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Abstract

We investigate three related and important problems connected to machine learning:
approximating a submodular function everywhere, learning a submodular function
(in a PAC-like setting [28]), and constrained minimization of submodular functions.
We show that the complexity of all three problems depends on the “curvature” of the
submodular function, and provide lower and upper bounds that refine and improve
previous results [2, 6, 8, 27]. Our proof techniques are fairly generic. We either
use a black-box transformation of the function (for approximation and learning),
or a transformation of algorithms to use an appropriate surrogate function (for
minimization). Curiously, curvature has been known to influence approximations
for submodular maximization [3, 29], but its effect on minimization, approximation
and learning has hitherto been open. We complete this picture, and also support
our theoretical claims by empirical results.

1 Introduction

Submodularity is a pervasive and important property in the areas of combinatorial optimization,
economics, operations research, and game theory. In recent years, submodularity’s use in machine
learning has begun to proliferate as well. A set function f : 2V → R over a finite set V =
{1, 2, . . . , n} is submodular if for all subsets S, T ⊆ V , it holds that f(S) + f(T ) ≥ f(S ∪ T ) +
f(S ∩ T ). Given a set S ⊆ V , we define the gain of an element j /∈ S in the context S as
f(j|S) , f(S ∪ j)− f(S). A function f is submodular if it satisfies diminishing marginal returns,
namely f(j|S) ≥ f(j|T ) for all S ⊆ T, j /∈ T , and is monotone if f(j|S) ≥ 0 for all j /∈ S, S ⊆ V .

While submodularity, like convexity, occurs naturally in a wide variety of problems, recent studies
have shown that in the general case, many submodular problems of interest are very hard: the
problems of learning a submodular function or of submodular minimization under constraints do
not even admit constant or logarithmic approximation factors in polynomial time [2, 7, 8, 10, 27].
These rather pessimistic results however stand in sharp contrast to empirical observations, which
suggest that these lower bounds are specific to rather contrived classes of functions, whereas much
better results can be achieved in many practically relevant cases. Given the increasing importance
of submodular functions in machine learning, these observations beg the question of qualifying and
quantifying properties that make sub-classes of submodular functions more amenable to learning and
optimization. Indeed, limited prior work has shown improved results for constrained minimization
and learning of sub-classes of submodular functions, including symmetric functions [2, 25], concave
functions [7, 18, 24], label cost or covering functions [9, 31].

In this paper, we take additional steps towards addressing the above problems and show how the
generic notion of the curvature – the deviation from modularity– of a submodular function determines
both upper and lower bounds on approximation factors for many learning and constrained optimization
problems. In particular, our quantification tightens the generic, function-independent bounds in [8, 2,
27, 7, 10] for many practically relevant functions. Previously, the concept of curvature has been used to
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tighten bounds for submodular maximization problems [3, 29]. Hence, our results complete a unifying
picture of the effect of curvature on submodular problems. Moreover, curvature is still a fairly generic
concept, as it only depends on the marginal gains of the submodular function. It allows a smooth
transition between the ‘easy’ functions and the ‘really hard’ subclasses of submodular functions.

2 Problem statements, definitions and background

Before stating our main results, we provide some necessary definitions and introduce a new concept,
the curve normalized version of a submodular function. Throughout this paper, we assume that
the submodular function f is defined on a ground set V of n elements, that it is nonnegative and
f(∅) = 0. We also use normalized modular (or additive) functions w : 2V → R which are those that
can be written as a sum of weights, w(S) =

∑
i∈S w(i). We are concerned with the following three

problems:
Problem 1. (Approximation [8]) Given a submodular function f in form of a value oracle, find an
approximation f̂ (within polynomial time and representable within polynomial space), such that for
all X ⊆ V , it holds that f̂(X) ≤ f(X) ≤ α1(n)f̂(X) for a polynomial α1(n).
Problem 2. (PMAC-Learning [2]) Given i.i.d training samples {(Xi, f(Xi)}mi=1 from a distribution
D, learn an approximation f̂(X) that is, with probability 1 − δ, within a multiplicative factor of
α2(n) from f .
Problem 3. (Constrained optimization [27, 7, 10, 16]) Minimize a submodular function f over a
family C of feasible sets, i.e., minX∈C f(X).

In its general form, the approximation problem was first studied by Goemans et al. [8], who approx-
imate any monotone submodular function to within a factor of O(

√
n log n), with a lower bound

of α1(n) = Ω(
√
n/ log n). Building on this result, Balcan and Harvey [2] show how to PMAC-learn

a monotone submodular function within a factor of α2(n) = O(
√
n), and prove a lower bound of

Ω(n1/3) for the learning problem. Subsequent work extends these results to sub-additive and frac-
tionally sub-additive functions [1]. Better learning results are possible for the subclass of submodular
shells [23] and Fourier sparse set functions [26]. Both Problems 1 and 2 have numerous applications
in algorithmic game theory and economics [2, 8] as well as machine learning [2, 22, 23, 26, 15].

Constrained submodular minimization arises in applications such as power assignment or transporta-
tion problems [19, 30, 13]. In machine learning, it occurs, for instance, in the form of MAP inference
in high-order graphical models [17] or in size-constrained corpus extraction [21]. Recent results
show that almost all constraints make it hard to solve the minimization even within a constant factor
[27, 6, 16]. Here, we will focus on the constraint of imposing a lower bound on the cardinality, and
on combinatorial constraints where C is the set of all s-t paths, s-t cuts, spanning trees, or perfect
matchings in a graph.

A central concept in this work is the total curvature κf of a submodular function f and the curvature
κf (S) with respect to a set S ⊆ V , defined as [3, 29]

κf = 1−min
j∈V

f(j | V \ j)
f(j)

, κf (S) = 1−min
j∈S

f(j|S\j)
f(j)

. (1)

Without loss of generality, assume that f(j) > 0 for all j ∈ V . It is easy to see that κf (S) ≤
κf (V ) = κf , and hence κf (S) is a tighter notion of curvature. A modular function has curvature
κf = 0, and a matroid rank function has maximal curvature κf = 1. Intuitively, κf measures how
far away f is from being modular. Conceptually, curvature is distinct from the recently proposed
submodularity ratio [5] that measures how far a function is from being submodular. Curvature has
served to tighten bounds for submodular maximization problems, e.g., from (1−1/e) to 1

κf
(1−e−κf )

for monotone submodular maximization subject to a cardinality constraint [3] or matroid constraints
[29], and these results are tight. For submodular minimization, learning, and approximation, however,
the role of curvature has not yet been addressed (an exception are the upper bounds in [13] for
minimization). In the following sections, we complete the picture of how curvature affects the
complexity of submodular maximization and minimization, approximation, and learning.

The above-cited lower bounds for Problems 1–3 were established with functions of maximal curvature
(κf = 1) which, as we will see, is the worst case. By contrast, many practically interesting functions
have smaller curvature, and our analysis will provide an explanation for the good empirical results
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observed with such functions [13, 22, 14]. An example for functions with κf < 1 is the class
of concave over modular functions that have been used in speech processing [22] and computer
vision [17]. This class comprises, for instance, functions of the form f(X) =

∑k
i=1(wi(X))a, for

some a ∈ [0, 1] and a nonnegative weight vectors wi. Such functions may be defined over clusters
Ci ⊆ V , in which case the weights wi(j) are nonzero only if j ∈ Ci [22, 17, 11].

Curvature-dependent analysis. To analyze Problems 1 – 3, we introduce the concept of a curve-
normalized polymatroid1. Specifically, we define the κf -curve-normalized version of f as

fκ(X) =
f(X)− (1− κf )

∑
j∈X f(j)

κf
(2)

If κf = 0, then we set fκ ≡ 0. We call fκ the curve-normalized version of f because its curvature
is κfκ = 1. The function fκ allows us to decompose a submodular function f into a “diffi-
cult” polymatroid function and an “easy” modular part as f(X) = fdifficult(X) + measy(X) where
fdifficult(X) = κff

κ(X) andmeasy(X) = (1−κf )
∑
j∈X f(j). Moreover, we may modulate the cur-

vature of given any function g with κg = 1, by constructing a function f(X) , cg(X) + (1− c)|X|
with curvature κf = c but otherwise the same polymatroidal structure as g.

Our curvature-based decomposition is different from decompositions such as that into a totally
normalized function and a modular function [4]. Indeed, the curve-normalized function has some
specific properties that will be useful later on (proved in [12]):

Lemma 2.1. If f is monotone submodular with κf > 0, then f(X) ≤
∑
j∈X f(j) and f(X) ≥

(1− κf )
∑
j∈X f(j).

Lemma 2.2. If f is monotone submodular, then fκ(X) in Eqn. (2) is a monotone non-negative
submodular function. Furthermore, fκ(X) ≤

∑
j∈X f(j).

The function fκ will be our tool for analyzing the hardness of submodular problems. Previous
information-theoretic lower bounds for Problems 1–3 [6, 8, 10, 27] are independent of curvature and
use functions with κf = 1. These curvature-independent bounds are proven by constructing two
essentially indistinguishable matroid rank functions h and fR, one of which depends on a random
set R ⊆ V . One then argues that any algorithm would need to make a super-polynomial number of
queries to the functions for being able to distinguish h and fR with high enough probability. The
lower bound will be the ratio maxX∈C h(X)/fR(X). We extend this proof technique to functions
with a fixed given curvature. To this end, we define the functions

fRκ (X) = κff
R(X) + (1− κf )|X| and hκ(X) = κfh(X) + (1− κf )|X|. (3)

Both of these functions have curvature κf . This construction enables us to explicitly introduce the
effect of curvature into information-theoretic bounds for all monotone submodular functions.

Main results. The curve normalization (2) leads to refined upper bounds for Problems 1–3, while
the curvature modulation (3) provides matching lower bounds. The following are some of our
main results: for approximating submodular functions (Problem 1), we replace the known bound
of α1(n) = O(

√
n log n) [8] by an improved curvature-dependent O(

√
n logn

1+(
√
n logn−1)(1−κf )

). We

complement this with a lower bound of Ω̃(
√
n

1+(
√
n−1)(1−κf )

). For learning submodular functions
(Problem 2), we refine the known bound of α2(n) = O(

√
n) [2] in the PMAC setting to a curvature

dependent bound of O(
√
n

1+(
√
n−1)(1−κf )

), with a lower bound of Ω̃( n1/3

1+(n1/3−1)(1−κf )
). Finally,

Table 1 summarizes our curvature-dependent approximation bounds for constrained minimization
(Problem 3). These bounds refine many of the results in [6, 27, 10, 16]. In general, our new curvature-
dependent upper and lower bounds refine known theoretical results whenever κf < 1, in many cases
replacing known polynomial bounds by a curvature-dependent constant factor 1/(1− κf ). Besides
making these bounds precise, the decomposition and the curve-normalized version (2) are the basis
for constructing tight algorithms that (up to logarithmic factors) achieve the lower bounds.

1A polymatroid function is a monotone increasing, nonnegative, submodular function satisfying f(∅) = 0.
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Constraint Modular approx. (MUB) Ellipsoid approx. (EA) Lower bound

Card. LB k
1+(k−1)(1−κf ) O(

√
n logn

1+(
√
n logn−1)(1−κf )

) Ω̃( n1/2)
1+(n1/2−1)(1−κf )

)

Spanning Tree n
1+(n−1)(1−κf ) O(

√
m logm

1+(
√
m logm−1)(1−κf )

) Ω̃( n
1+(n−1)(1−κf ) )

Matchings n
2+(n−2)(1−κf ) O(

√
m logm

1+(
√
m logm−1)(1−κf )

) Ω̃( n
1+(n−1)(1−κf ) )

s-t path n
1+(n−1)(1−κf ) O(

√
m logm

1+(
√
m logm−1)(1−κf )

) Ω̃( n2/3

1+(n2/3−1)(1−κf )
)

s-t cut m
1+(m−1)(1−κf ) O(

√
m logm

1+(logm
√
m−1)(1−κf )

) Ω̃(
√
n

1+(
√
n−1)(1−κf )

)

Table 1: Summary of our results for constrained minimization (Problem 3).

3 Approximating submodular functions everywhere

We first address improved bounds for the problem of approximating a monotone submodular function
everywhere. Previous work established α-approximations g to a submodular function f satisfying
g(S) ≤ f(S) ≤ αg(S) for all S ⊆ V [8]. We begin with a theorem showing how any algorithm
computing such an approximation may be used to obtain a curvature-specific, improved approximation.
Note that the curvature of a monotone submodular function can be obtained within 2n+ 1 queries to
f . The key idea of Theorem 3.1 is to only approximate the curved part of f , and to retain the modular
part exactly. The full proof is in [12].
Theorem 3.1. Given a polymatroid function f with κf < 1, let fκ be its curve-normalized version
defined in Equation (2), and let f̂κ be a submodular function satisfying f̂κ(X) ≤ fκ(X) ≤
α(n)f̂κ(X), for some X ⊆ V . Then the function f̂(X) , κf f̂κ(X)+(1−κf )

∑
j∈X f(j) satisfies

f̂(X) ≤ f(X) ≤ α(n)
1 + (α(n)− 1)(1− κf )

f̂(X) ≤ f̂(X)
1− κf

. (4)

Theorem 3.1 may be directly applied to tighten recent results on approximating submodular functions
everywhere. An algorithm by Goemans et al. [8] computes an approximation to a polymatroid
function f in polynomial time by approximating the submodular polyhedron via an ellipsoid. This
approximation (which we call the ellipsoidal approximation) satisfies α(n) = O(

√
n log n), and has

the form
√
wf (X) for a certain weight vector wf . Corollary 3.2 states that a tighter approximation

is possible for functions with κf < 1.

Corollary 3.2. Let f be a polymatroid function with κf < 1, and let
√
wfκ(X) be the ellip-

soidal approximation to the κ-curve-normalized version fκ(X) of f . Then the function fea(X) =
κf
√
wfκ(X) + (1− κf )

∑
j∈X f(j) satisfies

fea(X) ≤ f(X) ≤ O
( √

n log n
1 + (

√
n log n− 1)(1− κf )

)
fea(X). (5)

If κf = 0, then the approximation is exact. This is not surprising since a modular function can be
inferred exactly within O(n) oracle calls. The following lower bound (proved in [12]) shows that
Corollary 3.2 is tight up to logarithmic factors. It refines the lower bound in [8] to include κf .
Theorem 3.3. Given a submodular function f with curvature κf , there does not exist a (possibly
randomized) polynomial-time algorithm that computes an approximation to f within a factor of

n1/2−ε

1+(n1/2−ε−1)(1−κf )
, for any ε > 0.

The simplest alternative approximation to f one might conceive is the modular function f̂m(X) ,∑
j∈X f(j) which can easily be computed by querying the n values f(j).

Lemma 3.1. Given a monotone submodular function f , it holds that2

f(X) ≤ f̂m(X) =
∑
j∈X

f(j) ≤ |X|
1 + (|X| − 1)(1− κf (X))

f(X) (6)

2In [12], we show this result with a stronger notion of curvature: κ̂f (X) = 1−
P
j∈X f(j|X\j)P
j∈X f(j)

.
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The form of Lemma 3.1 is slightly different from Corollary 3.2. However, there is a straightforward
correspondence: given f̂ such that f̂(X) ≤ f(X) ≤ α′(n)f̂(X), by defining f̂ ′(X) = α′(n)f̂(X),
we get that f(X) ≤ f̂ ′(X) ≤ α′(n)f(X). Lemma 3.1 for the modular approximation is comple-
mentary to Corollary 3.2: First, the modular approximation is better whenever |X| ≤

√
n. Second,

the bound in Lemma 3.1 depends on the curvature κf (X) with respect to the set X , which is stronger
than κf . Third, f̂m is extremely simple to compute. For sets of larger cardinality, however, the
ellipsoidal approximation of Corollary 3.2 provides a better approximation, in fact, the best possible
one (Theorem 3.3). In a similar manner, Lemma 3.1 is tight for any modular approximation to a
submodular function:
Lemma 3.2. For any κ > 0, there exists a monotone submodular function f with curvature κ such
that no modular upper bound on f can approximate f(X) to a factor better than |X|

1+(|X|−1)(1−κf ) .

The improved curvature dependent bounds immediately imply better bounds for the class of concave
over modular functions used in [22, 17, 11].
Corollary 3.4. Given weight vectors w1, · · · , wk ≥ 0, and a submodular function f(X) =∑k
i=1 λi[wi(X)]a, λi ≥ 0, for a ∈ (0, 1), it holds that f(X) ≤

∑
j∈X f(j) ≤ |X|1−af(X)

In particular, when a = 1/2, the modular upper bound approximates the sum of square-root over
modular functions by a factor of

√
|X|.

4 Learning Submodular functions

We next address the problem of learning submodular functions in a PMAC setting [2]. The PMAC
(Probably Mostly Approximately Correct) framework is an extension of the PAC framework [28]
to allow multiplicative errors in the function values from a fixed but unknown distribution D over
2V . We are given training samples {(Xi, f(Xi)}mi=1 drawn i.i.d. from D. The algorithm may take
time polynomial in n, 1/ε, 1/δ to compute a (polynomially-representable) function f̂ that is a good
approximation to f with respect to D. Formally, f̂ must satisfy that

PrX1,X2,··· ,Xm∼D

[
PrX∈D[f̂(X) ≤ f(X) ≤ α(n)f̂(X)] ≥ 1− ε

]
≥ 1− δ (7)

for some approximation factor α(n). Balcan and Harvey [2] propose an algorithm that PMAC-learns
any monotone, nonnegative submodular function within a factor α(n) =

√
n+ 1 by reducing the

problem to that of learning a binary classifier. If we assume that we have an upper bound on the
curvature κf , or that we can estimate it 3, and have access to the value of the singletons f(j), j ∈ V ,
then we can obtain better learning results with non-maximal curvature:
Lemma 4.1. Let f be a monotone submodular function for which we know an upper bound on its
curvature and the singleton weights f(j) for all j ∈ V . For every ε, δ > 0 there is an algorithm
that uses a polynomial number of training examples, runs in time polynomial in (n, 1/ε, 1/δ) and
PMAC-learns f within a factor of

√
n+1

1+(
√
n+1−1)(1−κf )

. If D is a product distribution, then there exists

an algorithm that PMAC-learns f within a factor of O( log 1
ε

1+(log 1
ε−1)(1−κf )

).

The algorithm of Lemma 4.1 uses the reduction of Balcan and Harvey [2] to learn the κf -curve-
normalized version fκ of f . From the learned function f̂κ(X), we construct the final estimate
f̂(X) , κf f̂κ(X) + (1 − κf )

∑
j∈X f(j). Theorem 3.1 implies Lemma 4.1 for this f̂(X).

Moreover, no polynomial-time algorithm can be guaranteed to PMAC-learn f within a factor of
n1/3−ε′

1+(n1/3−ε′−1)(1−κf )
, for any ε′ > 0 [12]. We end this section by showing how we can learn with a

construction analogous to that in Lemma 3.1.
Lemma 4.2. If f is a monotone submodular function with known curvature (or a known upper
bound) κ̂f (X),∀X ⊆ V , then for every ε, δ > 0 there is an algorithm that uses a polynomial number
of training examples, runs in time polynomial in (n, 1/ε, 1/δ) and PMAC learns f(X) within a factor
of 1 + |X|

1+(|X|−1)(1−κ̂f (X)) .

3note that κf can be estimated from a set of 2n + 1 samples {(j, f(j))}j∈V , {(V, f(V ))}, and
{(V \j, f(V \j)}j∈V included in the training samples
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Compare this result to Lemma 4.1. Lemma 4.2 leads to better bounds for small sets, whereas
Lemma 4.1 provides a better general bound. Moreover, in contrast to Lemma 4.1, here we only need an
upper bound on the curvature and do not need to know the singleton weights {f(j), j ∈ V }. Note also
that, while κf itself is an upper bound of κ̂f (X), often one does have an upper bound on κ̂f (X) if one
knows the function class of f (for example, say concave over modular). In particular, an immediate
corollary is that the class of concave over modular functions f(X) =

∑k
i=1 λi[wi(X)]a, λi ≥ 0, for

a ∈ (0, 1) can be learnt within a factor of min{
√
n+ 1, 1 + |X|1−a}.

5 Constrained submodular minimization

Next, we apply our results to the minimization of submodular functions under constraints. Most
algorithms for constrained minimization use one of two strategies: they apply a convex relaxation [10,
16], or they optimize a surrogate function f̂ that should approximate f well [6, 8, 16]. We follow
the second strategy and propose a new, widely applicable curvature-dependent choice for surrogate
functions. A suitable selection of f̂ will ensure theoretically optimal results. Throughout this section,
we refer to the optimal solution as X∗ ∈ argminX∈C f(X).

Lemma 5.1. Given a submodular function f , let f̂1 be an approximation of f such that f̂1(X) ≤
f(X) ≤ α(n)f̂1(X), for all X ⊆ V . Then any minimizer X̂1 ∈ argminX∈C f̂(X) of f̂ satisfies
f(X̂) ≤ α(n)f(X∗). Likewise, if an approximation of f is such that f(X) ≤ f̂2(X) ≤ α(X)f(X)
for a set-specific factor α(X), then its minimizer X̃2 ∈ argminX∈C f̂2(X) satisfies f(X̂2) ≤
α(X∗)f(X∗). If only β-approximations4 are possible for minimizing f̂1 or f̂2 over C, then the final
bounds are βα(n) and βα(X∗) respectively.

For Lemma 5.1 to be practically useful, it is essential that f̂1 and f̂2 be efficiently optimizable
over C. We discuss two general curvature-dependent approximations that work for a large class of
combinatorial constraints. In particular, we use Theorem 3.1: we decompose f into fκ and a modular
part fm, and then approximate fκ while retaining fm, i.e., f̂ = f̂κ + fm. The first approach uses a
simple modular upper bound (MUB) and the second relies on the Ellipsoidal approximation (EA) we
used in Section 3.

MUB: The simplest approximation to a submodular function is the modular approximation
f̂m(X) ,

∑
j∈X f(j) ≥ f(X). Since here, f̂κ happens to be equivalent to fm, we obtain the

overall approximation f̂ = f̂m. Lemmas 5.1 and 3.1 directly imply a set-dependent approximation
factor for f̂m:

Corollary 5.1. Let X̂ ∈ C be a β-approximate solution for minimizing
∑
j∈X f(j) over C, i.e.∑

j∈ bX f(j) ≤ βminX∈C
∑
j∈X f(j). Then

f(X̂) ≤ β|X∗|
1 + (|X∗| − 1)(1− κf (X∗))

f(X∗). (8)

Corollary 5.1 has also been shown in [13]. Similar to the algorithms in [13], MUB can be extended
to an iterative algorithm yielding performance gains in practice. In particular, Corollary 5.1 implies
improved approximation bounds for practically relevant concave over modular functions, such
as those used in [17]. For instance, for f(X) =

∑k
i=1

√∑
j∈X wi(j), we obtain a worst-case

approximation bound of
√
|X∗| ≤

√
n. This is significantly better than the worst case factor of |X∗|

for general submodular functions.

EA: Instead of employing a modular upper bound, we can approximate fκ using the construction
by Goemans et al. [8], as in Corollary 3.2. In that case, f̂(X) = κf

√
wfκ(X) + (1 − κf )fm(X)

has a special form: a weighted sum of a concave function and a modular function. Minimizing
such a function over constraints C is harder than minimizing a merely modular function, but with
the algorithm in [24] we obtain an FPTAS5 for minimizing f̂ over C whenever we can minimize a
nonnegative linear function over C.

4A β-approximation algorithm for minimizing a function g finds set X : g(X) ≤ βminX∈C g(X)
5The FPTAS will yield a β = (1 + ε)-approximation through an algorithm polynomial in 1

ε
.
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Corollary 5.2. For a submodular function with curvature κf < 1, algorithm EA will return a
solution X̂ that satisfies

f(X̂) ≤ O
( √

n log n
(
√
n log n− 1)(1− κf ) + 1)

)
f(X∗). (9)

Next, we apply the results of this section to specific optimization problems, for which we show
(mostly tight) curvature-dependent upper and lower bounds. We just state our main results; a more
extensive discussion along with the proofs can be found in [12].

Cardinality lower bounds (SLB). A simple constraint is a lower bound on the cardinality of the
solution, i.e., C = {X ⊆ V : |X| ≥ k}. Svitkina and Fleischer [27] prove that for monotone
submodular functions of arbitrary curvature, it is impossible to find a polynomial-time algorithm
with an approximation factor better than

√
n/ log n. They show an algorithm which matches this

approximation factor. Corollaries 5.1 and 5.2 immediately imply curvature-dependent approximation
bounds of k

1+(k−1)(1−κf ) and O(
√
n logn

1+(
√
n logn−1)(1−κf )

). These bounds are improvements over the
results of [27] whenever κf < 1. Here, MUB is preferable to EA whenever k is small. Moreover,
the bound of EA is tight up to poly-log factors, in that no polynomial time algorithm can achieve a
general approximation factor better than n1/2−ε

1+(n1/2−ε−1)(1−κf )
for any ε > 0.

In the following problems, our ground set V consists of the set of edges in a graph G = (V, E) with
two distinct nodes s, t ∈ V and n = |V|, m = |E|. The submodular function is f : 2E → R.

Shortest submodular s-t path (SSP). Here, we aim to find an s-t path X of minimum (submodular)
length f(X). Goel et al. [6] show a O(n2/3)-approximation with matching curvature-independent
lower bound Ω(n2/3). By Corollary 5.1, the curvature-dependent worst-case bound for MUB is

n
1+(n−1)(1−κf ) since any minimal s-t path has at most n edges. Similarly, the factor for EA is

O(
√
m logm

1+(
√
m logm−1)(1−κf )

). The bound of EA will be tighter for sparse graphs while MUB provides

better results for dense ones. Our curvature-dependent lower bound for SSP is n2/3−ε

1+(n2/3−ε−1)(1−κf )
,

for any ε > 0, which reduces to the result in [6] for κf = 1.

Minimum submodular s-t cut (SSC): This problem, also known as the cooperative cut problem [16,
17], asks to minimize a monotone submodular function f such that the solution X ⊆ E is a set of
edges whose removal disconnects s from t in G. Using curvature refines the We can also show a
lower bound of [16] to n1/2−ε

1+(n1/2−ε−1)(1−κf )
, for any ε > 0. Corollary 5.1 implies an approximation

factor of O(
√
m logm

(
√
m logm−1)(1−κf )+1

) for EA and a factor of m
1+(m−1)(1−κf ) for MUB, where m = |E|

is the number of edges in the graph. Hence the factor for EA is tight for sparse graphs. Specifically
for cut problems, there is yet another useful surrogate function that is exact on local neighborhoods.
Jegelka and Bilmes [16] demonstrate how this approximation may be optimized via a generalized
maximum flow algorithm that maximizes a polymatroidal network flow [20]. This algorithm still
applies to the combination f̂ = κf f̂

κ + (1− κf )fm, where we only approximate fκ. We refer to
this approximation as Polymatroidal Network Approximation (PNA).
Corollary 5.3. Algorithm PNA achieves a worst-case approximation factor of n

2+(n−2)(1−κf ) for the
cooperative cut problem.

For dense graphs, this factor is theoretically tighter than that of the EA approximation.

Minimum submodular spanning tree (SST). Here, C is the family of all spanning trees in a given
graph G. Such constraints occur for example in power assignment problems [30]. Goel et al. [6] show
a curvature-independent optimal approximation factor of O(n) for this problem. Corollary 5.1
refines this bound to n

1+(n−1)(1−κf ) when using MUB; Corollary 5.2 implies a slightly worse bound
for EA. We also show that the bound of MUB is tight: no polynomial-time algorithm can guarantee a
factor better than n1−ε

1+(n1−ε−1)(1−κf )+δκf , for any ε, δ > 0.

Minimum submodular perfect matching (SPM): Here, we aim to find a perfect matching in
a graph that minimizes a monotone submodular function. Corollary 5.1 implies that an MUB
approximation will achieve an approximation factor of at most n

2+(n−2)(1−κf ) . Similar to the
spanning tree case, the bound of MUB is also tight [12].
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(d) varying κ with α = n/2 and β = 1
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Figure 1: Minimization of gκ for cardinality lower bound constraints. (a) fixed κ = 0, α =
n1/2+ε, β = n2ε for varying ε; (b) fixed ε = 0.1, but varying κ; (c) different choices of α for β = 1;
(d) varying κ with α = n/2, β = 1. Dashed lines: MUB, dotted lines: EA, solid lines: theoretical
bound. The results of EA are not visible in some instances since it obtains a factor of 1.

5.1 Experiments

We end this section by empirically demonstrating the performance of MUB and EA and their precise
dependence on curvature. We focus on cardinality lower bound constraints, C = {X ⊆ V : |X| ≥ α}
and the “worst-case” class of functions that has been used throughout this paper to prove lower
bounds, fR(X) = min{|X ∩ R̄|+ β, |X|, α} where R̄ = V \R and R ⊆ V is random set such that
|R| = α. We adjust α = n1/2+ε and β = n2ε by a parameter ε. The smaller ε is, the harder the
problem. This function has curvature κf = 1. To obtain a function with specific curvature κ, we
define fRκ (X) = κf(X) + (1− κ)|X| as in Equation (3).

In all our experiments, we take the average over 20 random draws of R. We first set κ = 1 and
vary ε. Figure 1(a) shows the empirical approximation factors obtained using EA and MUB, and the
theoretical bound. The empirical factors follow the theoretical results very closely. Empirically, we
also see that the problem becomes harder as ε decreases. Next we fix ε = 0.1 and vary the curvature
κ in fRκ . Figure 1(b) illustrates that the theoretical and empirical approximation factors improve
significantly as κ decreases. Hence, much better approximations than the previous theoretical lower
bounds are possible if κ is not too large. This observation can be very important in practice. Here,
too, the empirical upper bounds follow the theoretical bounds very closely.

Figures 1(c) and (d) show results for larger α and β = 1. In Figure 1(c), as α increases, the empirical
factors improve. In particular, as predicted by the theoretical bounds, EA outperforms MUB for large
α and, for α ≥ n2/3, EA finds the optimal solution. In addition, Figures 1(b) and (d) illustrate the
theoretical and empirical effect of curvature: as n grows, the bounds saturate and approximate a
constant 1/(1− κ) – they do not grow polynomially in n. Overall, we see that the empirical results
quite closely follow our theoretical results, and that, as the theory suggests, curvature significantly
affects the approximation factors.

6 Conclusion and Discussion

In this paper, we study the effect of curvature on the problems of approximating, learning and
minimizing submodular functions under constraints. We prove tightened, curvature-dependent upper
bounds with almost matching lower bounds. These results complement known results for submodular
maximization [3, 29]. Given that the functional form and effect of the submodularity ratio proposed
in [5] is similar to that of curvature, an interesting extension is the question of whether there is a
single unifying quantity for both of these terms. Another open question is whether a quantity similar
to curvature can be defined for subadditive functions, thus refining the results in [1] for learning
subadditive functions. Finally it also seems that the techniques in this paper could be used to provide
improved curvature-dependent regret bounds for constrained online submodular minimization [15].
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