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Abstract

We study the problem of learning a tensor from a set of linear measurements.
A prominent methodology for this problem is based on a generalization of trace
norm regularization, which has been used extensively for learning low rank ma-
trices, to the tensor setting. In this paper, we highlight some limitations of this
approach and propose an alternative convex relaxation on the Euclidean ball. We
then describe a technique to solve the associated regularization problem, which
builds upon the alternating direction method of multipliers. Experiments on one
synthetic dataset and two real datasets indicate that the proposed method improves
significantly over tensor trace norm regularization in terms of estimation error,
while remaining computationally tractable.

1 Introduction

During the recent years, there has been a growing interest on the problem of learning a tensor from
a set of linear measurements, such as a subset of its entries, see [9, 17, 22, 23, 25, 26, 27] and
references therein. This methodology, which is also referred to as tensor completion, has been
applied to various fields, ranging from collaborative filtering [15], to computer vision [17], and
medical imaging [9], among others. In this paper, we propose a new method to tensor completion,
which is based on a convex regularizer which encourages low rank tensors and develop an algorithm
for solving the associated regularization problem.

Arguably the most widely used convex approach to tensor completion is based upon the extension
of trace norm regularization [24] to that context. This involves computing the average of the trace
norm of each matricization of the tensor [16]. A key insight behind using trace norm regularization
for matrix completion is that this norm provides a tight convex relaxation of the rank of a matrix
defined on the spectral unit ball [8]. Unfortunately, the extension of this methodology to the more
general tensor setting presents some difficulties. In particular, we shall prove in this paper that the
tensor trace norm is not a tight convex relaxation of the tensor rank.

The above negative result stems from the fact that the spectral norm, used to compute the convex
relaxation for the trace norm, is not an invariant property of the matricization of a tensor. This
observation leads us to take a different route and study afresh the convex relaxation of tensor rank on
the Euclidean ball. We show that this relaxation is tighter than the tensor trace norm, and we describe
a technique to solve the associated regularization problem. This method builds upon the alternating
direction method of multipliers and a subgradient method to compute the proximity operator of the
proposed regularizer. Furthermore, we present numerical experiments on one synthetic dataset and
two real-life datasets, which indicate that the proposed method improves significantly over tensor
trace norm regularization in terms of estimation error, while remaining computationally tractable.



The paper is organized in the following manner. In Section 2, we describe the tensor completion
framework. In Section 3, we highlight some limitations of the tensor trace norm regularizer and
present an alternative convex relaxation for the tensor rank. In Section 4, we describe a method to
solve the associated regularization problem. In Section 5, we report on our numerical experience
with the proposed method. Finally, in Section 6, we summarize the main contributions of this paper
and discuss future directions of research.

2 Preliminaries

In this section, we begin by introducing some notation and then proceed to describe the learning
problem. We denote by N the set of natural numbers and, for every k& € N, we define [k] =
{1,...,k}. Let N € Nand let! py,...,py > 2. An N-order tensor W € RP1X"XPN g a
collection of real numbers WV;, .. iy @ in € [pn], n € [N]). Boldface Euler scripts, e.g. W, will be
used to denote tensors of order higher than two. Vectors are 1-order tensors and will be denoted by
lower case letters, e.g. x or a; matrices are 2-order tensors and will be denoted by upper case letters,
eg W.Ilfx € R then for every r < s < d, we define x,.s := (z; : r < i < s). We also use the
notation pyi, = min{p1,...,px} and pmax = max{pi,...,pn}.

A mode-n fiber of a tensor W is a vector composed of the elements of YV obtained by fixing all
indices but one, corresponding to the n-th mode. This notion is a higher order analogue of columns
(mode-1 fibers) and rows (mode-2 fibers) for matrices. The mode-n matricization (or unfolding) of
W, denoted by W(,,, is a matrix obtained by arranging the mode-n fibers of W so that each of
them is a column of W,y € RP» XJn where .J,, := H,#n pi.. Note that the ordering of the columns
is not important as long as it is used consistently.

We are now ready to describe the learning problem. We choose a linear operator Z : RP1 = *PN —
R™, representing a set of linear measurements obtained from a target tensor W’ as y = 7 (WO) +¢,
where ¢ is some disturbance noise. Tensor completion is an important example of this setting, in
this case the operator Z returns the known elements of the tensor. That is, we have 7 (WO) =
(ng(j),...,m(j) : j € [m]), where, for every j € [m] and n € [N], the index i, (j) is a prescribed
integer in the set [p,,]. Our aim is to recover the tensor W from the data (Z,y). To this end, we
solve the regularization problem

min {|ly = Z(W)[5 +yR(W) : W € RP0 ) M
where 7y is a positive parameter which may be chosen by cross validation. The role of the regularizer
R is to encourage solutions VW which have a simple structure in the sense that they involve a small

number of “degrees of freedom”. A natural choice is to consider the average of the rank of the
tensor’s matricizations. Specifically, we consider the combinatorial regularizer

1 N
RW) = > rank(Wy,)). 2)
n=1

Finding a convex relaxation of this regularizer has been the subject of recent works [9, 17, 23]. They
all agree to use the sum of nuclear norms as a convex proxy of R. This is defined as the average of
the trace norm of each matricization of W, that is,

N
1
Wl =5 2 Wl 3)
n=1
where [|W(,,) |« is the trace (or nuclear) norm of matrix W/,,), namely the /;-norm of the vector of
singular values of matrix W, (see, e.g. [14]). Note that in the particular case of 2-order tensors,
functions (2) and (3) coincide with the usual notion of rank and trace norm of a matrix, respectively.

A rational behind the regularizer (3) is that the trace norm is the tightest convex lower bound to the
rank of a matrix on the spectral unit ball, see [8, Thm. 1]. This lower bound is given by the convex
envelope of the function

| rank(W), if [[W]e <1
vw) = { 400, otherwise )

"For simplicity we assume that p, > 2 for every n € [N], otherwise we simply reduce the order of the
tensor without loss of information.




where || - ||« is the spectral norm, namely the largest singular value of W. The convex envelope can
be derived by computing the double conjugate of W. This is defined as

U (W) = sup {<VV7 Sy — U (W):S € Rplxm} 5)
where U* is the conjugate of ¥, namely U*(S) = sup {(W, S) — W(W) : W € RP1xPz},

Note that W is a spectral function, that is, (W) = (o (W)) where 1) : R? — R denotes the
associated symmetric gauge function. Using von Neumann’s trace theorem (see e.g. [14]) it is
easily seen that U*(.9) is also a spectral function. That is, ¥*(S) = ¢*(c(S)), where

Y* (o) = sup {(0, w) — h(w) : w € RY } with d := min(p1, p2).

We refer to [8] for a detailed discussion of these ideas. We will use this equivalence between spectral
and gauge functions repeatedly in the paper.

3 Alternative Convex Relaxation

In this section, we show that the tensor trace norm is not a tight convex relaxation of the tensor rank
R in equation (2). We then propose an alternative convex relaxation for this function.

Note that due to the composite nature of the function R, computing its convex envelope is a chal-
lenging task and one needs to resort to approximations. In [22], the authors note that the tensor trace
norm || - ||, in equation (3) is a convex lower bound to R on the set

Goo i= {W € RPLXXDN . HW(n)Hoo <1,Vne [N]}

The key insight behind this observation is summarized in Lemma 4, which we report in Appendix A.
However, the authors of [22] leave open the question of whether the tensor trace norm is the convex
envelope of R on the set G. In the following, we will prove that this question has a negative answer
by showing that there exists a convex function 2 # || - ||¢, which underestimates the function R on
Goo and such that for some tensor W € G it holds that Q(W) > | W|;,.

To describe our observation we introduce the set

Go = {W € RPVXPN o |W)|, < 1}

where || - |2 is the Euclidean norm for tensors, that is,
IWII3 = Z Z i)
11=1 in=1

We will choose
QW) = QW) : NZw** 7 (W) (6)

where w’* is the convex envelope of the cardinality of a vector on the ¢-ball of radius o and we
will choose & = |/pmin. Note, by Lemma 4 stated in Appendix A, that for every o > 0, function
Q. is a convex lower bound of function R on the set «Gs.

Below, for every vector s € R? we denote by s* the vector obtained by reordering the components
of s so that they are non increasing in absolute value, that is, [s7] > - > |s$\

Lemma 1. Let w}* be the convex envelope of the cardinality on the {5-ball of radius «.. Then, for
every x € RY such that ||z||2 = o, it holds that w’* (x) = card (z).

This lemma is proved in Appendix B. The function w?* resembles the norm developed in [1], which
corresponds to the convex envelope of the indicator function of the cardinality of a vector in the {5
ball. The extension of its application to tensors is not straighforward though, as it is required to
specify beforehand the rank of each matricization.

The next lemma provides, together with Lemma 1, a sufficient condition for the existence of a tensor
W € G at which the regularizer in equation (6) is strictly larger than the tensor trace norm.



Lemma 2. If N > 3 and py,...,pny are not all equal to each other, then there exists

W € RPN such that: (a) Wl = /P ) W € Goo, (©) m[ijr\}]rank(W(n)) <
ne

k(Wny)-
7{22&3{(} rank(W,))

The proof of this lemma is presented in Appendix C. We are now ready to formulate the main result
of this section.

Proposition 3. Let p1,...,pny € N, let || - ||4x be the tensor trace norm in equation (3) and let
Qo be the function in equation (6) for &« = \/Pmin. If Pmin < Pmax, then there are infinitely
many tensors W € Goo such that Qo (W) > [|W)||wr. Moreover, for every W € G, it holds that
QW) = [W]|is-

Proof. By construction 2, (W) < R(W) for every W € aGs. Since G, C aGs then €, is a
convex lower bound for the tensor rank R on the set G, as well. The first claim now follows by
Lemmas 1 and 2. Indeed, all tensors obtained following the process described in the proof of Lemma
2 (in Appendix C) have the property that

N
1 1 /
||VVHtlr = N Z ||O(W(n))||1 = N (pmin(N - 1) + mein +pmin>
n=1

< % (pmin(N - 1) +pmin + 1) = Q(W) = R(W)

Furthermore there are infinitely many such tensors which satisfy this claim (see Appendix C).
With respect to the second claim, given that wi™ is the convex envelope of the cardinality card on
the Euclidean unit ball, then wi* (o) > ||o||; for every vector o such that ||o||; < 1. Consequently,

QW) =L 50w (0 (W) = £ SN oWl = Wl
O

The above result stems from the fact that the spectral norm is not an invariant property of the matri-
cization of a tensor, whereas the Euclidean (Frobenius) norm is. This observation leads us to further
study the function €2,,.

4 Optimization Method

In this section, we explain how to solve the regularization problem associated with the regularizer
(6). For this purpose, we first recall the alternating direction method of multipliers (ADMM) [4],
which was conveniently applied to tensor trace norm regularization in [9, 22].

4.1 Alternating Direction Method of Multipliers (ADMM)

To explain ADMM we consider a more general problem comprising both tensor trace norm regular-
ization and the regularizer we propose,

N
min {E W) + 72::1\1/ (W(n))} )

where E(W) is an error term such as ||y — Z(W)||3 and ¥ is a convex spectral function. It is
defined, for every matrix A, as
U(A) =1(a(A))

where 1) is a gauge function, namely a function which is symmetric and invariant under permuta-
tions. In particular, if ¢ is the #; norm then problem (7) corresponds to tensor trace norm regular-
ization, whereas if ¢ = w>* it implements the proposed regularizer.

Problem (7) poses some difficulties because the terms under the summation are interdependent, due
to the different matricizations of WV having the same elements rearranged in a different way. In



order to overcome this difficulty, the authors of [9, 22] proposed to use ADMM as a natural way to
decouple the regularization term appearing in problem (7). This strategy is based on the introduction
of N auxiliary tensors, By, ..., By € RP1X"XPN g0 that problem (7) can be reformulated as’

W.B o By { )+ Z\I’ wm) © B =W, ne {N]} @®)
The corresponding augmented Lagrangian (see e.g. [4, 5]) is given by
LOW.B,A) = +Z< Buw) ~ (AW =B, IW-B[), ©

where (-, -) denotes the scalar product between tensors, 3 is a positive parameter and A4, ... Ay €
RP1>XPN are the set of Lagrange multipliers associated with the constraints in problem (8).

ADMM is based on the following iterative scheme

W aremin £ (W’Bm’ Am) (10)
w

Bt argmin £ (W[i+1]7BaA[i1) (an
By

Al AQ]—(BW““]—BE*”) (12)

Step (12) is straightforward, whereas step (10) is described in [9]. Here we focus on the step (11)
since this is the only problem which involves function ¥. We restate it with more explanatory
notations as

. B 2
argmin {‘1’ (Bn(m)) = (An(n), Win) = Buim)) + 5 [[Win) = Bagn) Hz} :

By completing the square in the right hand side, the solution of this problem is given by

.1 1 2
Bun) = Proxyy (X) i= argmin {ﬁ‘l’ (Bu(w) + 5 [[Bagy = XHQ} :

where X = W(,,) — An(n) By using properties of proximity operators (see e.g. [2, Prop. 3.1]) we
know that if 1) is a gauge function then

Prox1y (X) = Uxdiag (pro}%w (a(X)))V;,

where Ux and Vx are the orthogonal matrices formed by the left and right singular vectors of
X, respectively. If we choose ¢ = ||-||; the associated proximity operator is the well-known soft
thresholding operator, that is, prox N (o) = v, where the vector v has components

= sien () (1o = 5 ).

On the other hand, if we choose ¢ = w}*, we need to compute PTOX1 .- In the next section, we
describe a method to accomplish this task.

4.2 Computation of the Proximity Operator

To compute the proximity operator of the function +w** we will use several properties of proximity

ﬁ Wey
calculus. First, we use the formula (see e.g. [7]) prox,. (z) = = — prox, (z) for g* = l . Next
we use a property of conjugate functions from [21, 13], which states that g(-) = 5 wi( ﬁ ). Flnally,

by the scaling property of proximity operators [7], we have that prox, (x) = 6prox5w* (Bx).

>The somewhat cumbersome notation B, (n) denotes the mode-n matricization of tensor B,, that is,
Brm) = (Bn)(n)-



Algorithm 1 Computation of proxg,,. (y)

Input: y € R%, o, 5 > 0.
Output: & € R?.
Initialization: initial step 7o = %, initial and best found solution w® = @ = Ps(y) € R%
fort=1,2,... do
T T—Ot

™
Find k such that k£ € argmax {a||wi;,1H2 —r:0<r< d}

k2
wk+1:d~<_ w,ijrll:d -7 (wtkjrlld — Ykt1:d)
wt Ps (’LZ))
If h(w') < h() then & « w'

If “Stopping Condition = True” then terminate.
end for

It remains to compute the proximity operator of a multiple of the function w, in equation (13), that
is, for any 5 > 0, y € S, we wish to compute

proxg,. (y) = argmin {h (w) : w € S}
where we have defined S := {w € R% : w; > --- > wy > 0} and

1 2 d
h(w) = 5w =yl + 6 max{a|will, -7}

In order to solve this problem we employ the projected subgradient method, see e.g. [6]. It consists

in applying two steps at each iteration. First, it advances along a negative subgradient of the current

solution; second, it projects the resultant point onto the feasible set S. In fact, according to [6], it

is sufficient to compute an approximate projection, a step which we describe in Appendix D. To
. . d

compute a subgradient of & at w, we first find any integer k such that £ € argmax {a ||w1.. ||, — 7}

r=

Then, we calculate a subgradient g of the function h at w by the formula

ﬁ . .
g = <1+ ”w?:k”2>wi_yia lf’LSk7
Wi — Yi, otherwise.

Now we have all the ingredients to apply the projected subgradient method, which is summarized
in Algorithm 1. In our implementation we stop the algorithm when an update of w is not made for
more than 10? iterations.

S Experiments

We have conducted a set of experiments to assess whether there is any advantage of using the pro-
posed regularizer over the tensor trace norm for tensor completion®. First, we have designed a
synthetic experiment to evaluate the performance of both approaches under controlled conditions.
Then, we have tried both methods on two tensor completion real data problems. In all cases, we have
used a validation procedure to tune the hyper-parameter vy, present in both approaches, among the
values {10j gy =-7,—6,..., 1}. In our proposed approach there is one further hyper-parameter,
@, to be specified. It should take the value of the Euclidean norm of the underlying tensor. Since
this is unknown, we propose to use the estimate

N
a = [ llw]3 + (mean(w)? + var(w)) (Hpi - m) ,

where m is the number of known entries and w € R"" contains their values. This estimator assumes
that each value in the tensor is sampled from N (mean(w), var(w)), where mean(w) and var(w)
are the average and the variance of the elements in w.

3The code is available at http://romera-paredes.com/code/tensor-completion
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Figure 1: Synthetic dataset: (Left) Root Mean Squared Error (RMSE) of tensor trace norm and the
proposed regularizer. (Right) Running time execution for different sizes of the tensor.

5.1 Synthetic Dataset

We have generated a 3-order tensor W' € R%0%20x10 by the following procedure. First we gener-
ated a tensor WV with ranks (12, 6, 3) using Tucker decomposition (see e.g. [16])

12 6 3
Wiy jinjis = Z Z Z le-,jmjsMi(ll,)le(Q)

(3)
i?ajZM
j1=1j2=1j3=1

13,737 (i17127i3) € [40} X [20] X [10]
where each entry of the Tucker decomposition components is sampled from the standard Gaussian
distribution A/(0, 1). We then created the ground truth tensor w° by the equation

0o _ Wihiz,is — mean(W)

11,12,13 \/NStd(W)
where mean(W) and std(W) are the mean and standard deviation of the elements of W, N is
the total number of elements of W, and the &;, ;, i, are i.i.d. Gaussian random variables with zero
mean and variance 0. We have randomly sampled 10% of the elements of the tensor to compose
the training set, 45% for the validation set, and the remaining 45% for the test set. After repeating
this process 20 times, we report the average results in Figure 1 (Left). Having conducted a paired

t-test for each value of o2, we conclude that the visible differences in the performances are highly
significant, obtaining always p-values less than 0.01 for o2 < 1072,

+ gihiz,is

Furthermore, we have conducted an experiment to test the running time of both approaches. We
have generated tensors W € RP*P*? for different values of p € {20, 40, ...,200}, following
the same procedure as outlined above. The results are reported in Figure 1 (Right). For low values
of p, the ratio between the running time of our approach and that of the trace norm regularization
method is quite high. For example in the lowest value tried for p in this experiment, p = 20, this
ratio is 22.661. However, as the volume of the tensor increases, the ratio quickly decreases. For
example, for p = 200, the running time ratio is 1.9113. These outcomes are expected because when
p is low, the most demanding routine in our method is the one described in Algorithm 1, where
each iteration is of order O (p) and O (p2) in the best and worst case, respectively. However, as
p increases the singular value decomposition routine, which is common to both methods, becomes
the most demanding because it has a time complexity O (p?’) [10]. Therefore, we can conclude
that even though our approach is slower than the trace norm based method, this difference becomes
much smaller as the size of the tensor increases.

5.2 School Dataset

The first real dataset we have tried is the Inner London Education Authority (ILEA) dataset. It is
composed of examination marks ranging from 0 to 70, of 15362 students who are described by a set
of attributes such as school and ethnic group. Most of these attributes are categorical, thereby we can
think of exam mark prediction as a tensor completion problem where each of the modes corresponds
to a categorical attribute. In particular, we have used the following attributes: school (139), gender
(2), VR-band (3), ethnic (11), and year (3), leading to a 5-order tensor W € R139x2x3x11x3
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Figure 2: Root Mean Squared Error (RMSE) of tensor trace norm and the proposed regularizer for
ILEA dataset (Left) and Ocean video (Right).

We have selected randomly 5% of the instances to make the test set and another 5% of the instances
for the validation set. From the remaining instances, we have randomly chosen m of them for several
values of m. This procedure has been repeated 20 times and the average performance is presented
in Figure 2 (Left). There is a distinguishable improvement of our approach with respect to tensor
trace norm regularization for values of m > 7000. To check whether this gap is significant, we have
conducted a set of paired ¢-tests in this regime. In all these cases we obtained a p-value below 0.01.

5.3 Video Completion

In the second real-data experiment we have performed a video completion test. Any video can be
treated as a 4-order tensor: “width” x “height” x “RGB” x “video length”, so we can use tensor
completion algorithms to rebuild a video from a few inputs, a procedure that can be useful for
compression purposes. In our case, we have used the Ocean video, available at [17]. This video
sequence can be treated as a tensor W € R160x112x3x32 " We have randomly sampled m tensors
elements as training data, 5% of them as validation data, and the remaining ones composed the test
set. After repeating this procedure 10 times, we present the average results in Figure 2 (Right). The
proposed approach is noticeably better than the tensor trace norm in this experiment. This apparent
outcome is strongly supported by the paired t-tests which we run for each value of m, obtaining
always p-values below 0.01, and for the cases m > 5 x 104, we obtained p-values below 1076,

6 Conclusion

In this paper, we proposed a convex relaxation for the average of the rank of the matricizations of
a tensor. We compared this relaxation to a commonly used convex relaxation used in the context
of tensor completion, which is based on the trace norm. We proved that this second relaxation is
not tight and argued that the proposed convex regularizer may be advantageous. Our numerical
experience indicates that our method consistently improves in terms of estimation error over tensor
trace norm regularization, while being computationally comparable on the range of problems we
considered. In the future it would be interesting to study methods to speed up the computation of the
proximity operator of our regularizer and investigate its utility in tensor learning problems beyond
tensor completion such as multilinear multitask learning [20].
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