A Proofs

We restate the results proved here for convenience.

A.1 Proof of Theorem 3

Theorem 1. For every t and every sequence g1, ...,q: € G, we can write the conditional value of
the game as

Vt(gh-u,gt): E[%Jrl(glw“agta(;)]v

max
GEA(G'),E[G]=0

where A(G') is the set of random variables on G'. Moreover, for all t the function V; is convex in
each of its coordinates and bounded.

Proof. We prove both statements simultaneously via induction on t. For the base case, t =T — 1,
we have

VT—l(gl, . agT—l) = infsupgT T — L(gl, e 7gT_l,gT).

T gr

Because the supremum is taken over G whose convex hull is assumed to be a polytope, we can
replace the sup,, g with max,, cg/. Furthermore, we can replace the maximization over points

from G’ with the maximization of distributions over G’ = {¢*},—1,.. . That is, we can write

m

Vr-i(g1,...,97r-1) = inf max Zai(gi cxp — L(g, .., 97-1,9")).
TT AEAN, =
The set A, is a compact convex set, and the objective Y., «;(¢" -z — L(g1, ..., g97-1,9%)) is

linear in both = and & hence we can apply Sion’s Minimax theorem to obtain

Vr_1(g1,...,97-1) = nax lgchf (Z Oéi!f) T — ZaiL(gla s gT-1,9")-
(2 K2

Notice that if >, a;;g* # 0 then the infimum is —oo since the player can make the objective arbitrar-

ily small. Hence we can restrict the outer maximization to distributions & such that ) . a;¢* = 0.

This simplifies the expression to

Vroa(g,.-gr1) = max =Y a;iL(gy,...,9r-1,9") st Y g’ =0.
i i

66 A’V?l

Notice that, by assumption, — L is convex in each of its arguments, and hence Vr_1 (g1, ..., g7—1)
is also convex in each g, independently, since the maximum of convex functions is convex.

The inductive argument follows identically to the base case, but where we replace — L with 1, since
we can write

V;f—l(glv“'agt—l) = inf sup g; - ¢ + Vt(gla e agt—lvgt)-
Tt g+€G

O

Theorem 3. There exists a set of n + 1 distinct points {g*, ..., g" "} C G whose convex hull is of
full rank, and a distribution & € A,y satisfying 32" cigt = 0, such that V= 31" ai f(gY).
Moreover, an optimal choice for the infimum in (6) is the gradient of the unique linear interpolation
of the pairs {(g", —f(g")), ... (""", = f(g" ") }.

We prove this theorem via a sequence of lemmas. We begin with the observation that we may
assume, without loss of generality, that G is convex, and hence G = ConvexHull(G). This is because,
for any x, the objective sup g« - g + f(g) will always be achieved at the boundary of G since the
objective function x - g + f(g) is the sum of two convex functions and is thus convex.

Lemma 11. The infimum in (6) is achieved in a bounded set.
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Proof. Let M = sup,cg |f(g)]| then clearly we have that inf,crn sup,eg 2 - g + f(g) < M since
x can be chosen as 0. It is sufficient to show any x such that ||| > 2M /e achieves a worse value
than 0. Since 0 is in the interior of G, there exists an ¢ > 0 such that ¢ = % € §G. Then,

ll=Il

sup,eg - g+ flg) > a1+ f(g) >2M — M = M. -

ll=Il

The above lemma is useful since it lets us conclude that we need not necessarily assume x is un-
bounded. Moreover, since the inf is achieved on a compact set, then it has at least one solution
x* that we can analyze. Let & C R" denote the set of points = on which the infimum in (6) is
achieved. For any z, let I'(z) C G be the set of corners of the polytope G on which the supremum
sup,eg = - g + f(g) is achieved for fixed x.

Lemma 12. For any x € ®, the set ConvexHull(T'(z)) must contain the origin.

Proof. Let us assume that 0 ¢ ConvexHull(T'(z)), then I will show that this contradicts the as-
sumption that x is optimal. If v is the value of the objective in (6), then define I'c(x) to be the set
of g € Gsuchthat g -z + f(x) > v — e. We claim that we can choose € > 0 small enough so
that ConvexHull(T'.(z)) also does not contain 0. This implies that there is some § > 0 such that
llgll > ¢ for all g € ConvexHull(T'c(x)). Moreover, since ConvexHull(I'.(x)) is a convex set there
must be a separating hyperplane between 0 and ConvexHull(T'c(z)), and hence there is some unit
vector z € R™ (the normal to the hyperplane) such that z - g < —¢ for all g € ConvexHull(T'.(z)).

Choose B > 0 such that ||g|| < B forall g € G. We claim that the point 2’ = x + 5% 2 has a strictly

smaller objective value that x. Consider any g € ConvexHull(T'.(z)), then we have

€ €6
g-a'+fl9)=g-2+flg)+ 557 9<v-gp<v

On the other hand, for any g € G \ ConvexHull(I'.(z)) we have

g2/ +f(g) =g v+ fl9)+ 55z <v—etszzgSv—et gl Sv—2<v
where the first inequality follows because by assumption g ¢ T'.(z). It follows from these two

expressions that sup e g - 2’ + f(g9) < supgeq g+ = + f(g), a contradiction. O

Concluding that ConvexHull(H) contains the origin is actually surprisingly useful.
Lemma 13. There is some x € ® such that ConvexHull(I'(z)) has a non-empty interior.

Another way to put this is that T'(x) has at least n + 1 points such that none of these is a convex
combination of the others.

Proof. Notice that ® is a convex set and, via Lemma 11, is bounded and compact. We claim that
any x on the boundary of ® satisfies the goal of the lemma. Choose a boundary point z € ®, and
assume that ConvexHull(T'(z)) is not of full-rank. Via Lemma 12, this set contains the origin, and
hence we can find some unit vector z such that z - g = 0 for all g € ConvexHull(I'(z)).

Since G is a polytope, we can describe it as the hull of a finite number of points G’ = { gt ..., g™}
For any g* ¢ I'(x) we have g - 2 + f(g') < v. Choose some € > 0 so that ' -z + f(g') < v — e for
every g° € G’ \ I'(z), which is possible since this is a finite set. Let B > 0 be a bound on the norm
of all points in G. Then we claim that the points = + 55z and  — 55 z are both members of ®. Of
course, the latter statement contradicts the assumption that x is at the boundary of ®. To prove the
final claim, notice that by the convexity of f we have
o (r+ 552) 0 = sy o (35 + 60
For the last expression, we can check two cases. If g¢ € I'(z) then ¢ - z = 0 in which case
g (24 552) + f(g9") = g* -« + f(g"). On the other hand, for g* ¢ I'(z) we have
gt (x—i—%z) +fg) =gz + f(¢") = %g-z<v—e+e/2<v.

Hence the value of the objective is the same for x and z + 55 2. A similar argument follows for
T — 5p2. O
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Lemma 14. If © € ® and we pick any full-rank set of points g1,...,gn+1 € I'(z) whose hull
contains the origin, then we may write x as the gradient of the linear interpolation of the points
{(g1,—f(91), -+, (gn+1, —f(gn+1))}. Moreover, this implies that x is a subgradient of the function
f restricted to the set G.

Proof. Let us notice that if we were to search for the linear interpolation of the points
{(91,—f(g1),- -, (9gn+1,—f(gn+1))}, then we would need to find a vector m € R™ and an off-
set b € R such that

m-g; +b=—f(g:) Vi=1,...,n+1,

and indeed since the set of g;’s is of full rank this has a unique solution. However, the point x also
satisfies a similar set of equations:

x g+ flg:) =c Vi=1,...,n+1,
where c is the value of the objective in (6). Given the uniqueness of the above to systems of equa-

tions, we have that m = z. O

Now given the above results we can actually construct the optimal strategy for the adversary.

Lemma 15. For any full-rank set of points g1, . . ., gnt+1 € I'(x) whose hull contains the origin, let
a € Ay be a set of weights such that ), o;g; = 0 (and indeed & is unique). Then the value of the
objective (6) is precisely Y . o; f(g;). Moreover, one optimal randomized strategy for the adversary
is to choose g; with probability «;.

Proof. Recall that the point x* satisfies a system of linear equations
x* - gi+ f(gi) = ¢ Vi=1,...,n+1,

where c is the value of the objective. Furthermore, it also satisfies any mixture of these equations.
By taking an & mixture of these equations we have

c= Zai(gi "+ f(gi)) =0-2" + Zaif(gi) = Zaz‘f(gi)'

O
A.2 Proofs from Section 3
Theorem 7. The value of this game is VI = Egp, {%GQ} = %
Proof. Starting from Eq. (10),
T
1 T
21 L S g2
G~BT[G | = o7 ZO Z_>(2z T) Eq. (10)
T T T
1 TN , T ) T
= o7 <4Z <Z>z —4TZ (i>z+T > ( ))
=0 =0 =0
and since °1_o (1) = 27, 00, (D)t =127 1, 1) (D)2 = (T + T2)27 2,
1 _ _
= o (4(T F 72272 _4(T2T Y + T22T>
—(T+T?) 2T+ T2 =T.
The result then follows from linearity of expectation. [

Theorem 8. Consider the game where G = [—1, 1] with benchmark L(G) = — exp(G/v/T). Then
T L\
Vi = (cosh ﬁ) < e
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with the bound tight as T — oco. Let 1 = T — t and Gy = g1.1, then the conditional value of the
game is Vi(Gy) = (cosh \}) exp ( ﬁ) and the player’s minimax optimal strategy is:

_ Gt . 1 1 T7—1
Typ1 = —exp (ﬁ) sinh (cosh ﬁ) (12)

Proof. First, we compute the value of the game:

vi= GEEBT [-L(@)]=27" Z ( ) exp 22\/TT>

2 Texp (V)Y (T> (exp (2¥T))'

=0

_ 2*Texp(*\FT) 1+ exp (2/\FT))T7

where we have used the ordinary generating function, 31, (1)a? = (1 + 2)”. Manipulating the

above expression for the value of the game, we arrive at V7 = cosh(1/v/T)T. Using the series
expansion for cosh leads to the upper bound cosh(x) < exp(z?/2),

from which we conclude
IN\T
Vo = (cosh(l/ﬁ)) <eXp(2T> = \/e.

Using similar techniques, we can derive the conditional value of the game, letting 7 = 7" — ¢ be the
number of rounds left to be played:

Vi(Gy) =277 Z (Z) exp (Gﬁ}TZ‘T) 9 Texp (%‘{) (1+exp (2/vT)) .

=0

Following Eq. (9) and simplifying leads to the update of Eq. (12). It remains to show lim7_, ., Vr =

\/e. Using the change of variable = 1/+/T, equivalently we have lim,_, cosh(x) =3 Examining
the log of this function,

2 4 6 8
. 3%2) B 1 _ 1 o o 17z _ 1
ill% log (cosh(m) ilir%) 2 log cosh(x) = il_}Hlo 2\l3 1 + T 2530 +... 5

where we have taken the Maclaurin series of log cosh(z). Using the continuity of exp, we have
against any adversary,

lim (cosh(m)w%> = exp (ili‘% log (cosh(w)w%)) =/e.

z—0

O

Theorem 9. Consider a one dimensional game with G = [—1, 1] with benchmark function L non-
positive on GT. Then for the optimal betting strategy we have that |z;| < — Zi:l gsts + VT, and
further VT > Zi:l gsxs for any t and any sequence g1, . . ., Gs.

Proof. We need to prove

t
> g, <V (15)
s=1
and
t
|xt| S _ngxs+VT- (16)
s=1
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The definition of the value of the game and the fact the algorithm is minimax optimal ensures
T
> g~ L(G) < VT
t=1
or, since —L(G) > 0,
T
> g < VT (17)
t=1

Now, suppose on some round ¢ we have 22:1 gsts > VT Then, the adversary can simply play
gr = 0forrounds ¢t + 1,...,7T, which implies

T t
ngxs - ngxs > VT7
s=1 s=1

contradicting Eq. (17). Hence, Eq. (15) must hold. Further, if the player ever chose a bet so large it
violated Eq. (16), the adversary could choose g; € {—1,1} in order to violate Eq. (17). O

Theorem 10. Consider the game between an adversary who chooses losses g, € [—1,1], and a

player who chooses x; € R. For a given sequence of plays, ©1, g1, %2, 92, ...,%T, 9T, the value to
the adversary is Zthl g1t — |g1.7|. Then, when T is even with T = 2M, the minimax value of this
game is given by

2M T 2T

o T il
Vr =2 (T—M)M ~\ 7

Further, asT — oo, Vp — 4/ % Let B be a random variable drawn from B _;. Then the minimax
optimal strategy for the player given the adversary has played Gy = g1.¢ is given by
T+l = PI'(B < —Gt) - PI‘(B > —Gt) =1- 2PI'(B > —Gt) € [—1, ].] (14)

Proof. Letting T' = 2M and working from Eq. (10),
T
2 T 2M (2M 2MT!
VIi=— E [L@G)] == i — M| = — R — 18
o5, IHG)] 2T;<i>|2 | 2T<M) T 1Y
where we have applied a classic formula of de Moivre [1718] for the mean absolute deviation of the

binomial distribution (see also Diaconis and Zabell [1991]). Using a standard bound on the central
binomial coefficient (based on Stirling’s formula),

2M\  4M cm
<M)W(1M) (19

where % <cpy < % for all M > 1, we have

1 2T
vT <oM =4/=.
o vrM m

As implied by Eq. (19), this inequality quickly becomes tight as T" — oo.

In order to compute the minimax algorithm, we would like a closed form for V;(G;) =
—Eg-oB, [L(Gt + GT)], where G; = g1+ is the sum of the gradients so far, 7 = T — t is the
number of rounds to go, and and G™ = g41.7 is a random variable giving the sum of the remaining
gradients. Unfortunately, the structure of the binomial coefficients exploited in the proof of Theo-
rem 10 does not apply given an arbitrary offset G;. Nevertheless, we will be able to derive a formula
for the update that is readily computable. Letting B be a random variable with distribution B, the
update of Eq. (9) becomes

T

1
T =5 Y Pr(B =) (|Gt +b—1] = |G +b+1]).

b=—71
Whenever G; + b > 1, the difference in absolute values is —2, and whenever G; + b < 1, the
difference is 2. When G; + b = 0, the difference is zero. Thus,

T = % (Pr(B > —Gi)(=2) + Pr(B < —G1)(2)) = Pr(B < —Gy) — Pr(B > —Gy).
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B A Symmetric Betting Algorithm

The one-sided algorithm of Theorem 8§ has

Loss = VT + L(G) < —exp (G> ++e.

VT
In order to do well when g;.7 is large and negative, we can run a copy of the algorithm on
—3g1,-..,—gr, switching the signs of each x; it suggests. The combined algorithm then satisfies
G -G
Loss< —exp | —= | —exp [ —= | +2Ve
b (ﬁ) ’ (ﬁ)
G| )
< —exp| —= | +2Ve,
() +2ve

and so following Eq. (13) and Theorem 1 of Streeter and McMahan [2012], we obtain the desired
regret bounds. The following theorem implies the symmetric algorithm is in fact minimax optimal
with respect to the combined benchmark

Lo(G) = —exp (\/GT) ~exp (\‘/g) .

Theorem 16. Consider two 1-D games where the adversary plays from [—1, 1], defined by concave
functions Ly and Ly respectively. Let x; and x3 be minimax-optimal plays for Ly and Lo respec-
tively, given that g1, . .. g1 have been played so far in both games. Then x1 + x5 is also minimax
optimal for the combined game that uses the benchmark Lo (G) = L1(G) + La(G).

Proof. First, taking 7 = T' — t and using Theorem 4 three times, we have

Vc(gla s agt) = - GT@B [Ll(gl:t + GT) + LQ(gl:t + GT)}
- _GT]EBT [Ll(gl:t +G )] B GTIEBT [LQ(glzt +G )]

= Vl(gh" '7gt) + V2(917"'7gt)7

using linearity of expectation. Then, using Eq. (9) for each of the three games, we have

af = argmin max gz + Vo(g1,- ... gi-1,9)
x g
1
= L Welor g 1) V(o g, 4)
1
= 5(‘/1(.917 . 7.91‘/—1771) + VZ(glv' .. 7gt—177]~) - Vl(gla ey gt—151 ) - ‘/2(917 cee 7gt—17+1))
:x% +xf.
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