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1 Theory: Strict Log-concavity and Identifiability

Despite the presentation of the model and inference from a Baysian point of view, we adopt a
uniform prior on the parameter set and only impose nontrivial priors on the number of types, in
order to obtain some regularization. Given this, we present the theory in regard to the likelihood
function on data rather than the posterior on parameters.

The following section explores the conditions required to guarantee uni-modality of the likelihood
and identifiability of the parameter space. We note here that the likelihood function is not uni-modal
for the general model with unobserved agent types that was proposed in the former section. This is
due to an extreme flexibility in combinatorial choice of types and parameters. However, given the
observed types, we can show that the likelihood function is uni-modal for the parameters Ψ. In the
first part of this section, we establish the uni-modality of the likelihood function.

The model and algorithm in this paper considers types unknown and learns the number of types.
Establishing the conditions for uni-modality conditioned on known types is essential. This is due to
the sampling/optimization aspect of the algorithm. In our algorithms, we sample from the parame-
ters conditional on the algorithm’s specification of types. Our results establishes that our sampling
algorithm is exploring a uni-modal distribution conditional on its specified types.

Moreover, we establish conditions for identifiability of the model. Identifiability is a necessary
property in order for the researcher to be able to infer economically-relevant parameters from any
econometric model. Establishing identifiability on the model with multiple types on ranking data
requires a different approach from classical identifiability results for mixture models [1, 3, e.g.],
because we observe discrete data (ranking data) along with characteristics of agents rather than
scalars or vector of scalars. We establish the identifiability of the parameters Γ and Ψ, and number
of types for the general model for the case of a finite number of types.

1.1 Strict Log-concavity of the Likelihood Function

First, let’s fix an agent n ∈ {1, ..., N}. Define a set Gn of function gn’s whose positivity is equiva-
lent to giving an order πn. More precisely, define gnm(~ψ,~ε) = [µnπn(m) + εnπn(m)]− [µnπn(m+1) +

εnπn(m+1)] for m = 1, ..,M − 1 where µnj = δj +
∑
k,l xn(k)W

s(n)
kl zj(l) for 1 ≤ j ≤M . Here ~ψ

is a vector of KL + M variables consisting of all δj’s and Wkl’s. Clearly, the length of each order
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πn is M − 1. We have:

L(~ψ, πn) = L(~ψ,Gn) = Pr(gn1 (~ψ,~ε) ≥ 0, ..., gnM−1(~ψ,~ε) ≥ 0) (1)

This is because gnm(~ψ,~ε) ≥ 0 is equivalent to saying alternative πn(m) is preferred to alternative
πn(m+ 1) in the RUM sense. Under this setting, we have the following generalization of the main
result in [2]. Since we are now dealing with a single n, we drop the upper index n and s(n).
Lemma 1. Suppose ~ε is a vector of M real numbers that are generated according to a distribution
whose pdf is strictly logarithmic concave in RM . Consider the function

L(~ψ, π) = L(~ψ,G) = Pr(g1(~ψ,~ε) ≥ 0, ..., gM−1(~ψ,~ε) ≥ 0) (2)

Then L(~ψ) = L(~ψ, π) is logarithmic concave in the sense that L(λ~ψ + (1 − λ) ~ψ′) ≥
L(ψ)λL(ψ′)1−λ for any 0 < λ < 1 and any two vectors ~ψ, ~ψ′ ∈ RLK+M .

The proof of this lemma is in section 2.

Now let’s consider all n agents together. We study the function, l(Ψ, D) =∑N
n=1 logL(~ψs(n), πn) =

∑N
n=1 logPr(πn|~ψs(n)). By Lemma 1 and using the fact that sum of

concave functions is concave, we know that l(Ψ, D) is concave in Ψ, viewed as a vector in RSP . To
show uni-modality, we need to prove that this concave function has a unique maximum. Namely,
we need to be able to describe when the equality holds in the previous lemma. Actually, if our
data is subject to some mild condition, which implies boundedness of the parameter set that maxi-
mizes l(Ψ, D), Theorem 1 bellow tells us exactly when the equality holds. This condition has been
explained in [2] as condition (1).

Before stating the main result, we define the following auxiliary (M − 1)N ′ × (SKL + M − 1)

matrix Ã = ÃN
′

(Here N ′ ≤ N is a positive number we are going to specify later) such that,
Ã(M−1)(n−1)+m,(s−1)KL+(K−1)l+k is equal to xn(k)(zm(l) − zM (l))if s = s(n) and is equal
to 0 if s 6= s(n), for all 1 ≤ n ≤ N ′, 1 ≤ m ≤ M − 1, 1 ≤ s ≤ S, 1 ≤ k ≤ K, and
1 ≤ l ≤ L. And, Ã(M−1)(n−1)+m,SKL+m′ is equal to 1 if m = m′ and is equal to 0 if m 6= m′, for
all 1 ≤ m,m′ ≤M − 1 and 1 ≤ n ≤ N ′.
Theorem 1. Suppose there is an N ′ ≤ N such that rank ÃN

′
= SKL + M − 1. Then l(Ψ) =

l(Ψ, D) is strictly concave up to δ-shift, in the sense that,

l(λΨ + (1− λ)Ψ′) ≥ λl(Ψ) + (1− λ)l(Ψ′), (3)

for any 0 < λ < 1 and any Ψ,Ψ′ ∈ RSP , and the equality holds if and only if there exists c ∈ R,
such that: {

δm = δ′m + c for all 1 ≤ m ≤M
W s
kl = W ′skl for all s, k, l

The proof of this theorem is in section 2.
Remark 1. We remark that the strictness “up to δ-shift” is natural. A δ-shift results in a shift in the
intrinsic utilities of all the products, which does not change the utility difference between products.
So such a shift does not affect our outcome. In practice, we may set one of the δ’s to be 0 and then
the simulation will converge to a single maximum.
Remark 2. It’s easy to see that N ′ must be larger than or equal to 1 + SKL

M−1 . The reason we
introduce N ′ is to avoid cumbersome calculation involving N .

1.2 Identifiability of the Model

In practice, it is often the case that we do not know the number of types, and do not observe agent
types. In this section, we show that, under this situation, our model is identifiable for a certain class
of cdf. Let’s first specify this class of “nice” cdfs:
Definition 1. Let φ(x) be a smooth pdf defined on R or [0,∞), and let Φ(x) be the associated cdf.

For each i ≥ 1, we write φ(i)(x) for the i-th derivative of φ(x). Let gi(x) = φ(i+1)(x)
φ(i)(x)

. The function
Φ is called nice if it satisfies one of the following two mutually exclusive conditions:
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(a) φ(x) is defined on R. For any x1, x2 ∈ R, the sequence gi(x1)
gi(x2)

converges to some value in

R (as i→∞) only if either x1 = x2; or x1 = −x2 and gi(x1)
gi(x2)

→ −1 as i→∞.

(b) φ(x) is defined on [0,∞). For any x1, x2 ≥ 0, the ratio φ(i)(x1)
φ(i)(x2)

is independent of i for i
sufficiently large. Moreover, we require that φ(x1) = φ(x2) if and only if x1 = x2.

The class of nice functions contains most of the frequently-used distribution functions. For example,
normal distributions and exponential distributions are nice. The proof of this fact is included in
section 2. We believe identifiability also works for Gamma distributions. But this requires a more
general definition of nice functions. The result will show up in a future paper.

By identifiability we mean the following: if two sets of parameters Ψ, Ψ′ give the same model,
then Ψ coincides with Ψ′, after a permutation of the indices. We remark that here “coincide” means
“coincide up to δ-shift.” As we discussed in Remark 1, this is sufficient for our purposes.

To be more precise, let C = {{γs}Ss=1 |S ∈ Z>0, γs ∈ R>0,
∑S
s=1 γs = 1}. Suppose for two

sequences {γs}Ss=1 and {γ′s}S
′

s=1, we have:
S∑
s=1

γs Pr(π|X(n), Z,Ψ) =

S′∑
s=1

γ′s Pr(π|X(n), Z,Ψ′) (4)

for all possible orders π of M products, and for all agents n. Then we must have S = S′ and (up to
a permutation of indices {1, · · · , S}) γs = γ′s and Ψ = Ψ′ (up to δ-shift).

Let’s fix the number of agent characteristics, K, for a moment. One quick observation is that the
number xn(k), for any characteristic k, reflects certain characteristic of the agent n. Varying the
agent n, this amount xn(k) is in a bounded interval in R. Suppose the collection of data D is
sufficiently large. Based on this, assuming that N can be be arbitrarily large, we can assume that the
xn(k)’s form a dense subset in a closed interval Ik ⊂ R.

Hence, the equation (4) should hold for any X ∈ Ik, leading to the following problem:

Theorem 2. Define an (M−1)×L matrix Z̃ by setting Z̃m,l = zm(l)−zM (l). Suppose the matrix
Z̃ has rank L, and suppose,

S∑
s=1

γs Pr(π|X,Z,Ψ) =

S′∑
s=1

γ′s Pr(π|X,Z,Ψ′), (5)

for all x(k) ∈ Ik and all possible orders π of M products. Here, the probability measure is asso-
ciated to a nice cdf. Then we must have S = S′ and (up to a permutation of indices {1, · · · , S})
γs = γ′s and Ψ = Ψ′ (up to δ-shift).

The proof of this theorem is provided in section 2. Here, we illustrate the idea for the simple case,
with two alternatives (m = 2) and no agent or alternative characteristics (K = L = 1). Given this,
each agent’s preference is between alternatives 1 and 2. Equations (5) are merely a single identity.
Unwrapping the definition, we obtain:

S∑
s=1

γs Pr(ε1−ε2 > δ1−δ2+xW s(z1−z2)) =

S′∑
s=1

γ′s Pr(ε1−ε2 > δ′1−δ′2+xW ′s(z1−z2)). (6)

Without loss of generality, we may assume z1 = 1, z2 = 0, and δ2 = 0. We may further assume
that the interval I = I1 contains 0. (Otherwise, we just need to shift I and δ accordingly.) Given
this, the problem reduces to the following lemma.
Lemma 2. Let Φ(x) be a nice cdf. Suppose,

S∑
s=1

γsΦ(δ + xW s) =

S′∑
s=1

γ′sΦ(δ′ + xW ′s), (7)

for all x in a closed interval I containing 0. Then we must have S = S′, δ = δ′ and (up to a
permutation of {1, · · · , S}) γs = γs, W s = W ′s.
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The proof of this lemma is available in section 2. By applying this into (6), we can show identifiablity
for the simple case of m = 2 and K = L = 1.

Theorem 2 guarantees identifiability in the limit case that we observe agents with characteristics that
are dense in an interval. Beyond the theoretical guarantee, we would in practice expect (6) to have a
unique solution with a enough agents with different characteristics.

Note that, the lemma 2 itself is a new identifiability result for scalar observations from a set of
truncated distributions.
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2 Proofs

2.1 On Strict Logarithmic Concavity

The main purpose of this section is to establish a “strict” version of the logarithmic concavity results
in Prékopa [4]. As an application, we shall prove Theorem 1.

Let us first prove Lemma 1. It is a direct consequence of Theorem 9 in [4]. Since its proof inspires
our work on strict log-concavity, it is worth presenting here.

Proof of Lemma 1. Similar to approach in [4], we consider sets H(~ψ) = {~ε | gm(ψ,~ε) ≥ 0, m =

1, · · · ,M − 1}. Then L(~ψ) = Pr(~ε ∈ H(~ψ)). We also have H(λ~ψ+ (1−λ)~ψ′) = λH(~ψ) + (1−
λ)H(~ψ′) because our gm’s are linear functions. By Theorem 2 in [4], the probability measure Pr is
strictly log-concave. So we have

L(λ~ψ + (1− λ)~ψ′) = Pr(~ε ∈ H(λ~ψ + (1− λ)~ψ′))

= Pr(~ε ∈ λH(~ψ) + (1− λ)H(~ψ′))

≥ (Pr(~ε ∈ H(~ψ)))λ(Pr(~ε ∈ H(~ψ′)))1−λ (8)

= L(~ψ)λL(~ψ′)1−λ

as desired.

However, in practice, it is important to know when the equality in 8 holds. To answer this question,
we need a “strict” version of log-concavity theory.

2.1.1 Strictly Logarithmic Concave Measure

Mimicing the major ideas from [4], we define strictly log-concave measures and strictly log-concave
functions. Roughly speaking, they are the same as log-concave measures and log-concave functions,
but subject to a uniqueness condition on when the equality holds.
Definition 2. A measure P defined on the Borel measurable subsets of Rm is said to be strictly
logarithmic concave if

Pr(λA+ (1− λ)B) ≥ Pr(A)λ Pr(B)1−λ

for every 0 < λ < 1 and for all convex subsets A,B ⊂ Rm, and the equality holds if and only if
µ(A4B) = 0. (Here µ stands for Lebesgue measure and4 is the symmetric difference.)
Definition 3. A positive continuous function h(x) on Rm (resp., on a convex subset X of Rm) is
said to be strictly logarithmic concave if for every pair x1, x2 ∈ Rm (resp., x1, x2 ∈ X) and every
0 < λ < 1, we have

h(λx1 + (1− λ)x2) ≥ h(x1)λh(x2)1−λ,

and the equality holds if and only if x1 = x2.

The following technical lemma is needed later.
Lemma 3. (a) Let h be a logarithmic concave function on Rm. Suppose four points x1, x2, y1, y2
lie on the same line, with x1, y1 lie inside the line segment connecting x2, y2. Moreover assume that
λx1 + (1− λ)y1 = λx2 + (1− λ)y2 for some 0 < λ < 1. Then

h(x1)λh(y1)1−λ ≥ h(x2)λh(y2)1−λ

(b) Let h be a strictly logarithmic concave function on Rm. Let x ∈ Rm and a > 0 be a real number.
Then there exists ε > 0 such that

h(x) ≥ h(y)λh(z)1−λ + ε

whenever λy+ (1− λ)z = x and d(x, z) ≥ a. Moreover, this ε is uniform in x and a if they vary in
compact neighborhoods.
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Proof. (a) Let λ1 = y2−x1

y2−x2
and λ2 = y2−y1

y2−x2
. Then 0 < λ1, λ2 < 1 and

x1 = λ1x2 + (1− λ1)y2,

y1 = λ2x2 + (1− λ2)y2.

By log-concavity, we have
h(x1) ≥ h(x2)λ1h(y2)1−λ1

and
h(y1) ≥ h(x2)λ2h(y2)1−λ2

So
h(x1)λh(y1)1−λ ≥ h(x2)λλ1+(1−λ)λ2h(y2)λ(1−λ1)+(1−λ)(1−λ2)

Part (a) follows from the fact that λλ1 + (1− λ)λ2 = λ and λ(1− λ1) + (1− λ)(1− λ2) = 1− λ.

(b) If d(x, z) ≥ a, then h(x) > h(y)λh(z)1−λ due to strict log-concavity. By part (a), h(x) −
h(y)λh(z)1−λ is the smallest when d(x, z) = a. Define a function

g(y, z) := h(x)− h(y)λh(z)1−λ

It is a continuous function on Rm × Rm and it is positive on the compact set

U := {(y, z) ∈ R2m | d(x, z) = a, λy + (1− λ)z = x}

So it achieves a minimum ε > 0 on U . This ε is exactly the one we desired.

Finally, the uniformity of ε follows from the continuity of g and the fact that U is contained in a ball
of radius max{a, (1− λ)a/λ} centered at (x, x).

Finally, we present the following generalization of Theorem 2 in [4].

Theorem 3. Let P be a probability measure on Rm generated by a probability density of the form
f(x) = e−Q(x) whereQ(x) is a strictly convex function. (Namely, f is a strictly logarithmic concave
function.) Then P is a strictly logarithmic concave probability measure.

Proof. First, we recall the following result used in the proof of Theorem 2 in [4]. This is the
inequality (2.4) in [4].

Lemma 4. Let f, g be nonnegative Borel measurable functions on Rm and 0 < λ < 1 be a real
number. Let

r(t) := sup
λx+(1−λ)y=t

f(x)g(y).

Then we have inequality∫
Rm

r(t) dt ≥ (

∫
Rm

f1/λ(x) dx)λ(

∫
Rm

g1/(1−λ)(y) dy)1−λ.

Come back to the proof of the Theorem. We need to show that

Pr(λA+ (1− λ)B) > Pr(A)λ Pr(B)1−λ

if µ(A4B) > 0.

Let f1(x) = f(x) if x ∈ A and f1(x) = 0 otherwise;
Let f2(x) = f(x) if x ∈ B and f2(x) = 0 otherwise;
Let f3(x) = f(x) if x ∈ λA+ (1− λ)B and f3(x) = 0 otherwise.
Without loss of generality, let’s assume that µ(A\B) > 0. Notice that the set V := (λA + (1 −
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λ)B\B has positive Lebesgue measure. Pick a closedm-dimensional ballBa(x0) inside V of small
enough radius a > 0. We claim that there exist ε > 0 such that

f3(t) ≥ ε+ sup
λx+(1−λ)y=t

f1(x)λf2(x)1−λ

for all t ∈ Ba/2(x0).

Indeed, by Lemma 3 (b), we know for each t ∈ Ba/2(x0),

f3(t) > εt + sup
λx+(1−λ)y=t, d(t,y)>a/2

f1(x)λf2(y)λ

for some εt > 0. Moreover, this εt varies uniformly in the ball Ba/2(x0). So we can simply take
ε = inft∈Ba/2(x0) εt > 0.

Finally, the following inequality concludes the proof:∫
λA+(1−λ)B

f(x) dx =

∫
Rm

f3(t) dt

=

∫
Rm

(f3(t)− sup
λx+(1−λ)y=t

f1(x)λf2(y)1−λ) dt

+

∫
Rm

sup
λx+(1−λ)y=t

f1(x)λf2(y)1−λ dt

≥ εµ(Ba/2(x0)) + (

∫
Rm

f1(x) dx)λ(

∫
Rm

f2(y) dy)1−λ

> (

∫
A

f(x) dx)λ(

∫
B

f(y) dy)1−λ

2.1.2 Proof of Theorem 1

Proof of Theorem 1. Based on the proof of Lemma 1, the equality holds if and only if inequality (8)
is equality. By Theorem 3, we must have µ(H(~ψ(n))4H(~ψ′(n))) = 0. But H(~ψ) are closed convex
sets cut out by hyperplanes of the form

εnπ(m) − εnπ(m+1) ≥ δπ(m+1) − δπ(m) +
∑
k,l

xn(k)(zπ(m+1)(l)− zπ(m)(l))W
s(n)
kl .

So µ(H(~ψ(n))4H(~ψ′(n))) = 0 if and only if H(~ψ(n)) = H(~ψ′(n)), which happens if and only if

δm−δM +
∑
k,l

xn(k)(zm(l)−zM (l))W
s(n)
kl = (δm)′−(δM )′+

∑
k,l

xn(k)(zm(l)−zM (l))(W
s(n)
kl )′

for all n, k, l and m = 1, · · · ,M − 1. Namely, the vector

~τ =
(
(W s

kl − (W s
kl)
′)s,k,l, (δm − δM − (δm)′ + (δM )′)m

)
∈ RSKL+M

is a solution of Ã~τT = 0. By our assumption, Ã has full rank. So ~τ = 0, which says{
δm = (δm)′ + c where c = δM − (δM )′

W s
kl = (W s

kl)
′

This concludes the proof of Theorem 1.
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2.2 On Identifiability

The main purpose of this section is to prove Theorem 2. We first recall the definition of nice
functions.

Definition 4. Let φ(x) be a smooth pdf defined on R or [0,∞) and let Φ(x) be the associated cdf.

For each i > 0, we write φ(i)(x) for the i-th derivative of φ(x). Let gi(x) = φ(i+1)(x)
φ(i)(x)

. The function
Φ is called nice if it satisfies one of the following two mutually exclusive conditions:

(a) (Type 1) For any two x1, x2, the sequence gi(x1)
gi(x2)

converges to some value in R (as i→∞)
only if either

• x1 = x2; or
• x1 = −x2 and gi(x1)

gi(x2)
→ −1 as i→∞.

(b) (Type 2) For all x1, x2, the ratio gi(x1)
gi(x2)

converges to 1, as i → ∞. Moreover, for any

x1 6= x2, there exists an odd positive number m such that φ(m)(x1) 6= φ(m)(x2).

Proof of Lemma 2. Let φ(x) be the pdf associated to the cdf Φ(x). By assumption, φ is nice, which
means φ(x) is of Type 1 or Type 2 as in the above definition.

Consider the Taylor expansion at 0. Note that the (i + 1)-th derivatives of Φ(δ + xW s) is just
(W s)i+1φ(i)(δ + xW s). So, the induced identity on the (i+ 1)-th Taylor coefficient is

S∑
s=1

γs(W
s)i+1φ(i)(δ) =

S′∑
s=1

γ′s(W
′s)i+1φ(i)(δ′) (9)

Let us assume
|W 1| > |W 2| > · · · > |WS |,
|W ′1| > |W ′2| > · · · > |W ′S

′
|,

and |W 1| ≥ |W ′1|.
Dividing the (i+ 2)-th coefficient by the (i+ 1)-th coefficient, we obtain

φ(i+1)(δ)

φ(i)(δ)
·
∑S
s=1 γs(W

s)i+2∑S
s=1 γs(W

s)i+1
=
φ(i+1)(δ′)

φ(n)(δ′)
·
∑S′

s=1 γ
′
s(W

′s)i+2∑S′

s=1 γ
′
s(W

′s)i+1

Let gn(δ) = φ(i+1)(δ)
φ(i)(δ)

. Then gi(δ)
gi(δ′)

→ W ′1

W 1 ∈ R as i → ∞. Now let’s discuss Type 1 and Type 2
separately.

(i) (Type 1)
In this case, we must have δ = δ′, W ′1 = W 1 or, δ = −δ′, W ′1 = −W 1. However, if i is
odd, the equation (9) tells us that φ(i)(δ) and φ(i)(δ′) must have the same sign. This rules
out the possibility of δ = −δ′. Thus δ = δ′ and W 1 = W ′1. Now equation (9) becomes

S∑
s=1

γs(W
s)i+1 =

S′∑
s=1

γ′s(W
′s)i+1.

A classical identifiability result concludes that S = S′, γs = γ′s, and W s = W ′s for all s
(after a permutation).

(ii) (Type 2)
In this case, W

′1

W 1 must equal 1. Namely, W 1 = W ′1. Now look at equation (9). Since

gi(δ)

gi(δ′)
=
φ(i+1)(δ)/φ(i+1)(δ′)

φ(i)(δ)/φ(i)(δ′)
→ 1
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as i → ∞, we know that φ(i)(δ)
φ(i)(δ′)

does not grow as fast as exponentially. So, again by the
classical identifiability result, we know that γ1 = γ′1. Repeating this process, we know that
W 2 = W ′2, γ2 = γ′2, and so on. Therefore, we also know φ(i)(δ) = φ(i)(δ′) for all odd i.
However, by assumption, we must have δ = δ′.

Proof of Theorem 2. Consider all possible permutations in which product 2 is more preferred to
product 1. Define S(1; 2) := {π | 1 shows after 2 in the order π}. Then

S∑
s=1

γs Pr(u1 > u2|X,Z,Ψ) =
∑

π∈S(1;2)

S∑
s=1

γs Pr(π|X,Z,Ψ)

So
S∑
s=1

γs Pr(u1 > u2|X,Z,Ψ) =

S′∑
s=1

γ′s Pr(u1 > u2|X,Z,Ψ′)

Unwinding the definition, this means

S∑
s=1

γs Pr(ε2 > ε1|δ1 − δ2 +
∑
k,l

x(k)W s
kl(z1(l)− z2(l)))

=

S′∑
s=1

γ′s Pr(ε2 > ε1|δ′1 − δ′2 +
∑
k,l

x(k)W ′skl(z1(l)− z2(l)))

Namely,

S∑
s=1

γsΦ(δ1 − δ2 +
∑
k,l

x(k)W s
kl(z1(l)− z2(l)))

=

S′∑
s=1

γ′sΦ(δ′1 − δ′2 +
∑
k,l

x(k)W ′skl(z1(l)− z2(l)))

Again, we may assume all of the intervals Ik contain 0. If we fix x(2), · · · , x(K), we can think of
x(1) as a variable. By the previous Lemma, we must have

• S = S′

• δ1 − δ2 +
∑
k≥2W

s
kl(z1(l)− z2(l)) = δ′1 − δ′2 +

∑
k≥2W

′s
kl(z1(l)− z2(l))

• after a permutation of {1, · · · , S}, γs = γ′s, and
∑
lW

s
1l(z1(l)−z2(l)) =

∑
lW
′s
1l (z1(l)−

z2(l)).

Since x(k)’s can be arbitrary in the intervals Ik’s, we must have δ1 − δ2 = δ′1 − δ′2 and∑
l

W s
kl(z1(l)− z2(l)) =

∑
l

W ′skl(z1(l)− z2(l))

for all 1 ≤ k ≤ K. Now we can repeat the above for any two products. In particular, we know that
δ = δ′ (up to a shift), and ∑

l

(W s
kl −W ′skl)(zm(l)− zM (l)) = 0

for all 1 ≤ m ≤M − 1. By assumption, the M − 1 by L matrix Z ′ = (zm(l)− zM (l)) had rank L.
So the above systems of equation has a unique solution. Namely, W s

kl = W ′skl for all k, l, s.
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2.3 Examples of Nice CDFs

2.3.1 Normal Distributions

Let φ(x) = e−
x2

2 . Write φ(i)(x) = fi(x)e−
x2

2 . For example, f0(x) = 1, f1(x) = −x, and so on.
We have the recursive relation fi+1(x) = −xfi(x) + f ′i−1(x). In particular, we know that fi(x) is
a polynomial in R[x] of degree i.

Lemma 5. We have the following recursive relations.

(a) fi+1(x) = −xfi(x)− (i− 1)fi−1(x)

(b) f ′i+1(x) = −ifi(x)

Proof. Assume the result holds for stage i. For stage i+ 1, we have

fi+2(x) = −xfi+1(x) + f ′i+1(x) = −xfi+1(x)− ifi(x)

and

f ′i+2(x) = (−xfi+1(x)− ifi(x))′

= −fi+1(x)− xf ′i+1(x)− if ′i(x)

= −fi+1(x)− ixfi(x)− if ′i(x)

= −fi+1(x)− i(xfi(x) + f ′i(x))

= −fi+1(x)− ifi+1(x)

= −(i+ 1)fi+1(x)

Define gi(x) = fi+1(x)
fi(x)

, which is, a priori, a rational function with real coefficients. Dividing fi(x)

on both side of the relation (a) in the previous lemma, we obtain

gi(x) = −x− i− 1

gi−1(x)

Lemma 6. Given any δ ∈ R, the sequence {gi(δ)} does not converge to any number in R∪{±∞},
as i→∞.

Proof. If {gi(δ)} does converge to some a ∈ R, then

a = lim
i→∞

gi(δ) = lim
i→∞

(−δ − i− 1

gi−1(δ)
) = −δ − lim

i→∞

i− 1

gi−1(δ)
→∞,

a contradiction.

On the other hand, if gi(x)→ +∞, then−δ− i−1
gi−1(δ)

→ +∞. But it’s less than |δ|, a contradiction.
Similarly, gi(δ) cannot converge to −∞.

Lemma 7. Let δ, δ′ be two real numbers. Then gi(δ)
gi(δ′)

→ c ∈ R (as i → ∞) if and only if either
c = 1, δ = δ′ or c = −1, δ = −δ′.

Proof. We have gi(δ) + δ = − i−1
gi−1(δ)

and gi(δ′) + δ′ = − i−1
gi−1(δ′)

. Let ci = gi(δ)
gi(δ′)

. Then

gi(δ) + δ

gi(δ′) + δ′
=
gi−1(δ′)

gi−1(δ)
.

Thus

ci +
δ − ciδ′

gi(δ′) + δ′
=

1

ci−1
.
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Taking limit, we get

lim
i→∞

δ − cδ′

gi(δ′) + δ′
=

1

c
− c.

However, according to the lemma, 1
gi(δ′)+δ′

does not converge to any real number. So we must have
δ − cδ′ = 0. This implies 1

c − c = 0. Namely, c = ±1. If c = 1, we must have δ = δ′ and if
c = −1, we get δ = −δ′.

On the other hand, it’s easy to see that gi(δ)
gi(δ′)

≡ 1 if δ = δ′, while gi(δ)
gi(δ′)

= −1 if δ = −δ′. This
completes the proof.

2.3.2 Exponential Distributions

Let φ(x) = λe−λx (x ≥ 0). Then φ(i)(x) = (−1)iλi+1e−λx and gi(x) = φ(i+1)(x)
φ(i)(x)

= −λ, a

constant! In particular, for any x1, x2, the ratio gi(x1)
gi(x2)

is always 1. Moreover, if x1 6= x2, then
φ(1)(x1)
φ(1)(x2)

= eλ(x2−x1) 6= 1. Namely, φ(1)(x1) 6= φ(1)(x2). Therefore, φ(x) is a nice pdf of type 2.

11



3 Algorithms

The algorithm are explained in more detail in this section.

Algorithm 1 Gibbs Sampling of model parameters
set T=number of samples
set N=number of agents
set S=number of types
for t = 1 to T do

for n = 1 to N do
Select a random alternative m′ uniformly
Compute its mean µm′ = An(m′, :)ψBn

Find rank of m′ in πn as r′
Sample utility un

(t+1)

m′ ∼ truncEF (un(r′ + 1), un(r′ − 1))
end for
for s = 1 to S do

Construct Us = [un1T , ..., uNs
T

]
T where S(ni) = s for ni ∈ {n1, ..., nNs}

Sample ψ(t+1)
s ∼ (AsTAs)−1AsT [U (s)]

end for
Sample assignments S(t+1)(n) using algorithm(2)(Algorithm (1) in the paper)

end for

Algorithm 2 RJMCMC to update S(t+1)(n) from S(t)(n)

Set p−1, p0, p+1, Find S: number of distinct types in S(t)(n)
Propose move ν from {−1, 0,+1} with probabilities p−1, p0, p+1, respectively.
case ν = +1:

Select random typeMs and agent n ∈Ms uniformly and Assign n to moduleMs1 and remain-
der to Ms2 and Draw vector α ∼ N (0, 1) and Propose ψs1 = ψs − α and ψs2 = ψs + α and
Compute proposal {un, πn}(t+1)

Accept S(t+1)(Ms1) = S + 1, S(t+1)(Ms2) = s with Prsplit from update S = S + 1
case ν = −1:

Select two random types Ms1 and Ms2 and Merge into one type Ms and Propose ψs = (ψs1 +
ψs1)/2 and Compute proposed {un, πn}(i+1)

Accept S(t+1)(n) = s1 for ∀n|S(t)(n) = s2 with Prmerge update S = S − 1
case ν = 0:

Select two random types Ms1 and Ms2 and Move a random agent n from Ms1 to Ms2 and
Compute proposed {u(n), π(n)}(t+1)

Accept S(t+1)(n) = s2 with probability Prmh
end switch
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