
A Proofs

We restate the results proved here for convenience.

A.1 Proof of Theorem 3

Theorem 1. For every t and every sequence g1, . . . , gt 2 G, we can write the conditional value of
the game as

V
t

(g1, . . . , gt) = max

G2�(G0),E[G]=0
E[V

t+1(g1, . . . , gt, G)],

where �(G0
) is the set of random variables on G0. Moreover, for all t the function V

t

is convex in
each of its coordinates and bounded.

Proof. We prove both statements simultaneously via induction on t. For the base case, t = T � 1,
we have

V
T�1(g1, . . . , gT�1) = inf

x

T

sup

g

T

g
T

· x
T

� L(g1, . . . , gT�1, gT ).

Because the supremum is taken over G whose convex hull is assumed to be a polytope, we can
replace the sup

g

T

2G with max

g

T

2G0 . Furthermore, we can replace the maximization over points
from G0 with the maximization of distributions over G0

= {gi}
i=1,...,m. That is, we can write

V
T�1(g1, . . . , gT�1) = inf

x

T

max

~↵2�
m

mX

i=1

↵
i

(gi · x
T

� L(g1, . . . , gT�1, g
i

)).

The set �
m

is a compact convex set, and the objective
P

m

i=1 ↵i

(gi · x
T

� L(g1, . . . , gT�1, gi)) is
linear in both x and ~↵ hence we can apply Sion’s Minimax theorem to obtain

V
T�1(g1, . . . , gT�1) = max

~↵2�
m

inf

x

T

 
X

i

↵
i

gi
!

· x
T

�
X

i

↵
i

L(g1, . . . , gT�1, g
i

).

Notice that if
P

i

↵
i

gi 6= 0 then the infimum is �1 since the player can make the objective arbitrar-
ily small. Hence we can restrict the outer maximization to distributions ~↵ such that

P
i

↵
i

gi = 0.
This simplifies the expression to

V
T�1(g1, . . . , gT�1) = max

~↵2�
m

�
X

i

↵
i

L(g1, . . . , gT�1, g
i

) s.t.
X

i

↵
i

gi = 0.

Notice that, by assumption, �L is convex in each of its arguments, and hence V
T�1(g1, . . . , gT�1)

is also convex in each g
t

independently, since the maximum of convex functions is convex.

The inductive argument follows identically to the base case, but where we replace �L with V
t

, since
we can write

V
t�1(g1, . . . , gt�1) = inf

x

t

sup

g

t

2G
g
t

· x
t

+ V
t

(g1, . . . , gt�1, gt).

Theorem 3. There exists a set of n+ 1 distinct points {g1, . . . , gn+1} ⇢ G whose convex hull is of
full rank, and a distribution ~↵ 2 �

n+1 satisfying
P

n+1
i=1 ↵

i

gi = 0, such that V =

P
n+1
i=1 ↵

i

f(gi).
Moreover, an optimal choice for the infimum in (6) is the gradient of the unique linear interpolation
of the pairs {(g1,�f(g1)), . . . , (gn+1,�f(gn+1

))}.

We prove this theorem via a sequence of lemmas. We begin with the observation that we may
assume, without loss of generality, that G is convex, and hence G = ConvexHull(G). This is because,
for any x, the objective sup

g2G x · g + f(g) will always be achieved at the boundary of G since the
objective function x · g + f(g) is the sum of two convex functions and is thus convex.
Lemma 11. The infimum in (6) is achieved in a bounded set.
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Proof. Let M = sup

g2G |f(g)| then clearly we have that inf
x2Rn

sup

g2G x · g + f(g)  M since
x can be chosen as 0. It is sufficient to show any x such that kxk > 2M/✏ achieves a worse value
than 0. Since 0 is in the interior of G, there exists an ✏ > 0 such that g =

✏x

kxk 2 G. Then,
sup

g2G x · g + f(g) � x · ✏x

kxk + f(g) > 2M �M = M .

The above lemma is useful since it lets us conclude that we need not necessarily assume x is un-
bounded. Moreover, since the inf is achieved on a compact set, then it has at least one solution
x⇤ that we can analyze. Let � ⇢ Rn denote the set of points x on which the infimum in (6) is
achieved. For any x, let �(x) ⇢ G be the set of corners of the polytope G on which the supremum
sup

g2G x · g + f(g) is achieved for fixed x.
Lemma 12. For any x 2 �, the set ConvexHull(�(x)) must contain the origin.

Proof. Let us assume that 0 /2 ConvexHull(�(x)), then I will show that this contradicts the as-
sumption that x is optimal. If v is the value of the objective in (6), then define �

✏

(x) to be the set
of g 2 G such that g · x + f(x) � v � ✏. We claim that we can choose ✏ > 0 small enough so
that ConvexHull(�

✏

(x)) also does not contain 0. This implies that there is some � > 0 such that
kgk > � for all g 2 ConvexHull(�

✏

(x)). Moreover, since ConvexHull(�
✏

(x)) is a convex set there
must be a separating hyperplane between 0 and ConvexHull(�

✏

(x)), and hence there is some unit
vector z 2 Rn (the normal to the hyperplane) such that z · g < �� for all g 2 ConvexHull(�

✏

(x)).

Choose B > 0 such that kgk  B for all g 2 G. We claim that the point x0 ⌘ x+ ✏

2B z has a strictly
smaller objective value that x. Consider any g 2 ConvexHull(�

✏

(x)), then we have

g · x0
+ f(g) = g · x+ f(g) +

✏

2B
z · g < v � ✏�

2B
< v.

On the other hand, for any g 2 G \ ConvexHull(�
✏

(x)) we have

g · x0
+ f(g) = g · x+ f(g) +

✏

2B
z < v � ✏+

✏

2B
z · g  v � ✏+

✏

2B
kgk  v � ✏

2

< v

where the first inequality follows because by assumption g /2 �

✏

(x). It follows from these two
expressions that sup

g2G

g · x0
+ f(g) < sup

g2G

g · x+ f(g), a contradiction.

Concluding that ConvexHull(H) contains the origin is actually surprisingly useful.
Lemma 13. There is some x 2 � such that ConvexHull(�(x)) has a non-empty interior.

Another way to put this is that �(x) has at least n + 1 points such that none of these is a convex
combination of the others.

Proof. Notice that � is a convex set and, via Lemma 11, is bounded and compact. We claim that
any x on the boundary of � satisfies the goal of the lemma. Choose a boundary point x 2 �, and
assume that ConvexHull(�(x)) is not of full-rank. Via Lemma 12, this set contains the origin, and
hence we can find some unit vector z such that z · g = 0 for all g 2 ConvexHull(�(x)).

Since G is a polytope, we can describe it as the hull of a finite number of points G0 ⌘ {g1, . . . , gm}.
For any gi /2 �(x) we have gi ·x+ f(gi) < v. Choose some ✏ > 0 so that gi ·x+ f(gi) < v� ✏ for
every gi 2 G0 \ �(x), which is possible since this is a finite set. Let B > 0 be a bound on the norm
of all points in G. Then we claim that the points x+

✏

2B z and x� ✏

2B z are both members of �. Of
course, the latter statement contradicts the assumption that x is at the boundary of �. To prove the
final claim, notice that by the convexity of f we have

sup

g2G
g ·

⇣
x+

✏

2B
z
⌘
+ f(g) = max

i=1,...,m
gi ·

⇣
x+

✏

2B
z
⌘
+ f(gi).

For the last expression, we can check two cases. If gi 2 �(x) then gi · z = 0 in which case
gi · �x+

✏

2B z
�
+ f(gi) = gi · x+ f(gi). On the other hand, for gi /2 �(x) we have

gi ·
⇣
x+

✏

2B
z
⌘
+ f(gi) = gi · x+ f(gi) =

✏

2B
g · z < v � ✏+ ✏/2 < v.

Hence the value of the objective is the same for x and x +

✏

2B z. A similar argument follows for
x� ✏

2B z.
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Lemma 14. If x 2 � and we pick any full-rank set of points g1, . . . , gn+1 2 �(x) whose hull
contains the origin, then we may write x as the gradient of the linear interpolation of the points
{(g1,�f(g1), . . . , (gn+1,�f(g

n+1))}. Moreover, this implies that x is a subgradient of the function
f restricted to the set G.

Proof. Let us notice that if we were to search for the linear interpolation of the points
{(g1,�f(g1), . . . , (gn+1,�f(g

n+1))}, then we would need to find a vector m 2 Rn and an off-
set b 2 R such that

m · g
i

+ b = �f(g
i

) 8 i = 1, . . . , n+ 1,

and indeed since the set of g
i

’s is of full rank this has a unique solution. However, the point x also
satisfies a similar set of equations:

x · g
i

+ f(g
i

) = c 8 i = 1, . . . , n+ 1,

where c is the value of the objective in (6). Given the uniqueness of the above to systems of equa-
tions, we have that m = x.

Now given the above results we can actually construct the optimal strategy for the adversary.
Lemma 15. For any full-rank set of points g1, . . . , gn+1 2 �(x) whose hull contains the origin, let
~↵ 2 �

n+1 be a set of weights such that
P

i

↵
i

g
i

= 0 (and indeed ~↵ is unique). Then the value of the
objective (6) is precisely

P
i

↵
i

f(g
i

). Moreover, one optimal randomized strategy for the adversary
is to choose g

i

with probability ↵
i

.

Proof. Recall that the point x⇤ satisfies a system of linear equations

x⇤ · g
i

+ f(g
i

) = c 8 i = 1, . . . , n+ 1,

where c is the value of the objective. Furthermore, it also satisfies any mixture of these equations.
By taking an ~↵ mixture of these equations we have

c =
X

i

↵
i

(g
i

· x⇤
+ f(g

i

)) = 0 · x⇤
+

X

i

↵
i

f(g
i

) =

X

i

↵
i

f(g
i

).

A.2 Proofs from Section 3

Theorem 7. The value of this game is V T

= E
G⇠B

T

h
1
2�G

2
i
=

T

2� .

Proof. Starting from Eq. (10),

E
G⇠B

T

[G2
] =

1

2

T

TX

i=0

✓
T

i

◆
(2i� T )2 Eq. (10)

=

1

2

T

 
4

TX

i=0

✓
T

i

◆
i2 � 4T

TX

i=0

✓
T

i

◆
i+ T 2

TX

i=0

✓
T

i

◆!

and since
P

T

t=0

�
T

t

�
= 2

T ,
P

T

t=0

�
T

t

�
t = T2T�1,

P
T

t=0

�
T

t

�
t2 = (T + T 2

)2

T�2,

=

1

2

T

⇣
4(T + T 2

)2

T�2 � 4T (T2T�1
) + T 2

2

T

⌘

= (T + T 2
)� 2T 2

+ T 2
= T.

The result then follows from linearity of expectation.

Theorem 8. Consider the game where G = [�1, 1] with benchmark L(G) = � exp(G/
p
T ). Then

V T

=

⇣
cosh

1p
T

⌘
T

 p
e

12



with the bound tight as T ! 1. Let ⌧ = T � t and G
t

= g1:t, then the conditional value of the

game is V
t

(G
t

) =

⇣
cosh

1p
T

⌘
⌧

exp

⇣
G

tp
T

⌘
and the player’s minimax optimal strategy is:

x
t+1 = � exp

✓
G

tp
T

◆
sinh

1p
T

⇣
cosh

1p
T

⌘
⌧�1

(12)

Proof. First, we compute the value of the game:

V T

= E
G⇠B

T

⇥� L(G)

⇤
= 2

�T

TX

i=0

✓
T

i

◆
exp

✓
2i� Tp

T

◆

= 2

�T

exp

��
p
T
� TX

i=0

✓
T

i

◆⇣
exp

�
2/

p
T
�⌘i

= 2

�T

exp

��
p
T
�⇣

1 + exp

�
2/
p
T
�⌘T

,

where we have used the ordinary generating function,
P

T

i=0

�
T

i

�
xi

= (1 + x)T . Manipulating the
above expression for the value of the game, we arrive at V T

= cosh(1/
p
T )T . Using the series

expansion for cosh leads to the upper bound cosh(x)  exp(x2/2),

from which we conclude

V
T

=

⇣
cosh

�
1/

p
T
�⌘T

 exp

✓
1

2T

◆
T

=

p
e.

Using similar techniques, we can derive the conditional value of the game, letting ⌧ = T � t be the
number of rounds left to be played:

V
t

(G
t

) = 2

�⌧

⌧X

i=0

✓
⌧

i

◆
exp

✓
G

t

+ 2i� ⌧p
T

◆
= 2

�⌧

exp

✓
G

t

� ⌧p
T

◆⇣
1 + exp

�
2/

p
T
�⌘⌧

.

Following Eq. (9) and simplifying leads to the update of Eq. (12). It remains to show lim

T!1 V
T

=p
e. Using the change of variable x = 1/

p
T , equivalently we have lim

x!0 cosh(x)
1
x

2 . Examining
the log of this function,

lim

x!0
log

⇣
cosh(x)

1
x

2

⌘
= lim

x!0

1

x2
log cosh(x) = lim

x!0

1

x2

✓
x2

2

� x4

12

+

x6

45

� 17x8

2520

+ . . .

◆
=

1

2

,

where we have taken the Maclaurin series of log cosh(x). Using the continuity of exp, we have
against any adversary,

lim

x!0

⇣
cosh(x)

1
x

2

⌘
= exp

⇣
lim

x!0
log

⇣
cosh(x)

1
x

2

⌘⌘
=

p
e.

Theorem 9. Consider a one dimensional game with G = [�1, 1] with benchmark function L non-
positive on GT . Then for the optimal betting strategy we have that |x

t

|  �P
t

s=1 gsxs

+ V T , and
further V T � P

t

s=1 gsxs

for any t and any sequence g1, . . . , gt.

Proof. We need to prove
tX

s=1

g
s

x
s

 V T (15)

and

|x
t

|  �
tX

s=1

g
s

x
s

+ V T . (16)
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The definition of the value of the game and the fact the algorithm is minimax optimal ensures
TX

t=1

g
t

x
t

� L(G)  V T

or, since �L(G) � 0,
TX

t=1

g
t

x
t

 V T . (17)

Now, suppose on some round t we have
P

t

s=1 gsxs

> V T . Then, the adversary can simply play
g
⌧

= 0 for rounds t+ 1, . . . , T , which implies
TX

s=1

g
s

x
s

=

tX

s=1

g
s

x
s

> V T ,

contradicting Eq. (17). Hence, Eq. (15) must hold. Further, if the player ever chose a bet so large it
violated Eq. (16), the adversary could choose g

t

2 {�1, 1} in order to violate Eq. (17).

Theorem 10. Consider the game between an adversary who chooses losses g
t

2 [�1, 1], and a
player who chooses x

t

2 R. For a given sequence of plays, x1, g1, x2, g2, . . . , xT

, g
T

, the value to
the adversary is

P
T

t=1 gtxt

� |g1:T |. Then, when T is even with T = 2M , the minimax value of this
game is given by

V
T

= 2

�T

2M T !

(T �M)!M !


r

2T

⇡
.

Further, as T ! 1, V
T

!
q

2T
⇡

. Let B be a random variable drawn from B
T�t

. Then the minimax
optimal strategy for the player given the adversary has played G

t

= g1:t is given by
x
t+1 = Pr(B < �G

t

)� Pr(B > �G
t

) = 1� 2Pr(B > �G
t

) 2 [�1, 1]. (14)

Proof. Letting T = 2M and working from Eq. (10),

V T

= � E
G⇠B

T

[L(G)] =

2

2

T

TX

i=0

✓
T

i

◆
|i�M | = 2M

2

T

✓
2M

M

◆
= 2

�T

2M T !

(T �M)!M !

, (18)

where we have applied a classic formula of de Moivre [1718] for the mean absolute deviation of the
binomial distribution (see also Diaconis and Zabell [1991]). Using a standard bound on the central
binomial coefficient (based on Stirling’s formula),✓

2M

M

◆
=

4

M

p
⇡M

⇣
1� c

M

M

⌘
(19)

where 1
9 < c

M

< 1
8 for all M � 1, we have

V T  2M
1p
⇡M

=

r
2T

⇡
.

As implied by Eq. (19), this inequality quickly becomes tight as T ! 1.

In order to compute the minimax algorithm, we would like a closed form for V
t

(G
t

) =

�E
G

⌧⇠B
⌧

⇥
L(G

t

+ G⌧

)

⇤
, where G

t

= g1:t is the sum of the gradients so far, ⌧ = T � t is the
number of rounds to go, and and G⌧

= g
t+1:T is a random variable giving the sum of the remaining

gradients. Unfortunately, the structure of the binomial coefficients exploited in the proof of Theo-
rem 10 does not apply given an arbitrary offset G

t

. Nevertheless, we will be able to derive a formula
for the update that is readily computable. Letting B be a random variable with distribution B

⌧

, the
update of Eq. (9) becomes

x
t+1 =

1

2

⌧X

b=�⌧

Pr(B = b)
⇣
|G

t

+ b� 1|� |G
t

+ b+ 1|
⌘
.

Whenever G
t

+ b � 1, the difference in absolute values is �2, and whenever G
t

+ b  1, the
difference is 2. When G

t

+ b = 0, the difference is zero. Thus,

x
t+1 =

1

2

(Pr(B > �G
t

)(�2) + Pr(B < �G
t

)(2)) = Pr(B < �G
t

)� Pr(B > �G
t

).
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B A Symmetric Betting Algorithm

The one-sided algorithm of Theorem 8 has

Loss = V T

+ L(G)  � exp

✓
Gp
T

◆
+

p
e.

In order to do well when g1:T is large and negative, we can run a copy of the algorithm on
�g1, . . . ,�g

T

, switching the signs of each x
t

it suggests. The combined algorithm then satisfies

Loss  � exp

✓
Gp
T

◆
� exp

✓�Gp
T

◆
+ 2

p
e

 � exp

✓ |G|p
T

◆
+ 2

p
e,

and so following Eq. (13) and Theorem 1 of Streeter and McMahan [2012], we obtain the desired
regret bounds. The following theorem implies the symmetric algorithm is in fact minimax optimal
with respect to the combined benchmark

L
C

(G) = � exp

✓
Gp
T

◆
� exp

✓�Gp
T

◆
.

Theorem 16. Consider two 1-D games where the adversary plays from [�1, 1], defined by concave
functions L1 and L2 respectively. Let x1

t

and x2
t

be minimax-optimal plays for L1 and L2 respec-
tively, given that g1, . . . gt�1 have been played so far in both games. Then x1 + x2 is also minimax
optimal for the combined game that uses the benchmark L

C

(G) = L1(G) + L2(G).

Proof. First, taking ⌧ = T � t and using Theorem 4 three times, we have

V C

(g1, . . . , gt) = � E
G

⌧⇠B
⌧

⇥
L1(g1:t +G⌧

) + L2(g1:t +G⌧

)

⇤

= � E
G

⌧⇠B
⌧

⇥
L1(g1:t +G⌧

)

⇤� E
G

⌧⇠B
⌧

⇥
L2(g1:t +G⌧

)

⇤

= V 1
(g1, . . . , gt) + V 2

(g1, . . . , gt),

using linearity of expectation. Then, using Eq. (9) for each of the three games, we have

xC

t

= argmin

x

max

g

gx+ V
C

(g1, . . . , gt�1, g)

=

1

2

�
V
C

(g1, . . . , gt�1,�1)� V
C

(g1, . . . , gt�1,+1)

�

=

1

2

�
V1(g1, . . . , gt�1,�1) + V2(g1, . . . , gt�1,�1)� V1(g1, . . . , gt�1,1 )� V2(g1, . . . , gt�1,+1)

�

= x1
t

+ x2
t

.
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