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In this supplementary material, we will prove Theorem 1 in Section 1 and state the details of Maxide
algorithm in Section 2. We then give some additional experiments in Section 3.

1 Proof of Theorem 1

Our strategy is to first identify the deterministic conditions for Zj to be the unique minimizer for
(2), which is given by Lemma 1. We then confirm that those deterministic conditions will hold with
high probabilities in Lemma 7, Lemma 10 and Lemma 11. Finally, Theorem 1 can be proved using
all these lemmas.

Before stating the detailed proof, we define a linear operator Pr : R™*™ — R™*™ as follows: for
any F' € R™"*™, Pp maps F to a new matrix Pp(F') given by

Pr(F) = PyFPg + PAFPy — PyFPy, 4)

where Py, Py, P4 and Pp project a vector onto the subspace spanned by the column vectors in
U, V, A, and B, respectively. That is, if U4 and Up are the left singular vectors of A and B
respectively, then

PU — UUT c Rnxn,

PV — VVT c Rmxm7

Py = U,UL =AAT e R,
PB _ UBUg — BBT c Rﬂlxm.

We note that the projection operator Pr defined in (4) is different from that defined in [4] in that
we restrict the left invariant space to A and the right invariant space to B due to our assumptions.
Similarly, we define a linear operator P as

Pri(F) = (P4 — Py)F(Ps — Py) = Py. FPg..

For convenience, we rewrite the definitions of €g, €21 and ¢g in Theorem 1 here, which will make
our future statement easier,
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1.1 Deterministic Conditions for Z, to Be the Unique Minimizer

In this subsection, we will give the lemma stating two deterministic conditions for Zj to be the
unique minimizer of (2),

Lemma 1. We assume that there exists a matrix Y € R™"*"™ such that

r 1
Al Ro(Y)=Y, |Pr(Y)=UV'|r < Vot [Pre (V)] < 3

We further assume that for any F' # 0, F € R™"*"™ satisfying Ro(F) = 0and F' = PoF Pp, we
have

A2 ||Pr(F)llr < yl|Pre(F)|F,

Tq
v < \/; 5

Proof. We prove by contradiction. Assume there exists another solution Zy + E, with E # 0. We
can further conclude that AEBT = 0 (because if AEBT =0, then ATAEBTB = IEI = 0for A
and B are orthonormal, such that £ = 0, leading to contradiction).

Zo+ E is a solution to (2) means that R (A(Zy + E)BT) = Ra(AZyBT), | Zo + Elltr < || Z0]/tr»
and A(Zy + E)BT = Ps(A(Zy + E)BT)Pp. Evidently, we have AEBT = P,(AEBT)Pg,
Ro(AEBT) = 0. Because AEBT # 0, with Condition A2, we have ||Pr(AEBT)||r <
Y Pr(AEBT) | p < v||Pre(AEBT)||;,.. We will use this fact later.

Let U, and V| be the left and right singular vectors of P (AEBT). Evidently, column vectors
in U, are orthogonal to the column vectors in U, and column vectors in V| are orthogonal to the
column vectors in V, that is UTU | = 0 and VTV, = 0. We have

where

Then, Zy is the unique minimizer to (2).

1Z0 + El s
= |A(Zo + E)B"||s, (6)
= [|A(Zo + E)B || |UVT + ULV || (7)
> (A(Zy+E)BT,UVT +U, V) (8)
= (AZBT,UV"Y + (AZ,BT, U, V") + (AEBT. UV + U, V)
= ||M||4 + (AEBT, =Y + UV + U, V") 9)
= M|t + (AEBT,.UVT = Pr(Y) + ULV = Pro(Y))
= M|+ (Pr(AEB”), UV — Pp(Y)) + (Pr. (AEBT), ULV, — Pr.(Y))
= ||M|¢ + (Pr(AEBT), UV — Pr(Y)) 4+ (Pro(AEBT), U, V")
—(Pr(AEB"), Pr.(Y))
> ||M]t — [|Pr(AEB")|p|UVT = Pr(Y)|lr + || Pro (AEBT )]s, (10)
— | Pre (V)| Prs (AEBT)||1,
= M|l = [|Pr(AEBT)|[p||UV" = Pr(Y)|r + (1 = | Pro(Y)I) | Pro (AEBT)||s,
> 1Ml = /51 PrAEED) 5 + 51 Pra (AEBT) s, an
> Il + 1Pr (BB (5 -/ o) (12)
= V2ol + 1Pr(ABB i (5 =15 ) 13)
where

e (6) is because A and B are orthonormal;



e (7)isbecause |[UVT +U, V]| =1;
e (8)is because (M, Ma) < ||My]|||Ma]|srs
e (9)is because R(Y) =Y and Ro(AEBT) = 0 such that (AEBT|Y) = 0;

o (10) is because <M1,M2> < ||M1H||M2||tr’ <M1,M2> < HM1||FHM2||F and that
| M| =< M,UVT >, where U and V are left and right sigular vectors of M;

e (11) is because of Condition A1;
e (12) is because of Condition A2 and that Frobenius norm is smaller than trace norm;

e (13) is the same as (6).

When
L
9 =7 2ry’
that is,
Ta
7 < 2
we have
120 + Eller > [ Zolltr,
leading to the contradiction. O

1.2 When will Condition A2 Hold with High Probability

In this section, we will give Lemma 7 stating when A2 will hold with high probability.

1.2.1 Noncommutative Bernstein Inequality and its Derivations

First, we rewrite the Bernstein Inequality (Theorem 3.2 in [4]) and its derivations, which will be
used later.

Theorem 2. (Theorem 3.2 in [4]) Let X1, ..., X, be independent zero-mean random matrices of
dimension dy x ds. Suppose pi = max{||E[X, XL]||, |E[X]X]||} and || Xy || < M almost surely

for all k. Then for any T > 0,
L 2
—74/2
P Xk >T S(dl +d2)exp< ) .
[ ICE::I ] Zﬁ=1P£+MT/3

And we can easily have,

Lemma 2. Let Xq,..., X be independent zero-mean random matrices of dimension dy X ds.
Suppose max{||E[X, XT]||, |[EXLX.]||} < p? and ||Xy| < M almost surely for all k. Then for

any T > 0,
2
Pl >T]§(d1+d2)exp< /2 )

L
>t Pr+M7/3
We then give a lemma derived from Lemma 2,

L

> X,

k=1

Lemma 3. Letr X,..., X, be independent zero-mean random matrices of dimension dy X ds.
Suppose max{||E[ Xt X[, |[EXEX.]||} < p2 and Xy, < M almost surely for all k. We assume
that

di+d
IERCEIES

then with a probability at least 1 — 6, we have,

L L
8. di+ds
[ E Xl < glnT Pi-
k=1 k=1



Proof. Assume T = /8 1n 9t% SL 52 (quch that § = (dy + ds) exp [ =37 )), then we have,
3 5 k=1 Pk

82 r3
+d =
Mr = Mf & §
3 8 &
< gg ngEZIP

= Y

L
k=1

such that

—72/2

sy (s i) < e (555 ).

Based on the Lemma 2, we have,

—2 -2
[II > Xl > T] (di + d2) exp <Zpk+§\37/3> (dy 4 do) exp (823[%) -,

that is

L
8 dl-‘rdg
1Y Xk > zln Z
k=1 P

We then give Lemma 4 which is also derived from Lemma 2,

Lemma 4. Ler Xq,..., X, be independent zero-mean random matrices of dimension dy X ds.
Suppose max{ || E[X, XL]||, |E[XT Xk} < pz and Xy, < M almost surely for all k. We assume

that
di+d 3
2 1 2 § : 2
M*1n 5 Zg Pk

Then with a probability at least 1 — 6, we have,

di + da

L
8
DR ARSI

Proof. Assume 7 = S0 In 91592 (such that § = (d; + da) exp (537 )), then we have
L
8. o dy + do 9
M7 = SMln——=> Z 2,

such that
—72/2 37
(dq +d2)eXp<Zpi+MT/3> (d1+d2)exp(8M> )

Based on Lemma 2, we have

[II S X > r] (dy + da) exp <Zpif§\j7/3) (di + do) exp <8§’;) 5,

that is

<.
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1.2.2 Bounding | Pr — W;fPTRQPT”

In this subsection, we will bound || Pr — ot PrRa Pr|| in Lemma 5.

Lemma 5. With a probability at least 1 — 2n="*1 we have

mn
Pr —

= PrRqPr
2]

< \/SBM%(TG +7p)Inn
- 319 ’
if

Q] > —ﬂuzr(ra +7p)lnn,
and therefore, for any F' € R™"*™,

n 1
o] (F,PrRoPr(F)) > EHPT(F)H%H

i1 > Qo.

Proof. For any F' € R™* "™ we have

PrRoPr(F) = Y (Pr(F).ee])Pr(eje])= Y  (F, Pr(ee])) Pr(ee]).

(i,§)en (i,4)€Q
Forany i € [n] and j € [m], define linear operator T; ; as
T;;(F) = (F. Pr(eie]))Pr(eie ) = PrR ; Pr(F),

where R ; j)(F) = eiejTFm-. We write PrRqPr(F) as

PTRQPT Z PTR(zj)PT ): Z TiJ(F)
(i,4)€Q (1,)€Q
Evidently, we have
1 1
—E[PrRoPr(F)] = —Pr(F).
|Q|[T oPr(F)] - r(F)

In this way, our objective, that is the spectral norm of Pr — T‘B—TPTRQ Pr, can be seen as the spectral
norm of a sum of |{2| independent zero-mean random variables, i.e. ‘ﬁllPT — %Tz‘, j» Where we use
Lemma 3. In this way, We need to compute M and p? as

mn
| Pr — o Tijll
1] | =
< max{| PT|| [, !
\Q| \Q|
= max{[|=; PT|| al"gmaXH(F Pr(ese; ))Pr(ee; )|lr}
\ | |Q| | Fllr=1
—  max{||—= Pr, = arg max(F, Pr( eie] ))||Pr(ee; )||lr}
\Q| |Q| |Fllp=1
1
= max{||=: PT|| 0 |HPT(ez IE



Then our objective is to bound || Pr(e;e; )|,
1Pr(ese; )|

<T(eze;r)»ez >
(Pa(eie] )Py, ee] )+ (Py(ee] ) Pp,ee) ) — (Py(eie] )Py, ee, )
1Pa(eie] )Py ||% + [Py (eie; ) Polli — || Pu(eie] )Py %
1PaeilBl1Pve; |7 + [|Pue:l Bl Pee; |7
TallAB THO I THo "W HAB

n o m n o m
rHopaB(Ta + 1) _ Tp*(ra + 1)

mn mn

e;e

IN

IN

Thus

1 mn
liorPr — 757 Tagll <
|€2] Q="

max{||

|Q|PT\| oy 1Pr(ee] )

(Ta + rb) }
|€2]
i 7'[,L2(7"a + Tb)}
Q9
P (ra + 1)

= B gy
1€

IN

maX{H@PTH,

= max{

Then we calculate pfﬁ ;» that is

2 = _mng e L o mng _mng L p o mngr

If we just consider one part of the max{}, we have

1 mn 1 mn
2 = |E[(—= Pp— M, (= pp - M,
Pi,j || [(|Q| T |Q| 7]) (|Q| T |Q‘ 1])]”

m2n? 2m

=TT —
@ e

m2n?

Q[

m2n? 2

—P ——E|T; ;T; ;

1 m?2n? 2mn 1

oo BT ;Ti ] — WPT%PTH

= |IE[ |2PTPT+ T |

|

= |[E[og PrPr+ =Ty Ty 5 — 2 PrT |

\QI2 IQI2

L PrE[T |

—P
Iap?r ™ Jap
m2n? 1

(Erve E E[T;;T; ;] — |Q‘2PT” < maX{ E[|T; ;T ;I

P |ﬂ|2}

m2n2 .
= maX{WE[”PT(eiej )IENT51, W}

m2n? 1
WmaX(IIPT(ee )| F)E [IITi,jII]»W}

IN
=
o
"

—~

m2n? ru®(rq +1p)
|Q‘2 mn %” TH?W}
i (ra + 1)

€2

IN

max{



Since Lemma 3, using M = W and p? = %, we have, with a probability 1 —
2n AL
mn 8. n+m ru(re+m)
PT_WPTRQPT S —In

8Bru?(rq + 1) Inn
3|€] ’

\/3 2n—A+1 Q]

with the condition

r2ut(ry +1p)? I n+m §Tu2(ra +7p)
|22 2n—A+1 — 8 1] ’

that is
n+m 319

n < .
2n=P+1 = 8ru?(ry + 1)

we can tight the condition to,

In 2n < 319
2n =B+ = 8ru2(rq +1p)’
that is
0| > 8Bru?(r, —|—rb)1nn.
3
It
2
Q) > 0 > 220 (T‘;f”)m",
that is to say,
mn 8Bru2(re +1mp)Inn 1
Pr— —PrRqoP, < < =
’T|mTQT —¢ 319 2

we can have, following the property of matrix norm, that

mn 1
TLPrRaP(F) < S|Pr(F)I3,

<F7PT(F)_ |Q|

from which we will have,

(F, Pp(F)) — (F, =

1
WPT’R’QPT(F» < §||PT(F)H%‘~

from which we will further have,

SIPrPIE < THF PrRaPr(F)).

1.2.3 Bounding ||PTL — |Q7‘1PTLRQPTL”

We will give the result of bounding || Pr. — IQ\ " PriRqPrp. || in Lemma 6.

Lemma 6. With a probability at least 1 — 2n=5%, we have, if |Q2] < w

< 8Bu2(rqry +r?) Inn

M p  RaPp.

PTL
9]

and thus for any 7 € R"™*"™,

166u%(rqry +72)Inn

7, Pr. Pri (7)) <
< TRQT()>— 3|Q|

1Pr(2) |-

\QI

= )y, then



Proof. Similar to the proof of Lemma 5, we have
PriRoPro(F) = Y PriRujPro(F)= Y Ti;(F
(4,,5)€Q (4,4)€Q
where T; ; = Pr.R; ;) Pr.. Evidently, we have

IQ\

E[PTLRQPTL] == PTL

Now our objective, that is Ppi — %PTL RaPr., can be seen as a sum of || independent zero-

mean variables, i.e., IQIP — %Tiﬁj. In this way, we compute M and p? as,
mn
H‘ |PTL - WT%J” < max{| |||PTL|| | | HT 1, |}
< maX{ IPrell, T || Pre (eiel )3,
1€2] IQI g

and
|Pro(eief)|F = |lPa(eie])Psl% + |Pu(eie] )Pyl — |[Paleie] )Py |7 — || Pu(eie] ) Ps%

< ||Pa(eie]) Pl + || Pu(eie -)PVH%

< MABTaABTY | T flo7

n m n o m
_ thpran +
mn
o )
mn
such that
1 mn p?(rery +1r2) w2 (rery +12)
M = max{— } =
Qe mn |€2]
In the same way,
1 mn 1 mn
2 T
- = |E[(5Pr — o7 Tig) (o Pre — 757 i)l
1€2] Q] 77 e Q] ~*
m?n?

” ‘Q|2 ]E[TiJTi;j] |Q|2PTJ-||

m2n? p2(rgry +172) 11
|2)2 mn mn’ |Q2
W2rary + 1)

|22

IA

max{

Using Lemma 3, we have, with probability at least 1 — 2n B+l we have, if

pt(rary +12)32 2n S 3 u2(rory +12)

1 2
BE BT S To TR
that is
2 2
0] < 8Bu (rarbg—l—r )Inn _q,
we have,
mn 8 p2(rary + %) 2n
‘PTL —WPTLRQPTL S § |Q| In 2n*ﬁ+1
B 8Bu%(rqry +1%)Inn
a 31€



And due to the property of matrix norm, we further have,

B 8Bu2(rqry +1%)Inn

sar P (P <P Pra (F) = TP RaPr (F)
= (P Pr(F) — (F, 2 7 I o RaPre (F))
= | Pre(F)|% — (F, Ql " PriRaPro (F)),
thus
mn 8Bu%(rary + %) Inn
<F7WPTLRQPTL(F)> < (I+ 30 NI Prs (F)||7-
Because of
2 2
0| < 861 (rarngrr )Ilnn —q,.
we can have
1+ 8Bu2(rory +12) lnn) 168u?(rqry +r%)Inn
31€] B 31€] ’
thus
16Bu2(rqry +1r2) Inn
<F |Q|PTJ_RQPTJ_(F)> < 3|Q‘ HPTJ-(F)H%‘

1.2.4 Proof of A2 Holding with High Probability

Based on Lemma 5 and 6, we can give the result stating when A2 will hold with high probability,
Lemma 7. With a probability 1 — 4n=P%Y, for any F # 0, F € R™™ satisfying Ro(F) = 0 and
F = P, FPpg, we have

1 Pr(F)||p < vl Pre(F)]lF,
where 7 is given in (5), provided

Qo < Q] < Q.

Proof. Since Rq (F) = 0and F = PoFPp, we have RqoPr(F) = —RqPpr. (F). Thus we have

<F PrRaPr(F)) = (F PriRqPri(F)).

IQI IQI

First, according to Lemma 5, and Lemma 6, with a probability atleast 1 — 4n~8*+1 we have

1
§HPT(F)”% 9] L (F, PrRoPr(F)) = \Q| " (F, PriRoPr. (F))
168u2(rery +1r2) Inn 9
<
< OB b (@)1
16B8u2(rary +72)Inn
< ( M s (21
3Q

1
= SIPr (@),
such that

[1Pr(E)|F < (-

\f”PTL

When r < r,, surely we have f < /5%, thus completing our proof. O



1.3 When will Condition A1 Hold with High Probability

Before showing the result when will condition A1 hold With high probability, we will bound the
following two values 7&t = || PreRoPr(F)| and || Pr(F) — ot L PrRoPr(F)| s where || - || is the
maximum entry of a matrix, in Lemma 8 and 9 respectively.

Lemma 8. For a fixed F' € R™™, with a probability 1 — 2n=+1, we have,
mn 8Bmnury, Inn
Tor IPreRaPr(F)|| < |Pr(F)|lecy/ — =

Proof. Similar to the proof for Lemma 5, we write

PriRoPr(F) = > (F.Pr(ee]))Pri(ee])= Y  Tij,
(i.)€9 (i.4)€9

if 192] > Qo.

where
T;;(F) = (F, Pr(e;e] ) Pr.(ee] ).
Evidently,
E[PriRqPr(F)] =0.
To use Lemma 3, we compute M and p? as,
M= max [Tl

< max max F, Pr(e;e; ))Pr.(e;e
< max | max |(FPr(ee]))Pr(ee])r

< max (F Pr(eie]))|Pr(eie])]
i€[n],j€[m]
< _max Ry Pr(F)||Pre(eie])]
i€[n],j€[m]
< Pr(F)loe_max |[Pra(eie;)]
1€[n],j€[m]
12 (raro +17)
< IPr(F)floey/ T
and
pi; = max{[EITiT; )l BT, Tl }
= ||Pr(F )H2 max{HE[PTL(eZeJ )] [Pr.(e; e;r)]] |, E[[PTL(GZ )][PTJ_ ee H|}
= [|Pr(F)||2, max (|[E[Pz.eje] Pyreje] Py ||, |E[Psrese; Ppreje] Pyil)
Ta T
< |[Pr(F)]1% max (FAZTE[Py.eje] Pps]l, FAZ2 B[Py ese] Pasll)
HABTa HABTb
< [Pr(F)|Z max (FAE7 Py Bleje | Ppe ||, FAZ2 | Py Bleie] | Pas))
MA Ta HABTb
< [ Pr(F)|% max (KA | Py Py ||, FA2 ||PALPALH)
max{Tq,T
B )

mn

Without loss of generality, we assume 7, < r,, such that we have,

2 2 HABTa 2 HTa
g < IPr(P)R AR < | Pr(F) 3,50

Use Lemma 3, we have, if

2 2
A (rary +1r2) 2n 5 pra|9

Pr(F)]|3 1 Pr( —
H T( )”oo mn Il2n B+1 — 8“ T )”

b

10



that is

2
1
Sulrary +17)BInn o) (14)

3ra -

we have, with a probability 1 — 2n~#+1,

mn 18602 Inn
Pry P < —||Pr(F _

8Bura|QInn
3mn

[88mmnury, Inn
= P F 0o T rT——

To prove (14) holds, we will using the condition |Q| > Qg (in Lemma 7). More specifically, we
have,

IN

Tl T oo
GlPre)]

3208rp?(rq + 1) Inn S 8u(rary +12)B1Inn
3 - 3ra ’

1 > Qo >

where the third inequality is because that 4p(r, + ) > 75 + r2 /Ta, Which is true because 1 > 1,
re > rpand r, > 7.

Thus under the condition |2| > €y, we complete our proof. O

Lemma 9. For a fixed Z € R™*™, with a probability 1 — 2n~5%2, we have

8Bru2(re + 1) Inn

H <PT Q) PTRQPT> (F)Hoo < \/ ET0] |1 Pr(F)|] oo,

and therefore

mn
H (PT - mPTR”PT) <F>H

if €2 > Qo.

Proof. This lemma can be proved by the standard Bernstein Inequality. For each matrix index (a, b),
sample (¢, ) uniformly at random to define the random variable

ga,b = [m’I’LPT'R,i’jPT(F) — PT(F)]a,b

We have
E[&a,b] =0
i3 Pr — Prll|Pr(F)lloo <71 (ra +76)|1Pr(F)|l oo,
and
El¢2,] = E[([mnPrR;;Pr(F)— Pr(F)las)?

b
E[[m*n® PrRi,; Pr(F)]; ] + [Pr(F)]z , — 2mnE[[Pr(F)as[PrRi; Pr(F)]as]
= mn?E[[PrR,; Pr(F)2,) — [Pr(F)2,

n’E [ ((eoey . Prleie))(F. Priee] )] = [Pr(F),
mn||Pr(F) 3|1 Pr(eaes) % — [Pr(F)]2,
| Pr(F)Zori (ra + 7).

IN



Using the standard Bernstein’s inequality, we have,

S Pr(F) i (ra + ) 525 |

P |[mnPTRQPT(F) — |Q|PT(F)]a}b| > \/

3
that is,
P ‘[mPTRQPT(F)—PT(F)]a’b >\/8Tﬁu2(ga|(‘2~‘|7°b)ln””PT(F)oo P
if
(12 ) |Pr(F)l)? B0 < 21001 Pr(F) i (r + 1),
which is,

(8ru?(ry +1))B1Inn
3

<.

Take the union bound, we have, with a probability at least 1 — op—B+2

8rfBu(rqe + 1) Inn
PrRoPr(F) - PT<F>H < 1Pr () o
H 5] . 310
If Q] > Qq, we have,
1
et PRaPe(F) = Pr(E)| < SIP(F)

oo

O

To verify there exists a matrix Y that satisfies the conditions in A1, we follow the idea in [4] and
construct Y as follows. We randomly select ¢€2y entries from €2, where the value of ¢ will be
discussed later, and divide the set of selected entries into ¢ subsets, denoted by €21, ..., Q,, with

|Qi‘:§207 izl,...,q

We generate a sequence of Y3, = 1,..., q as follows
t
mn
Ye=14o > Ra, (W),
0 =1
where W, = UV T and W41 is defined inductively as,
Wi =Pr(UVT —Y,) = W, - Q—PTRQt(Wt)
0

(PT — ngTRQtPT> W, (This is because Pp(W,;) = Wy).
0

We construct Y as the last element of the sequence, i.e. Y = Y. Evidently, we have,

Y = Ra(Y). (15)

The following two lemmas show that Y satisfies the other two properties in assumption Al.
Lemma 10. With a probability 1 — 2qn=11, we have

PrY)—UVT| <, /-
| Pr(Y) II,\/%,

12

ifq > qo.



Proof. Since
mn
Wi = (Pr — ?OPTRQtPT)Wh

we have

1Pr(y)-UvVT| < 1L,

Pr— " prRa. Pr
Qo

Using Lemma 5, we have, with a probability 1 — 2gn=5+1,
1
1Pr(V) UV <

and by choosing ¢ = gy = 3(1 + log, 7, — log, ), we have || Pp(Y) — UV || < \/r/2r,. O
Lemma 11. With a probability 1 — 2qn=+1 — 2qn=5%2 we have
1
1Pre(v)l < 5.

Proof. Because of Lemma 9 and Wy, = (Pr — %:PTRQtPT)Wt, we have
mn

o = |[(Pr —
IWeralloo = [1(Pr =5

1
PrRa, Pr)Wille < §||WtHoo~
To bound || Py (Y)]|, we have,

q

mn
[Pro(Y) < Z ?OHPT*RQiPT(Wi)H

i=1
q
< a) Wil (Lemmas)
=1
1
SEAN =
1=1
= 20w
<

9 x 8Bmnur, Inn . jur
319 mn
8uirBury Inn

< 22Xy —Fma—

such that to bound || Pr. (Y)|| < 3 we need,
0| > 128M1riura lnn’

which is surely true when

1285 max{py, ptr(re +rp)lnn

Q] >
3

— Q.

1.4 Proof of Theorem 1

Proof. Through Eq. 15, Lemma 10 and 11, condition A1 in Lemma 1 is satisfied. Through Lemma 7,
condition A2 in Lemma 1 is satisfied. By the conclusion of Lemma 1 and union bound, we finish
the proof. O

Notice our condition here requires
G080 < 4,
that is
(1+logy 7 — logy ) (87(rq +173)) < (rary +12),
which holds when r, > r and r, > a.
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Algorithm 1 Maxide (Matrix Completion with Side Information)
1: Initialization: 6; = 0, € (0,1], Z; = Z5, L,y > 1, and stopping criterion €
2: k=2,

while E(Zk_;,_l) < (1 — E)E(Zk) do

Vi = Zi + 0 (0,1, — V)(Zk — Z1—1)
Zy1 = argming A|| Z] + Qr(2)
while £(Zy 1) — E(Yy) > Hi(L) do
L=Lxvy
Zy41 = argming A||Z]| + Qx(2)
9:  end while

10:  Opy1 = (\/9% + 49,% — 9%)/2

11: k=k+1

12: end while

A T

2 The Maxide Algorithm

Algorithm 1 gives the key steps for solving the optimization problem in (3), where £(Z2), Q(Z)
and Hj, are given by

1

£(2) = SIRa(AZBT - M)|F, (16)
L 1 - 2

QuZ2) = S ||Z—-|Yr—+A Ra(AYxB - M)B ; A7)
2 L -
L

Hy(L) = Tr((Zyer = Ye) AT Ra(AYe BT = M) + 2| Zk1 = Y7 (18)

It is based on the accelerated gradient descent method [5] that achieved a convergence of O(1/77?),
where 7' is the number of iterations, by explicitly exploiting the smoothness of the objective function.
The stopping criteria € is set to be a small constant. Besides the variable Z, Algorithm 1 introduces
an auxiliary variable Y, which is updated based on a linear combination of Z;, and Z;_1 (Line 4).
The singular value thresholding method [1] is used to solve Zy 1 = argminy, M| Z||s + Qr(2)
(Line 5 and Line 8). Finally, instead of using the estimated upper bound for the smoothness of the
objective function, which tends to be loss in practice, Algorithm 1 finds the best smoothness constant
L for the objective function by performing a line search (line 6-9) that terminates till the condition
IRQ(AZ11 BT — M)||% — |[Ra(AYx BT — M)||% < Hy (L) is satisfied. This idea was originally
proposed in [3] and was adopted in [2, 5] to speed up the convergence of matrix completion.

3 Additional Experiments

Here the settings are the same as Section 4.2, but we provide the Average Precision measured on the
whole data, instead of only on test instances. The results are provided in Table 3. We can see that
our proposal either gets the best result, or it is comparable with the best result. Our proposal again
achieves the best result on two big data sets, saying, NUS-WIDE and Flickr.
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Table 3: Results on transductive incomplete multi-label learning. Algo. specifies the name of the algorithms.
Time is the CPU time measured in seconds. AP is Average Precision measured based on all data; the higher the
AP, the better the performance. w% represents the percentage of training instances with observed label assign-
ment for each label. The best result and its comparable ones (pairwise single-tailed ¢-test at 95% confidence
level) are bolded.

Data Aleo w% = 10% w% = 20% w% = 40%
£0- time AP time AP time AP
Arts Maxide 3.09 x 10° 0.575 3.60 x 10° 0.616 4.42 x 10° 0.665
MC-b 2.47 x 10* 0.456 1.59 x 10* 0.556 9.54 x 10° 0.692
MC-1 2.39 x 10* 0.473 2.05 x 10* 0.588 1.27 x 10% 0.585
BR-R 1.63 x 10* 0.573 2.98 x 10! 0.609 5.71 x 10! 0.658
BR-1 1.77 x 10* 0.572 3.07 x 10* 0.609 7.10 x 10* 0.657
Business Maxide 3.24 x 107 0.866 3.89 x 10° 0.872 5.04 x 10° 0.890
MC-b 2.94 x 10* 0.861 1.83 x 10* 0.862 1.08 x 10* 0.879
MC-1 3.25 x 10% 0.871 2.18 x 10* 0.901 1.21 x 10* 0.935
BR-R 1.02 x 10* 0.856 1.78 x 10* 0.867 3.32 x 10! 0.887
BR-1 1.19 x 10* 0.856 1.96 x 10* 0.868 4.30 x 10! 0.887
Computers Maxide ~ 4.67 x 107 0.659 5.81 x 10° 0.701 7.79 x 10° 0.749
MC-b 5.58 x 10% 0.604 3.38 x 10* 0.627 1.87 x 10* 0.712
MC-1 6.56 x 10% 0.649 4.40 x 10* 0.684 2.30 x 10* 0.772
BR-R 2.34 x 10* 0.660 4.13 x 10* 0.699 7.68 x 10* 0.746
BR-1 2.70 x 10! 0.659 4.50 x 10* 0.70 8.25 x 10! 0.745
Education Maxide 4.40 x 109 0.60 5.41 x 10° 0.632 6.73 x 10° 0.677
MC-b 3.82 x 10% 0.538 2.40 x 10* 0.539 1.32 x 10* 0.683
MC-1 4.68 x 10* 0.538 3.02 x 10* 0.622 1.55 x 10% 0.750
BR-R 1.77 x 10* 0.575 3.16 x 10* 0.614 6.01 x 10* 0.669
BR-1 1.94 x 10* 0.575 3.28 x 10* 0.614 6.94 x 10! 0.668
Entertainment Maxide 2.77 x 10° 0.653 3.41 x 10° 0.690 4.56 x 10° 0.737
MC-b 4.86 x 10* 0.517 3.13 x 10* 0.594 1.73 x 10* 0.506
MC-1 4.40 x 10* 0.527 4.15 x 10* 0.604 2.27 x 10* 0.703
BR-R 1.89 x 10* 0.652 3.38 x 10* 0.687 6.47 x 10* 0.733
BR-1 2.04 x 10t 0.652 3.44 x 10* 0.687 6.41 x 10* 0.733
Health Maxide 4.31 x 109 0.746 5.36 x 10° 0.778 7.11 x 10° 0.811
MC-b 4.98 x 10* 0.612 2.99 x 10* 0.648 1.71 x 10* 0.763
MC-1 5.82 x 10% 0.665 3.82 x 10% 0.711 2.03 x 10* 0.813
BR-R 2.03 x 10! 0.748 3.61 x 10* 0.774 6.83 x 10! 0.805
BR-1 2.16 x 10! 0.748 3.59 x 10* 0.774 7.05 x 10* 0.805
Recreation Maxide 2.75 x 10° 0.584 3.38 x 10° 0.638 4.44 x 10° 0.694
MC-b 3.56 x 10% 0.418 2.41 x 10* 0.521 1.30 x 10* 0.670
MC-1 3.48 x 10% 0.434 3.25 x 10% 0.523 1.90 x 10% 0.506
BR-R 1.97 x 10* 0.584 3.48 x 10* 0.633 6.53 x 10! 0.690
BR-1 2.24 x 10t 0.584 3.74 x 10* 0.632 6.86 x 10! 0.689
Reference Maxide 5.11 x 10° 0.662 6.47 x 10° 0.703 8.49 x 10° 0.759
MC-b 9.38 x 10* 0.563 5.38 x 10* 0.564 2.75 x 10* 0.632
MC-1 1.11 x 10° 0.608 6.53 x 10% 0.606 3.22 x 10* 0.563
BR-R 2.28 x 10! 0.673 3.89 x 10* 0.716 7.08 x 10* 0.764
BR-1 2.71 x 10t 0.673 4.34 x 10* 0.716 7.48 x 10t 0.764
Science Maxide 6.21 x 10° 0.547 7.67 x 10° 0.601 1.02 x 107 0.675
MC-b 6.80 x 10* 0.453 3.94 x 10* 0.409 2.06 x 10* 0.499
MC-1 8.50 x 10% 0.457 4.97 x 10* 0.558 2.52 x 10* 0.457
BR-R 2.93 x 10! 0.548 5.06 x 10* 0.605 9.30 x 10! 0.674
BR-1 3.60 x 10! 0.547 5.91 x 10* 0.604 1.04 x 102 0.673
Social Maxide 7.18 x 107 0.740 9.09 x 10° 0.769 1.21 x 107 0.813
MC-b 1.71 x 10° 0.629 9.65 x 10* 0.611 4.56 x 10* 0.697
MC-1 2.22 x 10° 0.642 1.17 x 10° 0.662 5.41 x 10* 0.613
BR-R 3.09 x 10! 0.749 5.35 x 10* 0.781 9.74 x 10! 0.820
BR-1 3.71 x 10t 0.749 6.00 x 10* 0.781 1.02 x 102 0.821
Society Maxide 3.69 x 107 0.599 4.54 x 10° 0.636 5.80 x 10° 0.691
MC-b 4.75 x 10* 0.547 2.93 x 10* 0.591 1.62 x 10* 0.716
MC-1 4.14 x 10* 0.570 3.65 x 10% 0.638 2.04 x 10* 0.770
BR-R 2.50 x 10! 0.602 4.54 x 10* 0.636 8.59 x 10! 0.689
BR-1 2.84 x 10t 0.602 4.92 x 10* 0.635 9.58 x 10! 0.688
NUS-WIDE Maxide 1.47 x 10° 0.517 2.10 x 10° 0.522 3.53 x 10° 0.526
BR-1 1.24 x 102 0.335 2.38 x 102 0.403 4.81 x 102 0.473
Flickr Maxide 1.33 x 107 0.124 1.89 x 107 0.124 2.67 x 10T 0.124
BR-1 2.48 x 10% 0.065 4.74 x 10* 0.075 1.11 x 10° 0.078
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