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Abstract

We consider the problem of accurately estimating a high-dimensional sparse vec-
tor using a small number of linear measurements that are contaminated by noise. It
is well known that standard computationally tractable sparse recovery algorithms,
such as the Lasso, OMP, and their various extensions, perform poorly when the
measurement matrix contains highly correlated columns. We develop a simple
greedy algorithm, called SWAP, that iteratively swaps variables until a desired
loss function cannot be decreased any further. SWAP is surprisingly effective in
handling measurement matrices with high correlations. We prove that SWAP can
easily be used as a wrapper around standard sparse recovery algorithms for im-
proved performance. We theoretically quantify the statistical guarantees of SWAP
and complement our analysis with numerical results on synthetic and real data.

1 Introduction

An important problem that arises in many applications is that of recovering a high-dimensional
sparse (or approximately sparse) vector given a small number of linear measurements. Depending
on the problem of interest, the unknown sparse vector can encode relationships between genes [1],
power line failures in massive power grid networks [2], sparse representations of signals [3, 4], or
edges in a graphical model [5,6], to name just a few applications. The simplest, but still very useful,
setting is when the observations can be approximated as a sparse linear combination of the columns
in a measurement matrix X weighted by the non-zero entries of the unknown sparse vector. In
this paper, we study the problem of recovering the location of the non-zero entries, say S∗, in
the unknown vector, which is equivalent to recovering the columns of X that y depends on. In the
literature, this problem is often to referred to as the sparse recovery or the support recovery problem.

Although several tractable sparse recovery algorithms have been proposed in the literature, statis-
tical guarantees for accurately estimating S∗ can only be provided under conditions that limit how
correlated the columns of X can be. For example, if there exists a column, say Xi, that is nearly lin-
early dependent on the columns indexed by S∗, some sparse recovery algorithms may falsely select
Xi. In certain applications, where X can be specified a priori, correlations can easily be avoided
by appropriately choosing X . However, in many applications, X cannot be specified by a practi-
tioner, and correlated measurement matrices are inevitable. For example, when the columns in X
correspond to gene expression values, it has been observed that genes in the same pathway produce
correlated values [1]. Additionally, it has been observed that regions in the brain that are in close
proximity produce correlated signals as measured using an MRI [7].

In this paper, we develop new sparse recovery algorithms that can accurately recover S∗ for mea-
surement matrices that exhibit strong correlations. We propose a greedy algorithm, called SWAP,
that iteratively swaps variables starting from an initial estimate of S∗ until a desired loss function
cannot be decreased any further. We prove that SWAP can accurately identify the true signal support
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under relatively mild conditions on the restricted eigenvalues of the matrix XTX and under certain
conditions on the correlations between the columns of X . A novel aspect of our theory is that the
conditions we derive are only needed when conventional sparse recovery algorithms fail to recover
S∗. This motivates the use of SWAP as a wrapper around sparse recovery algorithms for improved
performance. Finally, using numerical simulations, we show that SWAP consistently outperforms
many state of the art algorithms on both synthetic and real data corresponding to gene expression
values.

As alluded to earlier, several algorithms now exist in the literature for accurately estimating S∗. The
theoretical properties of such algorithms either depend on the irrepresentability condition [5, 8–10]
or various forms of the restricted eigenvalue conditions [11,12]. See [13] for a comprehensive review
of such algorithms and the related conditions. SWAP is a greedy algorithm with novel guarantees
for sparse recovery and we make appropriate comparisons in the text. Another line of research when
dealing with correlated measurements is to estimate a superset of S∗; see [14–18] for examples.

The rest of the paper is organized as follows. Section 2 formally defines the sparse recovery problem.
Section 3 introduces SWAP. Section 4 presents theoretical results on the conditions needed for
provably correct sparse recovery. Section 5 discusses numerical simulations. Section 6 summarizes
the paper and discusses future work.

2 Problem Setup

Throughout this paper, we assume that y ∈ R
n and X ∈ R

n×p are known and related to each other
by the linear model

y = Xβ∗ + w , (1)
where β∗ ∈ R

p is the unknown sparse vector that we seek to estimate. We assume that the columns
of X are normalized, i.e., ‖Xi‖22/n = 1 for all i ∈ [p], where we use the notation [p] = {1, 2, . . . , p}
throughout the paper. In practice, normalization can easily be done by scaling X and β∗ accordingly.
We assume that the entries of w are i.i.d. zero-mean sub-Gaussian random variables with parameter
σ so that E[exp(twi)] ≤ exp(t2σ2/2). The sub-Gaussian condition on w is common in the literature
and allows for a wide class of noise models, including Gaussian, symmetric Bernoulli, and bounded
random variables. We let k be the number of non-zero entries in β∗, and let S∗ denote the location
of the non-zero entries. It is common to refer to S∗ as the support of β∗ and we adopt this notation
throughout the paper.

Once S∗ has been estimated, it is relatively straightforward to estimate β∗. Thus, we mainly focus
on the sparse recovery problem of estimating S∗. A classical strategy for sparse recovery is to
search for a support of size k that minimizes a suitable loss function. For a support S, we assume
the least-squares loss, which is defined as follows:

L(S; y,X) := min
α∈R|S|

‖y −XSα‖22 =
∥∥Π⊥[S]y

∥∥2
2
, (2)

where XS refers to an n × |S| matrix that only includes the columns indexed by S and Π⊥[S] =
I−XS(X

T
SXS)

−1XT
S is the orthogonal projection onto the null space of the linear operator XS . In

this paper, we design a sparse recovery algorithm that provably, and efficiently, finds the true support
for a broad class of measurement matrices that includes matrices with high correlations.

3 Overview of SWAP

We now describe our proposed greedy algorithm SWAP. Recall that our main goal is to find a
support Ŝ that minimizes the loss defined in (2). Suppose that we are given an estimate, say S(1), of
the true support and let L(1) be the corresponding least-squares loss (see (2)). We want to transition
to another estimate S(2) that is closer (in terms of the number of true variables), or equal, to S∗. Our
main idea to transition from S(1) to an appropriate S(2) is to swap variables as follows:

Swap every i ∈ S(1) with i′ ∈ (S(1))c and compute the resulting loss L(1)
i,i′ = L({S(1)\i}∪i′; y,X).

If mini,i′ L
(1)
i,i′ < L(1), there exists a support that has a lower loss than the original one. Sub-

sequently, we find {̂i, î′} = argmini,i′ L
(1)
i,i′ and let S(2) = {S(1)\̂i} ∪ {̂i′}. We repeat the
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Figure 1: Example of using SWAP on pseudo real data where the design matrix X corresponds to
gene expression values and y is simulated. The notation S-Alg refers to the SWAP based algorithms.
(a) Histogram of sparse eigenvalues of X over 10, 000 random sets of size 10; (b) legend; (c) mean
true positive rate vs. sparsity; (d) mean number of iterations vs. sparsity.

Algorithm 1: SWAP(y,X, S)

Inputs: Measurements y, design matrix X , and initial support S.
1 Let r = 1, S(1) = S, and L(1) = L(S(1); y,X)

2 Swap i ∈ S(r) with i′ ∈ (S(r))c and compute the loss L(r)
i,i′ = L({S(r)\i} ∪ i′; y,X).

3 if mini,i′ L(r)
i,i′ < L(r) then

4 {̂i, î′} = argmini,i′ L(r)
i,i′ (In case of a tie, choose a pair arbitrarily)

5 Let S(r+1) = {S(r)\̂i} ∪ î′ and L(r+1) be the corresponding loss.
6 Let r = r + 1 and repeat steps 2-4.

else
7 Return Ŝ = S(r).

above steps to find a sequence of supports S(1), S(2), . . . , S(r), where S(r) has the property that
mini,i′ L

(r)
i,i′ ≥ L(r). In other words, we stop SWAP when perturbing S(r) by one variable increases

or does not change the resulting loss. These steps are summarized in Algorithm 1.

Figure 1 illustrates the performance of SWAP for a matrix X that corresponds to 83 samples of
2308 gene expression values for patients with small round blue cell tumors [19]. Since there is no
ground truth available, we simulate the observations y using Gaussian w with σ = 0.5 and randomly
chosen sparse vectors with non-zero entries between 1 and 2. Figure 1(a) shows the histogram of the
eigenvalues of 10,000 randomly chosen matrices XT

AXA/n, where |A| = 10. We clearly see that
these eigenvalues are very small. This means that the columns of X are highly correlated with each
other. Figure 1(c) shows the mean fraction of variables estimated to be in the true support over 100
different trials. Figure 1(d) shows the mean number of iterations required for SWAP to converge.

Remark 3.1. The main input to SWAP is the initial supportS. This parameter implicitly specifies the
desired sparsity level. Although SWAP can be used with a random initialization S, we recommend
using SWAP in combination with another sparse recovery algorithm. For example, in Figure 1(c),
we run SWAP using four different types of initializations. The dashed lines represent standard
sparse recovery algorithms, while the solid lines with markers represent SWAP algorithms. We
clearly see that all SWAP based algorithms outperform standard algorithms. Intuitively, since many
sparse recovery algorithms can perform partial support recovery, using such an initialization results
in a smaller search space when searching for the true support.

Remark 3.2. Since each iteration of SWAP necessarily produces a unique loss, the supports
S(1), . . . , S(r) are all unique. Thus, SWAP clearly converges in a finite number of iterations. The
exact convergence rate depends on the correlations in the matrix X . Although we do not theoreti-
cally quantify the convergence rate, in all numerical simulations, and over a broad range of design
matrices, we observed that SWAP converged in roughly O(k) iterations. See Figure 1(d) for an
example.

Remark 3.3. Using the properties of orthogonal projections, we can write Line 2 of SWAP as a
difference of two rank one projection matrices. The main computational complexity is in computing
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this quantity k(p − k) times for all i ∈ S(r) and i′ ∈ (S(r)c. If the computational complexity of
computing a rank k orthogonal projection is Ik, then Line 2 can be implemented in time O(k(Ik +
p− k). When k � p is small, then Ik = O(k3). When k is large, then several computational tricks
can be used to significantly reduce the computational time.

Remark 3.4. SWAP differs significantly from other greedy algorithms in the literature. When k
is known, the main distinctive feature of SWAP is that it always maintains a k-sparse estimate
of the support. Note that the same is true for the computationally intractable exhaustive search
algorithm [10]. Other competitive algorithms, such as forward-backwards (FoBa) [20] or CoSaMP
[21], usually estimate a signal with higher sparsity level and iteratively remove variables until k
variables are selected. The same is true for multi-stage algorithms [22–25]. Intuitively, as we shall
see in Section 4, by maintaining a support of size k, the performance of SWAP only depends on
correlations among the columns of the matrix XA, where A is of size at most 2k and it includes the
true support. In contrast, for other sparse recovery algorithms, |A| ≥ 2k. In Figure 1, we compare
SWAP to several state of the art algorithms (see Section 5 for a description of the algorithms). In all
cases, SWAP results in superior performance.

4 Theoretical Analysis of SWAP

4.1 Some Important Parameters

In this Section, we collect some important parameters that determine the performance of SWAP.
First, we define the restricted eigenvalue as

ρk+� := inf

{‖Xθ‖22
n‖θ‖22

: ‖θ‖0 ≤ k + � , |S∗ ∩ supp(θ)| = k

}
. (3)

The parameter ρk+� is the minimum eigenvalue of certain blocks of the matrix XTX/n of size 2k
that includes the blocks XT

S∗XS∗/n. Smaller values of ρk+� correspond to correlated columns in
the matrix X . Next, we define the minimum absolute value of the non-zero entries in β∗ as

βmin := min
i∈S∗

|β∗
i | . (4)

A smaller βmin will evidently require more number of observations for exact recovery of the support.
Finally, we define a parameter that characterizes the correlations between the columns of the matrix
XS∗ and the columns of the matrix X(S∗)c , where recall that S∗ is the true support of the unknown
sparse vector β∗. For a set Ωk,d that contains all supports of size k with atleast k−d active variables
from S∗, define γd as

γ2
d := max

S∈Ωk,d\S∗
min

i∈(S∗)c∩S

∥∥∥∥ΣS\i
i,S̄

(
Σ

S\i
S̄,S̄

)−1
∥∥∥∥
2

1

Σ
S\i
i,i

, S̄ = S∗\S , (5)

where ΣB = XTΠ⊥[B]X/n. Popular sparse regression algorithms, such as the Lasso and the OMP,
can perform accurate support recovery when ζ2 = maxi∈(S∗)c ‖Σi,S∗Σ−1

S∗,S∗‖21 < 1. We will show
in Section 3.2 that SWAP can perform accurate support recovery when γd < 1. Although the form
of γd is similar to ζ, there are several key differences, which we highlight as follows:

• Since Ωk,d contains all supports such that |S∗\S| ≤ d, it is clear that γd is the �1 norm of a d× 1
vector, where d ≤ k. In contrast, ζ is the �1 norm of a k× 1 vector. If indeed ζ < 1, i.e., accurate
support recovery is possible using the Lasso, then SWAP can be initialized by the output of the
Lasso. In this case, γ(Ω) = 0 and SWAP also outputs the true support as long as S∗ minimizes
the loss function. We make this statement precise in Theorem 4.1. Thus, it is only when ζ ≥ 1
that the parameter γd plays a role in the performance of SWAP.

• The parameter ζ directly computes correlations between the columns of X . In contrast, γd com-
putes correlations between the columns of X when projected onto the null space of a matrix XB ,
where |B| = d− 1.

• Notice that γd is computed by taking a maximum over supports in the set Ωd\S∗ and a minimum
over inactive variables in each support. The reason that the minimum appears in γd is because we
choose to swap variables that result in the smallest loss. In contrast, ζ is computed by taking a
maximum over all inactive variables.
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4.2 Statement of Main Results

In this Section, we state the main results that characterize the performance of SWAP. Throughout
this Section, we assume the following:

(A1) The observations y and the measurement matrix X follow the linear model in (1), where the
noise is sub-Gaussian with parameter σ, and the columns of X have been normalized.

(A2) SWAP is initialized with a support S(1) of size k and Ŝ is the output of SWAP. Since k is
typically unknown, a suitable value can be selected using standard model selection algorithms
such as cross-validation or stability selection [26].

Our first result for SWAP is as follows.

Theorem 4.1. Suppose (A1)-(A2) holds and |S∗\S(1)| ≤ 1. If n > 4+log(k2(p−k))
c2β2

minρ2k/2
, where 0 < c2 ≤

1/(18σ2), then P(Ŝ = S∗) → 1 as (n, p, k) → ∞.

The proof of Theorem 4.1 can be found in the extended version of our paper [27]. Informally,
Theorem 4.1 states that if the input to SWAP falsely detects at most one variable, then SWAP
is high-dimensional consistent when given a sufficient number of observations n. The condition
on n is mainly enforced to guarantee that the true support S∗ minimizes the loss function. This
condition is weaker than the sufficient conditions required for other computationally tractable sparse
recovery algorithms. For example, the method FoBa is known to be superior to other methods
such as the Lasso and the OMP. As shown in [20], FoBa requires that n = Ω(log(p)/(ρ3k+�β

2
min))

for high-dimensional consistent support recovery, where the choice of �, which is greater than k,
depends on the correlations in the matrix X . In contrast, the condition in (4.1), which reduces
to n = Ω(log(p − k)/(ρ2kβ

2
min)), is weaker since 1/ρ3k+� < 1/ρ2k for � > k and p − k < p.

This shows that if a sparse recovery algorithm can accurately estimate the true support, then SWAP
does not introduce any false positives and also outputs the true support. Furthermore, if a sparse
regression algorithm falsely detects one variable, then SWAP can potentially recover the correct
support. Thus, using SWAP with other algorithms does not harm the sparse recovery performance
of other algorithms.

We now consider the more interesting case when SWAP is initialized by a support S(1) that falsely
detects more than one variable. In this case, SWAP will clearly needs more than one iteration to
recover the true support. Furthermore, to ensure that the true support can be recovered, we need to
impose some additional assumptions on the measurement matrix X . The particular assumption we
enforce will depend on the parameter γk defined in (5). As mentioned in Section 4.1, γk captures
the correlations between the columns of XS∗ and the columns of X(S∗)c . To simplify the statement
in the next Theorem, define let g(δ, ρ, c) = g(δ, ρ, c) = (δ − 1) + 2c(

√
δ + 1/

√
ρ) + 2c2 .

Theorem 4.2. Suppose (A1)-(A2) holds and |S∗\S(1)| > 1. If for a constant c such that 0 <

c2 < 1/(18σ2), g(γk, ρk,1, cσ) < 0, log
(
p
k

)
> 4 + log(k2(p − k)), and n >

2 log (pk)
c2β2

minρ
2
2k

, then

P(Ŝ = S∗) → 1 as (n, p, k) → ∞.

Theorem 4.2 says that if SWAP is initialized with any support of size k, and γk satisfies the condi-
tion stated in the theorem, then SWAP will output the true support when given a sufficient number
of observations. In the noiseless case, i.e., when σ = 0, the condition required for accurate support
recovery reduces to γk < 1. The proof of Theorem 4.2, outlined in [27], relies on imposing condi-
tions on each support of size k such that that there exists a swap so that the loss can be necessarily
decreased. Clearly, if such a property holds for each support, except S∗, then SWAP will output the
true support since (i) there are only a finite number of possible supports, and (ii) each iteration of
SWAP results in a different support. The dependence on

(
p
k

)
in the expression for the number of

observations n arises from applying the union bound over all supports of size k.

The condition in Theorem 4.2 is independent of the initialization S(1). This is why the sample
complexity, i.e., the number of observations n required for consistent support recovery, scales as
log

(
p
k

)
. To reduce the sample complexity, we can impose additional conditions on the support

S(1) that is used to initialize SWAP. Under such assumptions, assuming that |S∗\S(1)| > d, the
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performance of SWAP will depend on γd, which is less than γk, and n will scale as log
(
p
d

)
. We

refer to [27] for more details.

5 Numerical Simulations

In this section, we show how SWAP compares to other sparse recovery algorithms. Section 5.1
presents results for synthetic data and Section 5.2 presents results for real data.

5.1 Synthetic Data

To illustrate the advantages of SWAP, we use the following examples:

(A1) We sample the rows of X from a Gaussian distribution with mean zero and covariance Σ. The
covariance Σ is block-diagonal with blocks of size 10. The entries in each block Σ̄ are speci-
fied as follows: Σ̄ii = 1 for i ∈ [10] and Σ̄ij = a for i �= j. This construction of the design
matrix is motivated from [18]. The true support is chosen so that each variable in the support
is assigned to a different block. The non-zero entries in β∗ are chosen uniformly between 1
and 2. We let σ = 1, p = 500, n = 100, 200, k = 20, and a = 0.5, 0.55, . . . , 0.9, 0.95.

(A2) We sample X from the same distribution as described in (A1). The only difference is that the
true support is chosen so that five different blocks contain active variables and each chosen
block contains four active variables. The rest of the parameters are also the same.

In both (A1) and (A2), as a increases, the strength of correlations between the columns increases.
Further, the restricted eigenvalue parameter for (A1) is greater than the restricted eigenvalue param-
eter of (A2).

We use the following sparse recovery algorithms to initialize SWAP: (i) Lasso, (ii) Thresholded
Lasso (TLasso) [25], (iii) Forward-Backward (FoBa) [20], (iv) CoSaMP [21], (v) Marginal Regres-
sion (MaR), and (vi) Random. TLasso first applies Lasso to select a superset of the support and then
selects the largest k as the estimated support. In our implementation, we used Lasso to select 2k
variables and then selected the largest k variables after least-squares. This algorithm is known to
have better performance that the Lasso. FoBa uses a combination of a forward and a backwards al-
gorithm. CoSaMP is an iterative greedy algorithm. MaR selects the support by choosing the largest
k variables in |XTy|. Finally, Random selects a random subset of size k. We use the notation S-
TLasso to refer to the algorithm that uses TLasso as an initialization for SWAP. A similar notation
follows for other algorithms.

Our results are shown in Figure 2. We use two metrics to assess the performance of SWAP. The
first metric is the true positive rate (TPR), i.e., the number of active variables in the estimate divided
by the total number of active variables. The second metric is the the number of iterations needed
for SWAP to converge. Since all the results are over supports of size k, the false postive rate (FPR)
is simply 1 − TPR. All results for SWAP based algorithms have markers, while all results for non
SWAP based algorithms are represented in dashed lines.

From the TPR performance, we clearly see the advantages of using SWAP in practice. For different
choices the algorithm Alg, when n = 100, the performance of S-Alg is always better than the
performance of Alg. When the number of observations increase to n = 200, we observe that all
SWAP based algorithms perform better than standard sparse recovery algorithms. For (A1), we
have exact support recovery for SWAP when a ≤ 0.9. For (A2), we have exact support recovery
when a < 0.8. The reason for this difference is because of the differences in the placement of the
non-zero entries.

Figures 2(a) and 2(b) shows the mean number of iterations required by SWAP based algorithms as
the correlations in the matrix X increase. We clearly see that the number of iterations increase with
the degree of correlations. For algorithms that estimate a large fraction of the true support (TLasso,
FoBa, and CoSaMP), the number of iterations is generally very small. For MaR and Random, the
number of iterations is larger, but still comparable to the sparsity level of k = 20.
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Figure 2: Empirical true positive rate (TPR) and number of iterations required by SWAP.

5.2 Gene Expression Data

We now present results on two gene expression cancer datasets. The first dataset1 contains expres-
sion values from patients with two different types cancers related to leukemia. The second dataset2
contains expression levels from patients with and without prostate cancer. The matrix X contains
the gene expression values and the vector y is an indictor of the type of cancer a patient has. Al-
though this is a classification problem, we treat it as a recovery problem. For the leukemia data,
p = 5147 and n = 72. For the prostate cancer data, p = 12533 and n = 102. This is clearly a
high-dimensional dataset, and the goal is to identify a small set of genes that are predictive of the
cancer type.

Figure 3 shows the performance of standard algorithms vs. SWAP. We use leave-one-out cross-
validation and apply the sparse recovery algorithms described in Section 5.1 using multiple different
choices of the sparsity level. For each level of sparsity, we choose the sparse recovery algorithm
(labeled as standard) and the SWAP based algorithm that results in the minimum least-squares loss
over the training data. This allows us to compare the performance of using SWAP vs. not using
SWAP. For both datasets, we clearly see that the training and testing error is lower for SWAP based
algorithms. This means that SWAP is able to choose a subset of genes that has better predictive
performance than that of standard algorithms for each level of sparsity.

1see http://www.biolab.si/supp/bi-cancer/projections/info/leukemia.htm
2see http://www.biolab.si/supp/bi-cancer/projections/info/prostata.htm
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Figure 3: (a)-(b) Leukemia dataset with p = 5147 and n = 72. (c)-(d) Prostate cancer dataset with
p = 12533 and n = 102.

6 Summary and Future Work

We studied the sparse recovery problem of estimating the support of a high-dimensional sparse
vector when given a measurement matrix that contains correlated columns. We presented a simple
algorithm, called SWAP, that iteratively swaps variables starting from an initial estimate of the
support until an appropriate loss function can no longer be decreased further. We showed that SWAP
is surprising effective in situations where the measurement matrix contains correlated columns. We
theoretically quantified the conditions on the measurement matrix that guarantee accurate support
recovery. Our theoretical results show that if SWAP is initialized with a support that contains some
active variables, then SWAP can tolerate even higher correlations in the measurement matrix. Using
numerical simulations on synthetic and real data, we showed how SWAP outperformed several
sparse recovery algorithms.

Our work in this paper sets up a platform to study the following interesting extensions of SWAP.
The first is a generalization of SWAP so that a group of variables can be swapped in a sequential
manner. The second is a detailed analysis of SWAP when used with other sparse recovery algo-
rithms. The third is an extension of SWAP to high-dimensional vectors that admit structured sparse
representations.
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