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A Notations, and definitions of entropies and mutual information

To be self-contained, we first recall several definitions from information theory (see Cover and
Thomas (2012), for further properties).

We suppose that we are given a probability space (Ω, E ,P) and consider random variables defined
on it taking a finite number of possible values. We use upper case letters to denote such random
variables (e.g. X,Y, Z,W . . .) and calligraphic letters (e.g. X ,Y,Z,W . . .) to denote their image
sets (of finite cardinality), and lower case letters (e.g. x, y, z, w . . .) to denote one of their possible
values. For a (finite) set of (finite) random variables X = {X1, . . . , Xi}, we denote by PX(x) =
PX(x1, . . . , xi) the probability P({ω ∈ Ω | ∀` : 1, . . . , i : X`(ω) = x`}), and by X = X1 × · · · ×
Xi the set of joint configurations of these random variables. Given two sets of random variables,
X = {X1, . . . , Xi} and Y = {Y1, . . . , Yj}, we denote by PX|Y (x | y) = PX,Y (x, y)/PY (y) the
conditional density of X with respect to Y .1

With these notations, the joint (Shannon) entropy of a set of random variables X = {X1, . . . , Xi}
is thus defined by

H(X) = −
∑
x∈X

PX(x) log2 PX(x),

while the mean conditional entropy of a set of random variables X = {X1, . . . , Xi}, given the
values of another set of random variables Y = {Y1, . . . , Yj} is defined by

H(X | Y ) = −
∑
x∈X

∑
y∈Y

PX,Y (x, y) log2 PX|Y (x | y).

The mutual information among the set of random variables X = {X1, . . . , Xi} and the set of
random variables Y = {Y1, . . . , Yj} is defined by

I(X;Y ) = −
∑
x∈X

∑
y∈Y

PX,Y (x, y) log2

PX(x)PY (y)

PX,Y (x, y)

= H(X)−H(X | Y )

= H(Y )−H(Y | X).

The mean conditional mutual information among the set of random variables X = {X1, . . . , Xk}
and the set of random variables Y = {Y1, . . . , Yj}, given the values of a third set of random variables
Z = {Z1, . . . , Zi}, is defined by

I(X;Y | Z) = H(X | Z)−H(X | Y, Z)

= H(Y | Z)−H(Y | X,Z)

1To avoid problems, we suppose that all probabilities are strictly positive, without fundamental limitation.
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= −
∑
x∈X

∑
y∈Y

∑
z∈Z

PX,Y,Z(x, y, z) log2

PX|Z(x | z)PY |Z(y | z)
PX,Y |Z(x, y | z)

.

We also recall the chaining rule

I(X,Z;Y |W ) = I(X;Y |W ) + I(Z;Y |W,X),

and the symmetry of the (conditional) mutual information among sets of random variables

I(X;Y | Z) = I(Y ;X | Z).

B Proof of Theorem 1

Proof. Let us define p(t) as the proportion Nt/N of samples from L reaching node t and p(j|t) as
the proportion Njt/Nt of samples of class j in t. By expanding Equation 1 into Equation 2 and
using the entropy H(Y |t) = −

∑
j p(j|t) log2(p(j|t)) as impurity measure i(t), Equation 2 can be

rewritten in terms of mutual information:

Imp(Xm) =
1

NT

∑
T

∑
t∈T :v(st)=Xm

p(t)I(Y ;Xm|t)

As the size N of the training sample grows to infinity, p(t) becomes the (exact) probability (accord-
ing to P (X1, . . . , Xp, Y )) that an object reaches node t, i.e., a probability P (B(t) = b(t)) where
B(t) = (Xi1 , ..., Xik) is the subset of k variables tested in the branch from the root node to the
parent of t and b(t) is the vector of values of these variables. As the the number NT of totally
randomized trees also grows to infinity, the importance of a variable Xm can then be written:

Imp(Xm) =
∑

B⊆V −m

∑
b∈Xi1

×...×Xik

α(B, b,Xm, p)P (B = b)I(Y ;Xm|B = b),

where b is a set of values for the variables inB and α(B, b,Xm, p) is the probability that a node t (at
depth k) in a totally randomized tree tests the variable Xm and is such that B(t) = B and b(t) = b.

Let us compute α(B, b,Xm, p). First, let us consider the probability that a node t tests the variable
Xm and is such that the branch leading to t follows a path defined, in that particular order, by all k
variables Xi1 , ..., Xik ∈ B and their corresponding values in b. The probability of that branch is the
probability of picking (uniformly at random) Xi1 at the root node times the probability of testing,
in that order, the remaining Xi2 , ..., Xik variables in the sub-tree corresponding to the value xi1 of
Xi1 defined in b. Note that, by construction, it is certain that this particular sub-tree exists since the
root node is split into |Xi1 | sub-trees. Then, the probability of testing Xm at the end of this branch
is the probability of picking Xm among the remaining p− k variables. By recursion, we thus have:

1

p

1

p− 1
...

1

p− k + 1

1

p− k
=

(p− k)!

p!

1

p− k

Since the order along which the variables appear in the branch is of no importance, α(B, b,Xm, p)
actually includes all k! equiprobable ways of building a branch composed of the variables and values
in B and b. Then, since a tree may at most contain a single such branch, whatever the order of the
tests, the probabilities may be added up and it comes:

α(B, b,Xm, p) = k!
(p− k)!

p!

1

p− k
=

1

Ck
p

1

p− k

From the above expression, it appears that α(B, b,Xm, p) depends only on the size k of B and
on the number p of variables. As such, by grouping in the previous equation of Imp(Xm) condi-
tioning variable subsets B according to their sizes and using the definition of conditional mutual
information, α can be factored out, hence leading to the form foretold by Theorem 1:

Imp(Xm) =

p−1∑
k=0

1

Ck
p

1

p− k
∑

B∈Pk(V −m)

I(Xm;Y |B).

2



C Proof of Theorem 2

Proof. For any tree T , we have that the sum of all importances estimated by using an in-
finitely large sample L (or equivalently, by assuming perfect knowledge of the joint distribution
P (X1, ..., Xp, Y )) is equal to H(Y ) −

∑
l∈`(T ) p(l)H(Y |b(l)), where `(T ) denotes the set of all

leaves of T , and where b(l) denotes the joint configuration of all input variables leading to leaf l.
This is true because the impurities of all test nodes intervening in the computation of the variable im-
portances, except the impurity H(Y ) at the root node of the tree, cancel each other when summing
up the importances.

Since, when the tree is fully developed,
∑

l∈`(T ) p(l)H(Y |b(l)) is obviously equal to the mean
conditional entropy H(Y |X1, . . . , Xp) of Y given all input variables, this implies that for any fully
developed tree we have that the sum of variable importances is equal to I(X1, . . . , Xp;Y ), and so
this relation also holds when averaging over an infinite ensemble of totally randomized trees.

D Proof of Theorem 3

Proof. The proof directly results from the definition of irrelevance. If Xi is irrelevant with respect
to V , then I(Xi;Y |B) is zero for all B ⊆ V −i ⊂ V and Equation 3 reduces to 0. Also, since
I(Xi;Y |B) is non-negative for any B, Imp(Xi) is zero if and only if all its I(Xi;Y |B) terms
are zero. Since Imp(Xi) includes all I(Xi;Y |B) terms for B ⊆ V −i, and since all of them are
therefore null if Imp(Xi) = 0, Xi is thus, by definition, irrelevant with respect to V −i. Xi is then
also trivially irrelevant with respect to V = V −i ∪ {Xi} since I(Xi;Y |B ∪ {Xi}) = 0 for any
B.

E Proof of Lemma 4

Proof. Let Xi /∈ V be an irrelevant variable with respect to V . For Xm ∈ V , B ⊆ V −m, using the
chain rules of mutual information, we have:

I(Xm, Xi;Y |B) = I(Xm;Y |B) + I(Xi;Y |B ∪ {Xm})
= I(Xi;Y |B) + I(Xm;Y |B ∪ {Xi})

IfXi is irrelevant with respect to V , i.e., such that I(Xi;Y |B) = 0 for allB ⊆ V , then I(Xi;Y |B∪
{Xm}) and I(Xi;Y |B) both equal 0, leading to

I(Xm;Y |B ∪ {Xi}) = I(Xm;Y |B)

Then, from Theorem 1, the importance of Xm as computed with an infinite ensemble of totally
randomized trees built on V ∪ {Xi} can be simplified to:

Imp(Xm) =

p−1+1∑
k=0

1

Ck
p+1

1

p+ 1− k
∑

B∈Pk(V −m∪{Xi})

I(Xm;Y |B)

=

p∑
k=0

1

Ck
p+1

1

p+ 1− k

 ∑
B∈Pk(V −m)

I(Xm;Y |B) +
∑

B∈Pk−1(V −m)

I(Xm;Y |B ∪ {Xi})


=

p−1∑
k=0

1

Ck
p+1

1

p+ 1− k
∑

B∈Pk(V −m)

I(Xm;Y |B) +

↪→
p∑

k=1

1

Ck
p+1

1

p+ 1− k
∑

B∈Pk−1(V −m)

I(Xm;Y |B)

=

p−1∑
k=0

1

Ck
p+1

1

p+ 1− k
∑

B∈Pk(V −m)

I(Xm;Y |B) +
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↪→
p−1∑
k′=0

1

Ck′+1
p+1

1

p+ 1− k′ − 1

∑
B∈Pk′ (V

−m)

I(Xm;Y |B)

=

p−1∑
k=0

[
1

Ck
p+1

1

p+ 1− k
+

1

Ck+1
p+1

1

p− k

] ∑
B∈Pk(V −m)

I(Xm;Y |B)

=

p−1∑
k=0

1

Ck
p

1

p− k
∑

B∈Pk(V −m)

I(Xm;Y |B)

The last line above exactly corresponds to the importance of Xm as computed with an infinite
ensemble of totally randomized trees built on V , which proves Lemma 4.

F Proof of Theorem 5

Proof. Let us assume that VR contains r ≤ p relevant variables. If an infinite ensemble of totally
randomized trees were to be built directly on those r variables then, from Theorem 1, the importance
of a relevant variable Xm would be:

Imp(Xm) =

r−1∑
l=0

1

Cl
r

1

r − l
∑

B∈Pl(V
−m
R )

I(Xm;Y |B)

Let Xi ∈ V \ VR be one of the p − r irrelevant variables in V with respect to V . Since Xi is
also irrelevant with respect to VR, using Lemma 4, the importance of Xm when the ensemble is
built on VR ∪ {Xi} is the same as the one computed on VR only (i.e., as computed by the equation
above). Using the same argument, adding a second irrelevant variable Xi′ with respect to V – and
therefore also with respect to VR ∪ {Xi} – and building an ensemble of totally randomized trees on
VR∪{Xi}∪{Xi′} will yield importances that are the same as those computed on VR∪{Xi}, which
are themselves the same as those computed by an ensemble built on VR. By induction, adding all
p− r irrelevant variables has therefore no effect on the importance of Xm, which means that:

Imp(Xm) =

p−1∑
k=0

1

Ck
p

1

p− k
∑

B∈Pk(V −m)

I(Xm;Y |B)

=

r−1∑
l=0

1

Cl
r

1

r − l
∑

B∈Pl(V
−m
R )

I(Xm;Y |B)

Intuitively, the independence with respect to irrelevant variables can be partly attributed to the fact
that splitting at t on some irrelevant variable Xi should only dilute the local importance p(t)∆i(t)
of a relevant variable Xm into the children tL and tR, but not affect the total sum. For instance,
if Xm was to be used at t, then the local importance would be proportional to p(t). By contrast,
if Xi was to be used at t and Xm at tL and tR, then the sum of the local importances for Xm

would be proportional to p(tL) + p(tR) = p(t), which does not change anything. Similarly, one can
recursively invoke the same argument if Xm was to be used deeper in tL or tR.

G Proof of Proposition 6

Proof. The proof of Theorem 1 can be directly adapted to prove Proposition 6. If the recursive
procedure is stopped at depth q, then it means that B(t) may include up to q − 1 variables, which is
strictly equivalent to summing from k = 0 to q − 1 in the outer sum of Equation 3.
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H Proof of Proposition 7

Proof. Let us define a random subspace of size q as a random subset VS ⊆ V such that |VS | = q.
By replacing p with q in Equation 3 (since each tree is built on q variables) and adjusting by the
probability

Cq−k−1
p−k−1

Cq
p

of having selected Xm and the k variables in the branch when drawing VS prior to the construction
of the tree, it comes:

Imp(Xm) =

q−1∑
k=0

Cq−k−1
p−k−1

Cq
p

1

Ck
q

1

q − k
∑

B∈Pk(V −m)

I(Xm;Y |B)

The multiplicative factor in the outer sum can then be simplified as follows:

Cq−k−1
p−k−1

Cq
p

1

Ck
q

1

q − k
=

(p−k−1)!
(p−k)!(q−k−1)!

p!
(p−q)!q!

1

Ck
q

1

q − k

=
(p− k − 1)!q!

(q − k − 1)!p!

1

Ck
q

1

q − k

=
q(q − 1)...(q − k)

p(p− 1)...(p− k)

1

Ck
q

1

q − k

=
q(q − 1)...(q − k)

p(p− 1)...(p− k)

k!(q − k)!

q!

1

q − k

=
1

p(p− 1)...(p− k)

k!(q − k)!

(q − k − 1)!

1

q − k

=
k!

p(p− 1)...(p− k)

=
k!(p− k)!

p!

1

p− k

=
1

Ck
p

1

p− k

which yields the same importance as in Proposition 6 and proves the proposition.

I Generalization to other impurity measures

In this appendix, we show that most of our results can be carried over to other impurity measures.
We first sketch the proof that Theorems 1, 3 and 5 hold generically, and then discuss the case of
some common impurity measures.

I.1 Generalization of Theorems 1, 3 and 5

Let us consider a generic impurity measure i(Y |t) and, by mimicking the notation used for condi-
tional mutual information, let us denote by G(Y ;Xm|t) the impurity decrease for a split on Xm at
node t:

G(Y ;Xm|t) = i(Y |t)−
∑

x∈Xm

p(tx)i(Y |tx),

where tx denotes the successor node of t corresponding to value x of Xm. The importance score
associated to a variable Xm (see Equation 2) is then rewritten:

Imp(Xm) =
1

NT

∑
T

∑
t∈T :v(st)=Xm

p(t)G(Y ;Xm|t).
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As explained in the proof of Appendix B, conditioning over a node t is equivalent to conditioning
over an event of the form B(t) = b(t), where B(t) and b(t) denote respectively the set of variables
tested in the branch from the root to t and their values in this branch. When the learning sample size
N grows to infinity, this yields the following population based impurity decrease at node t:

G(Y ;Xm|B(t) = b(t))

= i(Y |B(t) = b(t))−
∑

x∈Xm

P (Xm = x|B(t) = b(t))i(Y |B(t) = b(t), Xm = x).

Again by analogy with conditional entropy and mutual information2, let us define i(Y |B) and
G(Y ;Xm|B) for some subset of variables B ⊆ V as follows:

i(Y |B) =
∑
b

P (B = b)i(Y |B = b)

G(Y ;Xm|B) =
∑
b

P (B = b)G(Y ;Xm|B = b)

= i(Y |B)− i(Y |B,Xm)

where the sums run over all possible combinations b of values for the variables in B.

With these notations, the proof of Theorem 1 can be easily adapted to lead to the following general-
ization of Equation 3:

Imp(Xm) =

p−1∑
k=0

1

Ck
p

1

p− k
∑

B∈Pk(V −m)

G(Y ;Xm|B).

Note that this generalization is valid without any further specific constraints on the impurity measure
i(Y |t).

Let us now define as irrelevant to Y with respect to V a variable Xi for which, for all B ⊆ V ,
G(Y ;Xi|B) = 0 (i.e. a variable that neither affects impurity whatever the conditioning). From this
definition, one can deduce the following property of an irrelevant variable Xi (for all B ⊆ V and
Xm ∈ V ):

G(Y ;Xm|B ∪ {Xi}) = G(Y ;Xm|B).

Indeed, by a simple application of previous definitions, we have:

G(Y ;Xm|B)−G(Y ;Xm|B ∪ {Xi})
= i(Y |B)− i(Y |B ∪ {Xm})− i(Y |B ∪ {Xi}) + i(Y |B ∪ {Xi, Xm})
= i(Y |B)− i(Y |B ∪ {Xi})− i(Y |B ∪ {Xm}) + i(Y |B ∪ {Xi, Xm})
= G(Y ;Xi|B)−G(Y ;Xi|B ∪ {Xm})
= 0,

where the last step is a consequence of the irrelevance of Xi.

Using this property, the proofs of Lemma 4 and Theorem 5 in Appendices E and F can be straightfor-
wardly adapted, showing that, in the general case also, the MDI importance of a variable is invariant
with respect to the removal or the addition of irrelevant variables.

Given the general definition of irrelevance, all irrelevant variables also get zero MDI importance but,
without further constraints on the impurity measure i, there is no guarantee that all relevant variables
(defined as all variables that are not irrelevant) will get a non zero importance. This property, and
in consequence theorem 3, will be however satisfied as soon as the impurity measure is such that
G(Y ;Xm|B) ≥ 0 for all Xm ∈ V and for all B ⊆ V .

2Note however that G(Y ;Xm|B) does not share all properties of conditional mutual information as for
example G(Xm;Y |B) might not be equal to G(Y ;Xm|B) or even be defined, depending on the impurity
measure and the nature of the output Y .
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I.2 Common impurity measures

Developments in the previous section show that all results in the paper remain valid for any impurity
measure leading to non negative impurity decreases, provided that the definition of variable irrele-
vance is adapted to this impurity measure. The choice of a specific impurity measure should thus be
guided by the meaning one wants to associate to irrelevance.

Measuring impurity with Shannon entropy, i.e., taking i(Y |t) = H(Y |t) and i(Y |B = b) =
H(Y |B = b), one gets back all results in the paper. Given the properties of conditional mutual
information, irrelevance for this impurity measure strictly coincides with conditional independence:
a variable Xi is irrelevant to Y with respect to V if and only if Xi ⊥ Y |B for all B ⊆ V .

A common alternative to Shannon entropy for growing classification trees is Gini index (or entropy),
which, in the finite and infinite sample cases, is written:

i(Y |t) = −
∑
j

p(j|t)(1− p(j|t))

i(Y |B = b) = −
∑
j

P (Y = j|B = b)(1− P (Y = j|B = b)).

Like Shannon entropy, this measure leads to non negative impurity decreases and the corresponding
notion of irrelevance is also directly related to conditional independence.

The most common impurity measure for regression is variance, which, in the finite and infinite
sample cases, is written:

i(Y |t) =
1

Nt

∑
i∈t

(yi −
1

Nt

∑
i∈t

yi)
2

i(Y |B = b) = EY |B=b{(Y − EY |B=b{Y })2}.

Variance can only decrease as a consequence of a split and therefore, Theorem 3 is also valid for
this impurity measure, meaning that only irrelevant variables will get a zero variance reduction.
Note however that with this impurity measure, irrelevance is not directly related to conditional in-
dependence, as some variable Xi can be irrelevant in the sense of our definition and still affects the
distribution of output values.
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