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Abstract

We investigate a spiking neuron model of multisensory integration. Multiple stim-
uli from different sensory modalities are encoded by a single neural circuit com-
prised of a multisensory bank of receptive fields in cascade with a population of
biophysical spike generators. We demonstrate that stimuli of different dimensions
can be faithfully multiplexed and encoded in the spike domain and derive tractable
algorithms for decoding each stimulus from the common pool of spikes. We also
show that the identification of multisensory processing in a single neuron is dual
to the recovery of stimuli encoded with a population of multisensory neurons, and
prove that only a projection of the circuit onto input stimuli can be identified. We
provide an example of multisensory integration using natural audio and video and
discuss the performance of the proposed decoding and identification algorithms.

1 Introduction

Most organisms employ a mutlitude of sensory systems to create an internal representation of their
environment. While the advantages of functionally specialized neural circuits are numerous, many
benefits can also be obtained by integrating sensory modalities [1, 2, 3]. The perceptual advantages
of combining multiple sensory streams that provide distinct measurements of the same physical
event are compelling, as each sensory modality can inform the other in environmentally unfavorable
circumstances [4]. For example, combining visual and auditory stimuli corresponding to a person
talking at a cocktail party can substantially enhance the accuracy of the auditory percept [5].

Interestingly, recent studies demonstrated that multisensory integration takes place in brain areas that
were traditionally considered to be unisensory [2, 6, 7]. This is in contrast to classical brain models in
which multisensory integration is relegated to anatomically established sensory convergence regions,
after extensive unisensory processing has already taken place [4]. Moreover, multisensory effects
were shown to arise not solely due to feedback from higher cortical areas. Rather, they seem to be
carried by feedforward pathways at the early stages of the processing hierarchy [2, 7, 8].

The computational principles of multisensory integration are still poorly understood. In part, this is
because most of the experimental data comes from psychophysical and functional imaging experi-
ments which do not provide the resolution necessary to study sensory integration at the cellular level
[2, 7, 9, 10, 11]. Moreover, although multisensory neuron responses depend on several concurrently
received stimuli, existing identification methods typically require separate experimental trials for
each of the sensory modalities involved [4, 12, 13, 14]. Doing so creates major challenges, espe-
cially when unisensory responses are weak or together do not account for the multisensory response.

Here we present a biophysically-grounded spiking neural circuit and a tractable mathematical
methodology that together allow one to study the problems of multisensory encoding, decoding,
and identification within a unified theoretical framework. Our neural circuit is comprised of a bank
∗The authors’ names are listed in alphabetical order.
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Figure 1: Multisensory encoding on neuronal level. (a) Each neuron i=1, ..., N receives multiple stimuli
um
nm

, m=1, ...,M , of different modalities and encodes them into a single spike train (tik)k∈Z. (b) A spiking
point neuron model, e.g., the IAF model, describes the mapping of the current vi(t)=

∑
mv

im(t) into spikes.

of multisensory receptive fields in cascade with a population of neurons that implement stimulus
multiplexing in the spike domain. The circuit architecture is quite flexible in that it can incorporate
complex connectivity [15] and a number different spike generation models [16], [17].

Our approach is grounded in the theory of sampling in Hilbert spaces. Using this theory, we show
that signals of different modalities, having different dimensions and dynamics, can be faithfully
encoded into a single multidimensional spike train by a common population of neurons. Some
benefits of using a common population include (a) built-in redundancy, whereby, by rerouting, a
circuit could take over the function of another faulty circuit (e.g., after a stroke) (b) capability to
dynamically allocate resources for the encoding of a given signal of interest (e.g., during attention)
(c) joint processing and storage of multisensory signals/stimuli (e.g., in associative memory tasks).

First we show that, under appropriate conditions, each of the stimuli processed by a multisensory
circuit can be decoded loss-free from a common, unlabeled set of spikes. These conditions provide
clear lower bounds on the size of the population of multisensory neurons and the total number of
spikes generated by the entire circuit. We then discuss the open problem of identifying multisen-
sory processing using concurrently presented sensory stimuli. We show that the identification of
multisensory processing in a single neuron is elegantly related to the recovery of stimuli encoded
with a population of multisensory neurons. Moreover, we prove that only a projection of the circuit
onto the space of input stimuli can be identified. Finally, we present examples of both decoding and
identification algorithms and demonstrate their performance using natural stimuli.

2 Modeling Sensory Stimuli, their Processing and Encoding

Our formal model of multisensory encoding, called the multisensory Time Encoding Machine
(mTEM) is closely related to traditional TEMs [18]. TEMs are real-time asynchronous mecha-
nisms for encoding continuous and discrete signals into a time sequence. They arise as models of
early sensory systems in neuroscience [17, 19] as well as nonlinear sampling circuits and analog-
to-discrete (A/D) converters in communication systems [17, 18]. However, in contrast to traditional
TEMs that encode one or more stimuli of the same dimension n, a general mTEM receives M input
stimuli u1n1

, ..., uMnM
of different dimensions nm∈N, m=1, ...,M , and possibly different dynamics

(Fig. 1a). The mTEM processes and encodes these signals into a multidimensional spike train using
a population ofN neurons. For each neuron i=1, ..., N , the results of this processing are aggregated
into the dendritic current vi flowing into the spike initiation zone, where it is encoded into a time
sequence (tik)k∈Z, with tik denoting the timing of the kth spike of neuron i.

Similarly to traditional TEMs, mTEMs can employ a myriad of spiking neuron models. Several
examples include conductance-based models such as Hodgkin-Huxley, Morris-Lecar, Fitzhugh-
Nagumo, Wang-Buzsaki, Hindmarsh-Rose [20] as well as simpler models such as the ideal and
leaky integrate-and-fire (IAF) neurons [15]. For clarity, we will limit our discussion to the ideal IAF
neuron, since other models can be handled as described previously [20, 21]. For an ideal IAF neuron
with a bias bi ∈ R+, capacitance Ci ∈ R+ and threshold δi ∈ R+ (Fig. 1b), the mapping of the
current vi into spikes is described by a set of equations formerly known as the t-transform [18]:

∫ tik+1

tik

vi(s)ds = qik, k ∈ Z, (1)

where qik = Ciδi − bi(tik+1 − tik). Intuitively, at every spike time tik+1, the ideal IAF neuron is
providing a measurement qik of the current vi(t) on the time interval [tik, t

i
k+1).
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2.1 Modeling Sensory Inputs

We model input signals as elements of reproducing kernel Hilbert spaces (RKHSs) [22]. Most
real world signals, including natural stimuli can be described by an appropriately chosen RKHS
[23]. For practical and computational reasons we choose to work with the space of trigonometric
polynomials Hnm

defined below, where each element of the space is a function in nm variables
(nm ∈ N, m = 1, 2, ...,M ). However, we note that the results obtained in this paper are not limited
to this particular choice of RKHS (see, e.g., [24]).
Definition 1. The space of trigonometric polynomials Hnm is a Hilbert space of complex-valued
functions

umnm
(x1, ..., xnm

) =

L1∑

l1=−L1

· · ·
Lnm∑

lnm=−Lnm

uml1...lnm
el1...lnm

(x1, ..., xnm),

over the domain Dnm
=
∏nm

n=1[0, Tn], where uml1...lnm
∈ C and the functions el1...lnm

(x1, ..., xnm
)=

exp
(∑nm

n=1 jlnΩnxn/Ln

)
/
√
T1 · · ·Tnm

, with j denoting the imaginary number. Here Ωn is the

bandwidth, Ln is the order, and Tn = 2πLn/Ωn is the period in dimension xn. Hnm
is endowed

with the inner product 〈·, ·〉 : Hnm
×Hnm

→ C, where

〈umnm
, wm

nm
〉 =

∫

Dnm

umnm
(x1, ..., xnm

)wm
nm

(x1, ..., xnm
)dx1...dxnm

. (2)

Given the inner product in (2), the set of elements el1...lnm
(x1, ..., xnm

) forms an orthonormal basis
inHnm

. Moreover,Hnm
is an RKHS with the reproducing kernel (RK)

Knm
(x1, ..., xnm

; y1, ..., ynm
) =

L1∑

l1=−L1

. . .

Lnm∑

lnm=−Lnm

el1...lnm
(x1, ..., xnm

)el1...lnm
(y1, ..., ynm

).

Remark 1. In what follows, we will primarily be concerned with time-varying stimuli, and the
dimension xnm will denote the temporal dimension t of the stimulus umnm

, i.e., xnm = t.
Remark 2. For M concurrently received stimuli, we have Tn1 = Tn2 = · · · = TnM

.
Example 1. We model audio stimuli um1 = um1 (t) as elements of the RKHS H1 over the domain
D1 = [0, T1]. For notational convenience, we drop the dimensionality subscript and use T , Ω and L,
to denote the period, bandwidth and order of the spaceH1. An audio signal um1 ∈ H1 can be written
as um1 (t) =

∑L
l=−L u

m
l el(t), where the coefficients uml ∈ C and el(t) = exp (jlΩt/L) /

√
T .

Example 2. We model video stimuli um3 = um3 (x, y, t) as elements of the RKHS H3 defined on
D3 = [0, T1] × [0, T2] × [0, T3], where T1 = 2πL1/Ω1, T2 = 2πL2/Ω2, T3 = 2πL3/Ω3,
with (Ω1, L1), (Ω2, L2) and (Ω3, L3) denoting the (bandwidth, order) pairs in spatial directions
x, y and in time t, respectively. A video signal um3 ∈ H3 can be written as um3 (x, y, t) =∑L1

l1=−L1

∑L2

l2=−L2

∑L3

l3=−L3
uml1l2l3el1l2l3(x, y, t), where the coefficients uml1l2l3 ∈ C and the func-

tions el1l2l3(x, y, t) = exp (jl1Ω1x/L1 + jl2Ω2y/L2 + jl3Ω3t/L3) /
√
T1T2T3.

2.2 Modeling Sensory Processing

Multisensory processing can be described by a nonlinear dynamical system capable of modeling
linear and nonlinear stimulus transformations, including cross-talk between stimuli [25]. For clarity,
here we will consider only the case of linear transformations that can be described by a linear filter
having an impulse response, or kernel, hmnm

(x1, ..., xnm
). The kernel is assumed to be bounded-

input bounded-output (BIBO)-stable and causal. Without loss of generality, we assume that such
transformations involve convolution in the time domain (temporal dimension xnm

) and integration
in dimensions x1, ..., xnm−1. We also assume that the kernel has a finite support in each direction
xn, n=1, ..., nm. In other words, the kernel hmnm

belongs to the space Hnm
defined below.

Definition 2. The filter kernel space Hnm =
{
hmnm

∈ L1(Rnm)
∣∣ supp(hmnm

) ⊆ Dnm

}
.

Definition 3. The projection operator P : Hnm
→ Hnm

is given (by abuse of notation) by

(Phmnm
)(x1, ..., xnm

) =
〈
hmnm

(·, ..., ·),Knm
(·, ..., ·;x1, ..., xnm

)
〉
. (3)

Since Phmnm
∈Hnm

, (Phmnm
)(x1, ..., xnm

)=
∑L1

l1=-L1
...
∑Lnm

lnm=-Lnm
hml1...lnm

el1...lnm
(x1, ..., xnm

).
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3 Multisensory Decoding

Consider an mTEM comprised of a population of N ideal IAF neurons receiving M input signals
umnm

of dimensions nm, m = 1, ...,M . Assuming that the multisensory processing is given by
kernels himnm

, m = 1, ...,M , i = 1, ..., N , the t-transform in (1) can be rewritten as

T i1
k [u1n1

] + T i2
k [u2n2

] + ...+ T iM
k [uMnM

] = qik, k ∈ Z, (4)

where T im
k : Hnm

→ R are linear functionals defined by

T im
k [umnm

] =

∫ tik+1

tik

[ ∫

Dnm

himnm
(x1, ..., xnm−1, s)u

m
nm

(x1, ..., xnm−1, t− s)dx1...dxnm−1ds

]
dt.

We observe that each qik in (4) is a real number representing a quantal measurement of all M
stimuli, taken by the neuron i on the interval [tik, t

i
k+1). These measurements are produced in an

asynchronous fashion and can be computed directly from spike times (tik)k∈Z using (1). We now
demonstrate that it is possible to reconstruct stimuli umnm

, m = 1, ...,M from (tik)k∈Z, i = 1, ..., N .
Theorem 1. (Multisensory Time Decoding Machine (mTDM))
Let M signals umnm

∈ Hnm
be encoded by a multisensory TEM comprised of N ideal IAF neurons

and N ×M receptive fields with full spectral support. Assume that the IAF neurons do not have the
same parameters, and/or the receptive fields for each modality are linearly independent. Then given
the filter kernel coefficients himl1...lnm

, i = 1, ..., N , all inputs umnm
can be perfectly recovered as

umnm
(x1, ..., xnm

) =

L1∑

l1=−L1

...

Lnm∑

lnm=−Lnm

uml1...lnm
el1...lnm

(x1, ..., xnm
), (5)

where uml1...lnm
are elements of u = Φ+q, and Φ+ denotes the pseudoinverse of Φ. Furthermore,

Φ=[Φ1; Φ2; ... ; ΦN ], q=[q1; q2; ... ; qN ] and [qi]k =qik. Each matrix Φi =[Φi1,Φi2, ...,Φim],
with

[Φim]kl =





him−l1,−l2,...,−lnm−1,lnm
(tik+1 − tik), lnm = 0

him−l1,−l2,...,−lnm−1,lnm
Lnm

√
Tnm

(
elnm

(tik+1)− elnm
(tik)

)

jlnm
Ωnm

, lnm
6= 0

, (6)

where the column index l traverses all possible subscript combinations of l1, l2, ..., lnm . A neces-
sary condition for recovery is that the total number of spikes generated by all neurons is larger than∑M

m=1

∏nm

n=1(2Ln+1)+N . If each neuron produces ν spikes in an interval of length Tn1 = Tn2 =

· · · = TnM
, a sufficient condition is N ≥

⌈∑M
m=1

∏nm

n=1(2Ln + 1)/min(ν − 1, 2Lnm
+ 1)

⌉
,

where dxe denotes the smallest integer greater than x.

Proof: Substituting (5) into (4), qik = T i1
k [u1n1

]+...+T iM
k [uMnM

] =
〈
u1n1

, φi11k
〉
+...+

〈
uMnM

, φiMMk

〉
=∑

l1
...
∑

ln1
u1−l1,−l2,−ln1−1,ln1

φi1l1...ln1k
+ ... +

∑
l1
...
∑

lnM
uM−l1,−l2,−lnM−1,lnM

φiMl1...lnM
k,

where k ∈ Z and the second equality follows from the Riesz representation theorem with
φimnmk ∈ Hnm , m = 1, ...,M . In matrix form the above equality can be written as qi = Φiu, with
[qi]k = qik, Φi = [Φi1,Φi2, ...,ΦiM ], where elements [Φim]kl are given by [Φim]kl = φiml1...lnmk,
with index l traversing all possible subscript combinations of l1, l2, ..., lnm

. To find the coefficients
φiml1...lnmk, we note that φiml1...lnmk = T im

nmk(el1...lnm
), m = 1, ...,M , i = 1, ..., N . The column

vector u = [u1; u2; ...; um] with the vector um containing
∏nm

n=1(2Ln + 1) entries corresponding
to coefficients uml1l2...lnm

. Repeating for all neurons i = 1, ..., N , we obtain q = Φu with
Φ = [Φ1; Φ2; ... ; ΦN ] and q = [q1; q2; ... ; qN ]. This system of linear equations can be solved
for u, provided that the rank r(Φ) of matrix Φ satisfies r(Φ) =

∑
m

∏nm

n=1(2Ln + 1). A necessary
condition for the latter is that the total number of measurements generated by all N neurons is
greater or equal to

∏nm

n=1(2Ln + 1). Equivalently, the total number of spikes produced by all N
neurons should be greater than

∏nm

n=1(2Ln + 1) + N . Then u can be uniquely specified as the
solution to a convex optimization problem, e.g., u = Φ+q. To find the sufficient condition, we note
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Figure 2: Multimodal TEM & TDM for audio and video integration (a) Block diagram of the multimodal
TEM. (b) Block diagram of the multimodal TDM.

that the mth component vim of the dendritic current vi has a maximal bandwidth of Ωnm and we
need only 2Lnm + 1 measurements to specify it. Thus each neuron can produce a maximum of only
2PLnm + 1 informative measurements, or equivalently, 2PLnm + 2 informative spikes on a time
interval [0, Tnm ]. It follows that for each modality, we require at least

∏nm

n=1(2Ln + 1)/(2Lnm + 1)
neurons if ν ≥ (2Lnm

+ 2) and at least d∏nm

n=1(2Ln + 1)/(ν − 1)e neurons if ν < (2Lnm
+ 2). �

4 Multisensory Identification

We now investigate the following nonlinear neural identification problem: given stimuli umnm
,

m = 1, ...,M , at the input to a multisensory neuron i and spikes at its output, find the multisensory
receptive field kernels himnm

, m = 1, ...,M . We will show that this problem is mathematically dual
to the decoding problem discussed above. Specifically, we will demonstrate that the identification
problem can be converted into a neural encoding problem, where each spike train (tik)k∈Z produced
during an experimental trial i, i = 1, ..., N , is interpreted to be generated by the ith neuron in a
population of N neurons. We consider identifying kernels for only one multisensory neuron (identi-
fication for multiple neurons can be performed in a serial fashion) and drop the superscript i in himnm

throughout this section. Instead, we introduce the natural notion of performing multiple experimen-
tal trials and use the same superscript i to index stimuli uimnm

on different trials i = 1, ..., N .

Consider the multisensory neuron depicted in Fig. 1. Since for every trial i, an input signal uimnm
,

m = 1, ...,M , can be modeled as an element of some space Hnm
, we have uimnm

(x1, ..., xnm
) =

〈uimnm
(·, ..., ·),Knm(·, ..., ·;x1, ..., xnm)〉 by the reproducing property of the RK Knm. It follows that

∫

Dnm

hmnm
(s1, ..., snm−1, snm)uimnm

(s1, ..., snm−1, t− snm)ds1...dsnm−1dsnm =

(a)
=

∫

Dnm

uimnm
(s1, ..., snm−1, snm)

〈
hmnm

(·, ..., ·),Knm(·, ..., ·; s1, ..., snm−1, t− snm)
〉
ds1...dsnm =

(b)
=

∫

Dnm

uimnm
(s1, ..., snm−1, snm

)(Phmnm
)(s1, ..., snm−1, t− snm

)ds1...dsnm−1dsnm
,

where (a) follows from the reproducing property and symmetry of Knm and Definition 2, and (b)

from the definition of Phmnm
in (3). The t-transform of the mTEM in Fig. 1 can then be written as

Li1
k [Ph1n1

] + Li2
k [Ph2n2

] + ...+ LiM
k [PhMnM

] = qik, (7)
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Figure 3: Multimodal CIM for audio and video integration (a) Time encoding interpretation of the multi-
modal CIM. (b) Block diagram of the multimodal CIM.

where Lim
k : Hnm

→ R, m = 1, ...,M , k ∈ Z, are linear functionals defined by

Lim
k [Phmnm

] =

∫ tik+1

tik

[∫

Dm

uimnm
(s1, ... , snm)(Phmnm

)(s1, ..., t− snm)ds1 ... dsnm

]
dt.

Remark 3. Intuitively, each inter-spike interval [tik, t
i
k+1) produced by the IAF neuron is a time

measurement qik of the (weighted) sum of all kernel projections Phmnm
, m = 1, ...,M .

Remark 4. Each projection Phmnm
is determined by the corresponding stimuli uimnm

, i = 1, ..., N ,
employed during identification and can be substantially different from the underlying kernel hmnm

.

It follows that we should be able to identify the projections Phmnm
, m=1, ...,M , from the measure-

ments (qik)k∈Z. Since we are free to choose any of the spacesHnm
, an arbitrarily-close identification

of original kernels is possible, provided that the bandwidth of the test signals is sufficiently large.
Theorem 2. (Multisensory Channel Identification Machine (mCIM))
Let {ui}Ni=1, ui =[ui1n1

, ..., uiMnM
]T , uimnm

∈Hnm
, m=1, ...,M , be a collection ofN linearly indepen-

dent stimuli at the input to an mTEM circuit comprised of receptive fields with kernels hmnm
∈Hnm

,
m = 1, ...,M , in cascade with an ideal IAF neuron. Given the coefficients uiml1,...,lnm

of stimuli
uimnm

, i= 1, ..., N , m= 1, ...,M , the kernel projections Phmnm
, m= 1, ...,M , can be perfectly iden-

tified as (Phmnm
)(x1, ..., xnm

) =
∑L1

l1=−L1
...
∑Lnm

lnm=−Lnm
hml1...lnm

el1...lnm
(x1, ..., xnm

), where
hml1...lnm

are elements of h = Φ+q, and Φ+ denotes the pseudoinverse of Φ. Furthermore,
Φ=[Φ1; Φ2; ... ; ΦN ], q=[q1; q2; ... ; qN ] and [qi]k =qik. Each matrix Φi =[Φi1,Φi2, ...,Φim],
with

[Φim]kl =





uim−l1,−l2,...,−lnm−1,lnm
(tik+1 − tik), lnm = 0

uim−l1,−l2,...,−lnm−1,lnm
Lnm

√
Tnm

(
elnm

(tik+1)− elnm
(tik)

)

jlnm
Ωnm

, lnm
6= 0

, (8)

where l traverses all subscript combinations of l1, l2, ..., lnm
. A necessary condition for identi-

fication is that the total number of spikes generated in response to all N trials is larger than∑M
m=1

∏nm

n=1(2Ln + 1) + N . If the neuron produces ν spikes on each trial, a sufficient condi-

tion is that the number of trials N ≥
⌈∑M

m=1

∏nm

n=1(2Ln + 1)/min(ν − 1, 2Lnm
+ 1)

⌉
.

Proof: The equivalent representation of the t-transform in equations (4) and (7) implies that the
decoding of the stimulus umnm

(in Theorem 1) and the identification of the filter projections Phmnm

encountered here are dual problems. Therefore, the receptive field identification problem is equiva-
lent to a neural encoding problem: the projectionsPhmnm

,m = 1, ...,M , are encoded with an mTEM
comprised of N neurons and receptive fields uimnm

, i = 1, ..., N , m = 1, ...,M . The algorithm for
finding the coefficients hml1...lnm

is analogous to the one for uml1...lnm
in Theorem 1.
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5 Examples

A simple (mono) audio/video TEM realized using a bank of temporal and spatiotemporal linear
filters and a population of integrate-and-fire neurons, is shown in Fig. 2. An analog audio signal
u11(t) and an analog video signal u23(x, y, t) appear as inputs to temporal filters with kernels hi11 (t)
and spatiotemporal filters with kernels hi23 (x, y, t), i = 1, ..., N . Each temporal and spatiotemporal
filter could be realized in a number of ways, e.g., using gammatone and Gabor filter banks. For
simplicity, we assume that the number of temporal and spatiotemporal filters in Fig. 2 is the same.
In practice, the number of components could be different and would be determined by the bandwidth
of input stimuli Ω, or equivalently the order L, and the number of spikes produced (Theorems 1-2).

For each neuron i, i = 1, ..., N , the filter outputs vi1 and vi2, are summed to form the aggregate
dendritic current vi, which is encoded into a sequence of spike times (tik)k∈Z by the ith integrate-
and-fire neuron. Thus each spike train (tik)k∈Z carries information about two stimuli of completely
different modalities (audio and video) and, under certain conditions, the entire collection of spike
trains {tik}Ni=1, k ∈ Z, can provide a faithful representation of both signals.

To demonstrate the performance of the algorithm presented in Theorem 1, we simulated a multisen-
sory TEM with each neuron having a non-separable spatiotemporal receptive field for video stimuli
and a temporal receptive field for audio stimuli. Spatiotemporal receptive fields were chosen ran-
domly and had a bandwidth of 4 Hz in temporal direction t and 2 Hz in each spatial direction x and
y. Similarly, temporal receptive fields were chosen randomly from functions bandlimited to 4 kHz.
Thus, two distinct stimuli having different dimensions (three for video, one for audio) and dynam-
ics (2-4 cycles vs. 4, 000 cycles in each direction) were multiplexed at the level of every spiking
neuron and encoded into an unlabeled set of spikes. The mTEM produced a total of 360, 000 spikes
in response to a 6-second-long grayscale video and mono audio of Albert Einstein explaining the
mass-energy equivalence formula E = mc2: “... [a] very small amount of mass may be converted
into a very large amount of energy.” A multisensory TDM was then used to reconstruct the video and
audio stimuli from the produced set of spikes. Fig. 4a-b shows the original (top row) and recovered
(middle row) video and audio, respectively, together with the error between them (bottom row).

The neural encoding interpretation of the identification problem for the grayscale video/mono audio
TEM is shown in Fig. 3a. The block diagram of the corresponding mCIM appears in Fig. 3b.
Comparing this diagram to the one in Fig. 2, we note that neuron blocks have been replaced by trial
blocks. Furthermore, the stimuli now appear as kernels describing the filters and the inputs to the
circuit are kernel projections Phmnm

, m = 1, ...,M . In other words, identification of a single neuron
has been converted into a population encoding problem, where the artificially constructed population
of N neurons is associated with the N spike trains generated in response to N experimental trials.

The performance of the mCIM algorithm is visualized in Fig. 5. Fig. 5a-b shows the original
(top row) and recovered (middle row) spatio-temporal and temporal receptive fields, respectively,
together with the error between them (bottom row).

6 Conclusion

We presented a spiking neural circuit for multisensory integration that encodes multiple information
streams, e.g., audio and video, into a single spike train at the level of individual neurons. We derived
conditions for inverting the nonlinear operator describing the multiplexing and encoding in the spike
domain and developed methods for identifying multisensory processing using concurrent stimulus
presentations. We provided explicit algorithms for multisensory decoding and identification and
evaluated their performance using natural audio and video stimuli. Our investigations brought to
light a key duality between identification of multisensory processing in a single neuron and the re-
covery of stimuli encoded with a population of multisensory neurons. Given the powerful machinery
of employed RKHSs, extensions to neural circuits with noisy neurons are straightforward [15, 23].
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Figure 4: Multisensory decoding. (a) Grayscale Video Recovery. (top row) Three frames of the original
grayscale video u2

3. (middle row) Corresponding three frames of the decoded video projection P3u
2
3. (bottom

row) Error between three frames of the original and identified video. Ω1 = 2π · 2 rad/s, L1 = 30, Ω2 =
2π · 36/19 rad/s, L2 = 36, Ω3 = 2π · 4 rad/s, L3 = 4. (b) Mono Audio Recovery. (top row) Original mono
audio signal u1

1. (middle row) Decoded projection P1u
1
1. (bottom row) Error between the original and decoded

audio. Ω = 2π · 4, 000 rad/s, L = 4, 000. Click here to see and hear the decoded video and audio stimuli.
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Figure 5: Multisensory identification. (a) (top row) Three frames of the original spatiotemporal kernel
h2
3(x, y, t). Here, h2

3 is a spatial Gabor function rotating clockwise in space as a function of time. (middle row)
Corresponding three frames of the identified kernel Ph2∗

3 (x, y, t). (bottom row) Error between three frames of
the original and identified kernel. Ω1 = 2π ·12 rad/s, L1 = 9, Ω2 = 2π ·12 rad/s, L2 = 9, Ω3 = 2π ·100 rad/s,
L3 = 5. (b) Identification of the temporal RF (top row) Original temporal kernel h1

1(t). (middle row) Identified
projection Ph1∗

1 (t). (bottom row) Error between h1
1 and Ph1∗

1 . Ω = 2π · 200 rad/s, L = 10.
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