,A) ∈ S)
=

P (B(D,A) ∈ S1 × · · · × Sk)

P (B(D�,A) ∈ S1 × · · · × Sk)
=

P (A1(D1) ∈ S1) · · ·P (Ak(Dk) ∈ Sk)

P (A1(D�
1) ∈ S1) · · ·P (Ak(D�

k) ∈ Sk)
(22)

by independence of randomness in the Ai. Since i �= j =⇒ Di ∩Dj = ∅, there exists at most one
index j such that Dj �= D

�
j . If j does not exist, (22) reduces to e

0 ≤ e
max1≤i≤k αi . Let j exist, then

P (B(D,A) ∈ S)

P (B(D�,A) ∈ S)
=

P (Aj(Dj) ∈ Sj)

P (Aj(D�
j) ∈ Sj)

≤ e
αj ≤ e

max1≤i≤k αi ,

which concludes the proof. �

PROOF: (Theorem 5) We begin by separating task (a) of producing the fi in step 1. from the task
(b) of computing ei in step 2. and selecting i

∗ in step 3.

From the parallel construction Lemma 4 it follows that (a) in dataSplit is α-differentially private.
From standard composition of privacy it follows that (a) in alphaSplit is α-differentially private.

Task (b) is for both alphaSplit and dataSplit an application of the exponential mechanism [20],
which for choosing with a probability proportional to �(−ei) yields 2�∆-differential privacy, where
∆ is the sensitivity of ei. Since a single change in V can change the number of errors any fixed
classifier can make by at most 1 = ∆, we get that task (b) is α-differentially private for � = α/2.

If T and V are disjoint, we get by parallel construction that both alphaSplit and dataSplit yield
α-differential privacy. If T and V are not disjoint, by standard composition of privacy we get that
both alphaSplit and dataSplit yield 2α-differential privacy.

In Random , the results of step 2. in task (b) are never used in step 3. Step 3 is done without looking
at the input data and does not incur loss of differential privacy. We can therefore simulate Random
by first choosing i

∗ uniformly at random, and then computing fi at α-differential privacy, which by
standard privacy composition is α-differentially private. �

6.8 Experimental selection of regularizer index
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Figure 2: A summary of 10 times 10-fold cross-validation selection of regularizer index i into Θ
for different privacy levels α. Each point in the figure represents a summary of 100 data points.
The error bars indiciate a boot-strap sample estimate of the 95% confidence interval of the mean. A
small amount of jitter was added to positions on the x-axes to avoid over-plotting.
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