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Abstract

We propose a semiparametric method for estimating sparse precision matrix of
high dimensional elliptical distribution. The proposed method calibrates regular-
izations when estimating each column of the precision matrix. Thus it not only
is asymptotically tuning free, but also achieves an improved finite sample per-
formance. Theoretically, we prove that the proposed method achieves the para-
metric rates of convergence in both parameter estimation and model selection. We
present numerical results on both simulated and real datasets to support our theory
and illustrate the effectiveness of the proposed estimator.

1 Introduction

We study the precision matrix estimation problem: let X = (X1, ..., Xd)
T be a d-dimensional ran-

dom vector following some distribution with meanµ ∈ Rd and covariance matrix Σ ∈ Rd×d, where
Σkj = EXkXj − EXkEXj . We want to estimate Ω = Σ−1 from n independent observations. To
make the estimation manageable in high dimensions (d/n→∞), we assume that Ω is sparse. That
is, many off-diagonal entries of Ω are zeros.

Existing literature in machine learning and statistics usually assumes that X follows a multivari-
ate Gaussian distribution, i.e., X ∼ N(0,Σ). Such a distributional assumption naturally connects
sparse precision matrices with Gaussian graphical models (Dempster, 1972), and has motivated
numerous applications (Lauritzen, 1996). To estimate sparse precision matrices for Gaussian dis-
tributions, many methods in the past decade have been proposed based on the sample covariance
estimator. Let x1, ...,xn ∈ Rd be n independent observations of X , the sample covariance estima-
tor is defined as

S =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T with x̄ =
1

n

n∑
i=1

xi. (1.1)

Banerjee et al. (2008); Yuan and Lin (2007); Friedman et al. (2008) take advantage of the Gaussian
likelihood, and propose the graphic lasso (GLASSO) estimator by solving

Ω̂ = argmin
Ω

− log |Ω|+ tr(SΩ) + λ
∑
j,k

|Ωkj |,

where λ > 0 is the regularization parameter. Scalable software packages for GLASSO have been
developed, such as huge (Zhao et al., 2012).

In contrast, Cai et al. (2011); Yuan (2010) adopt the pseudo-likelihood approach to estimate the pre-
cision matrix. Their estimators follow a column-by-column estimation scheme, and possess better
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theoretical properties. More specifically, given a matrix A ∈ Rd×d, let A∗j = (A1j , ...,Adj)
T

denote the jth column of A, ||A∗j ||1 =
∑
k |Akj | and ||A∗j ||∞ = maxk |Akj |, Cai et al. (2011)

obtain the CLIME estimator by solving

Ω̂∗j = argmin
Ω∗j

||Ω∗j ||1 s.t. ||SΩ∗j − I∗j ||∞ ≤ λ, ∀ j = 1, ..., d. (1.2)

Computationally, (1.2) can be reformulated and solved by general linear program solvers. Theoret-
ically, let ||A||1 = maxj ||A∗j ||1 be the matrix `1 norm of A, and ||A||2 be the largest singular
value of A, (i.e., the spectral norm of A), Cai et al. (2011) show that if we choose

λ � ||Ω||1

√
log d

n
, (1.3)

the CLIME estimator achieves the following rates of convergence under the spectral norm,

||Ω̂−Ω||22 = OP

(
||Ω||4−4q1 s2

(
log d

n

)1−q
)
, (1.4)

where q ∈ [0, 1) and s = maxj
∑
k |Ωkj |q .

Despite of these good properties, the CLIME estimator in (1.2) has three drawbacks: (1) The theoret-
ical justification heavily relies on the subgaussian tail assumption. When this assumption is violated,
the inference can be unreliable; (2) All columns are estimated using the same regularization param-
eter, even though these columns may have different sparseness. As a result, more estimation bias is
introduced to the denser columns to compensate the sparser columns. In another word, the estima-
tion is not calibrated (Liu et al., 2013); (3) The selected regularization parameter in (1.3) involves
the unknown quantity ||Ω||1. Thus we have to carefully tune the regularization parameter over a
refined grid of potential values in order to get a good finite-sample performance. To overcome the
above three drawbacks, we propose a new sparse precision matrix estimation method, named EPIC
(Estimating Precision mIatrix with Calibration).

To relax the Gaussian assumption, our EPIC method adopts an ensemble of the transformed
Kendall’s tau estimator and Catoni’s M-estimator (Kruskal, 1958; Catoni, 2012). Such a semi-
parametric combination makes EPIC applicable to the elliptical distribution family. The elliptical
family (Cambanis et al., 1981; Fang et al., 1990) contains many multivariate distributions such as
Gaussian, multivariate t-distribution, Kotz distribution, multivariate Laplace, Pearson type II and
VII distributions. Many of these distributions do not have subgaussian tails, thus the commonly
used sample covariance-based sparse precision matrix estimators often fail miserably.

Moreover, our EPIC method adopts a calibration framework proposed in Gautier and Tsybakov
(2011), which reduces the estimation bias by calibrating the regularization for each column. Mean-
while, the optimal regularization parameter selection under such a calibration framework does not
require any prior knowledge of unknown quantities (Belloni et al., 2011). Thus our EPIC estima-
tor is asymptotically tuning free (Liu and Wang, 2012). Our theoretical analysis shows that if the
underlying distribution has a finite fourth moment, the EPIC estimator achieves the same rates of
convergence as (1.4). Numerical experiments on both simulated and real datasets show that EPIC
outperforms existing precision matrix estimation methods.

2 Background

We first introduce some notations used throughout this paper. Given a vector v = (v1, . . . , vd)
T ∈

Rd, we define the following vector norms:

||v||1 =
∑
j

|vj |, ||v||22 =
∑
j

v2j , ||v||∞ = max
j
|vj |.

Given a matrix A ∈ Rd×d, we use A∗j = (A1j , ...,Adj)
T to denote the jth column of A. We

define the following matrix norms:

||A||1 = max
j
||A∗j ||1, ||A||2 = max

j
ψj(A), ||A||2F =

∑
k,j

A2
kj , ||A||max = max

k,j
|Akj |,
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where ψj(A)’s are all singular values of A.

We then briefly review the elliptical family. As a generalization of the Gaussian distribution, it has
the following definition.
Definition 2.1 (Fang et al. (1990)). Given µ ∈ Rd and Ξ ∈ Rd×d, where Ξ � 0 and
rank(Ξ) = r ≤ d, we say that a d-dimensional random vector X = (X1, ..., X)T follows an
elliptical distribution with parameter µ, Ξ, and β, ifX has a stochastic representation

X
d
=µ+ βBU ,

such that β ≥ 0 is a continuous random variable independent of U , U ∈ Sr−1 is uniformly dis-
tributed in the unit sphere in Rr, and Ξ = BBT .

Since we are interested in the precision matrix estimation, we assume that maxj EX2
j is finite. Note

that the stochastic representation in Definition 2.1 is not unique, and existing literature usually im-
poses the constraint maxj Ξjj = 1 to make the distribution identifiable (Fang et al., 1990). However,
such a constraint does not necessarily make Ξ the covariance matrix. Here we present an alternative
representation as follows.
Proposition 2.2. IfX has the stochastic representationX = µ+ βBU as in Definition 2.1, given
Ξ = BBT , rank(Ξ) = r, and E(ξ2) = α < ∞, X can be rewritten as X = µ + ξAU , where
ξ = β

√
r/α, A = B

√
α/r and Σ = AAT . Moreover we have

E(ξ2) = r, E(X) = µ, and Cov(X) = Σ.

After the reparameterization in Proposition 2.2, the distribution is identifiable with Σ defined as the
conventional covariance matrix.
Remark 2.3. Σ has the decomposition Σ = ΘZΘ, where Z is the Pearson correlation matrix,
and Θ = diag(θ1, ..., θd) with θj as the standard deviation of Xj . Since Θ is a diagonal matrix,
the precision Ω also has a similar decomposition Ω = Θ−1ΓΘ−1, where Γ = Z−1 is the inverse
correlation matrix.

3 Method

We propose a three-step method: (1) We first use the transformed Kendall’s tau estimator and
Catoni’s M-estimator to obtain Ẑ and Θ̂ respectively. (2) We then plug Ẑ into the calibrated in-
verse correlation matrix estimation to obtain Γ̂. (3) At last, we assemble Γ̂ and Θ̂ to obtain Ω̂.

3.1 Correlation Matrix and Standard Deviation Estimation

To estimate Z, we adopt the transformed Kendall’s tau estimator proposed in Liu et al. (2012). Given
n independent observations, x1, ...,xn, where xi = (xi1, ..., xid)

T , we calculate the Kendall’s
statistic by

τ̂kj =


2

n(n− 1)

∑
i<i′

sign
(

(xij − xi′j)(xik − xi′k)
)

if j 6= k;

1 otherwise.

After a simple transformation, we obtain a correlation matrix estimator Ẑ = [Ẑkj ] =
[
sin
(
π
2 τ̂kj

)]
(Liu et al., 2012; Zhao et al., 2013).

To estimate Θ = diag(θ1, ..., θd), we adopt the Catoni’s M-estimator proposed in Catoni (2012).
We define

ψ(t) = sign(t) log(1 + |t|+ t2/2),

where sign(0) = 0. Let m̂j be the estimator of EX2
j , we solve

n∑
i=1

ψ

(
(xij − µ̂j)

√
2

nKmax

)
= 0,

n∑
i=1

ψ

(
(x2ij − m̂j)

√
2

nKmax

)
= 0.

where Kmax is an upper bound of maxj Var(Xj) and maxj Var(X2
j ). Since ψ(t) is a strictly

increasing function in t, µ̂j and m̂j are unique and can be obtained by the efficient Newton-Raphson

method (Stoer et al., 1993). Then we can obtain θ̂j using θ̂j =
√
m̂j − µ̂2

j .
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3.2 Calibrated Inverse Correlation Matrix Estimation

We plugin Ẑ into the following convex program,

(Γ̂∗j , τ̂j) = argmin
Γ∗j ,τj

||Γ∗j ||1 + cτj

s.t. ||ẐΓ∗j − I∗j ||∞ ≤ λτj , ||Γ∗j ||1 ≤ τj , ∀ j = 1, ..., d. (3.1)
where c can be an arbitrary constant (e.g. c = 0.5). τj works as an auxiliary variable to calibrate the
regularization.
Remark 3.1. If we know τj = ||Ω∗j ||1 in advance, we can consider a simple variant of the CLIME
estimator,

Ω̂∗j = argmin
Ω∗j

||Ω∗j ||1

s.t. ||SΩ∗j − I∗j ||∞ ≤ λτj , ∀ j = 1, ..., d.

Since we do not have any prior knowledge of τ ′js, we consider the following replacement

(Γ̂∗j , τ̂j) = argmin
Γ∗j ,τj

||Ω∗j ||1 (3.2)

s.t. ||SΩ∗j − I∗j ||∞ ≤ λτj , τj = ||Ω∗j ||1 ∀ j = 1, ..., d.

As can be seen, (3.2) is nonconvex due to the constraint τj = ||Ω∗j ||1. Thus no global optimum can
be guaranteed in polynomial time.

From a computational perspective, (3.1) can be viewed as a convex relaxation of (3.2). Both the
objective function and the constraint in (3.1) contain τj to prevent from choosing τj either too large
or too small. Due to the complementary slackness, (3.1) eventually encourages the regularization
to be proportional to the `1 norm of each column (weak sparseness). Therefore the estimation is
calibrated.

By introducing the decomposition Γ∗j = Γ+
∗j − Γ−∗j with Γ+

∗j ,Γ
−
∗j ≥ 0, we can reformulate (3.1)

as a linear program as follows,

(Γ̂+
∗j , Γ̂

−
∗j , τ̂j) = argmin

Γ+
∗j ,Γ

−
∗j ,τj

1TΓ+
∗j + 1TΓ−∗j + cτj (3.3)

subjected to

 Ẑ −Ẑ −λ
−Ẑ Ẑ −λ
1T 1T −1

 Γ+
∗j

Γ−∗j
τj

 ≤ [ I∗j
−I∗j

0

]
,

Γ+
∗j ≥ 0, Γ−∗j ≥ 0, τj ≥ 0,

where λ = (λ, ..., λ)T ∈ Rd. (3.3) can be solved by existing linear program solvers, and further
accelerated by the parallel computing techniques.
Remark 3.2. Though (3.1) looks more complicated than (1.2), it is not necessarily more computa-
tionally difficult. After the reparameterization, (3.3) contains 2d+ 1 parameters to optimize, which
is of a similar scale to the linear program formulation as the CLIME method in Cai et al. (2011).

Our EPIC method does not guarantee the symmetry of the estimator Γ̂. Thus we need the following
symmetrization methods to obtain the symmetric replacement Γ̃.

Γ̃kj = Γ̂kjI(|Γ̂kj | ≤ Γ̂jk) + Γ̂jkI(|Γ̂kj | > Γ̂jk).

3.3 Precision Matrix Estimation

Once we obtain the estimated inverse correlation matrix Γ̃, we can recover the precision matrix
estimator by the ensemble rule,

Ω̂ = Θ̂−1Γ̃Θ̂−1.

Remark 3.3. A possible alternative is to directly estimate Ω by plugging a covariance estimator

Ŝ = Θ̂ẐΘ̂ (3.4)

into (3.1) instead of Ẑ, but this direct estimation procedure makes the regularization parameter
selection sensitive to Var(X2

j ).
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4 Statistical Properties

In this section, we study statistical properties of the EPIC estimator. We define the following class
of sparse symmetric matrices,

Uq(s,M) =
{

Γ ∈ Rd×d
∣∣∣ Γ � 0, Γ = ΓT , max

j

∑
k

|Γkj |q ≤ s, ||Γ||1 ≤M
}
,

where q ∈ [0, 1) and (s, d,M) can scale with the sample size n. We also impose the following
additional conditions:

(A.1) Γ ∈ Uq(s,M)

(A.2) maxj |µj | ≤ µmax, maxj θj ≤ θmax, minj θj ≥ θmin

(A.3) maxj EX4
j ≤ K

where µmax, K, θmax, and θmin are constants.

Before we proceed with our main results, we first present the following key lemma.
Lemma 4.1. Suppose that X follows an elliptical distribution with mean µ, and covariance Σ =
ΘZΘ. Assume that (A.1)-(A.3) hold, given the transformed Kendall’s tau estimator and Catoni’s M-
estimator defined in Section 3, there exist universal constants κ1 and κ2 such that for large enough
n,

P

(
max
j
|θ̂−1j − θ

−1
j | ≤ κ2

√
log d

n

)
≥ 1− 2

d3
,

P

(
max
j,k
|Ẑkj − Zkj | ≤ κ1

√
log d

n

)
≥ 1− 1

d3
.

Lemma 4.1 implies that both transformed Kendall’s tau estimator and Catoni’s M-estimator possess
good concentration properties, which enable us to obtain a consistent estimator of Ω.

The next theorem presents the rates of convergence under the matrix `1 norm, spectral norm, Frobe-
nius norm, and max norm.
Theorem 4.2. Suppose that X follows an elliptical distribution. Assume (A.1)-(A.3) hold, there
exist universal constants C1, C2, and C3 such that by taking

λ = κ1

√
log d

n
, (4.1)

for large enough n and p = 1, 2, we have

||Ω̂−Ω||2p ≤ C1M
4−4qs2

(
log d

n

)1−q

,

1

d
||Ω̂−Ω||2F ≤ C2M

4−2qs

(
log d

n

)1−q/2

,

||Ω̂−Ω||max ≤ C3M
2

√
log d

n
,

with probability at least 1− 3 exp(−3 log d). Moreover, when the exact sparsity holds (i.e., q = 0),

let E = {(k, j) | Ωkj 6= 0}, and Ê = {(k, j) | Ω̂kj 6= 0}, then we have P
(
E ⊆ Ê

)
→ 1, if there

exists a large enough constant C4 such that

min
(k,j)∈E

|Ωkj | ≥ C4M
2

√
log d

n
.

The rates of convergence in Theorem 4.2 are comparable to those in Cai et al. (2011).
Remark 4.3. The selected tuning parameter λ in (4.1) does not involve any unknown quantity.
Therefore our EPIC method is asymptotically tuning free.
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5 Numerical Simulations

In this section, we compare the proposed ALCE method with other methods including

(1) GLASSO.RC : GLASSO + Ŝ defined in (3.4) as the input covariance matrix

(2) CLIME.RC: CLIME + Ŝ as the input covariance matrix
(3) CLIME.SM: CLIME + S defined in (1.1) as the input covariance matrix

We consider three different settings for the comparison: (1) d = 100; (2) d = 200; (3) d = 400. We
adopt the following three graph generation schemes, as illustrated in Figure 1, to obtain precision
matrices.

(a) Chain (b) Erdös-Rényi (c) Scale-free

Figure 1: Three different graph patterns. To ease the visualization, we choose d = 100.

We then generate n = 200 independent samples from the t-distribution1 with 5 degrees of freedom,
mean 0 and covariance Σ = Ω−1. For the EPIC estimator, we set c = 0.5 in (3.1). For the Catoni’s
M-estimator, we set Kmax = 102.

To evaluate the performance in parameter estimation, we repeatedly split the data into a training set
of n1 = 160 samples and a validation set of n2 = 40 samples for 10 times. We tune λ over a refined
grid, then the selected optimal regularization parameter is

λ = argmin
λ

10∑
k=1

||Ω̂(λ,k)Σ̂(k) − I||max,

where Ω̂(λ,k) denotes the estimated precision matrix using the regularization parameter λ and the
training set in the kth split, and Σ̂(k) denotes the estimated covariance matrix using the validation
set in the kth split. Table 1 summarizes our experimental results averaged over 200 simulations. We
see that EPIC outperforms the competing estimators throughout all settings.

To evaluate the performance in model selection, we calculate the ROC curve of each obtained reg-
ularization path. Figure 2 summarizes ROC curves of all methods averaged over 200 simulations.
We see that EPIC also outperforms the competing estimators throughout all settings.

6 Real Data Example

To illustrate the effectiveness of the proposed EPIC method, we adopt the breast cancer data2, which
is analyzed in Hess et al. (2006). The data set contains 133 subjects with 22,283 gene expression
levels. Among the 133 subjects, 99 have achieved residual disease (RD) and the remaining 34 have
achieved pathological complete response (pCR). Existing results have shown that the pCR subjects
have higher chance of cancer-free survival in the long term than the RD subject. Thus we are
interested in studying the response states of patients (with RD or pCR) to neoadjuvant (preoperative)
chemotherapy.

1The marginal variances of the distribution vary from 0.5 to 2.
2Available at http://bioinformatics.mdanderson.org/.
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(a) d = 100
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(b) d = 200
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(c) d = 400
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(d) d = 100
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(e) d = 200

0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

EPIC
GLASSO.RC
CLIME.RC
CLIME.SC

(f) d = 400
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(g) d = 100
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(h) d = 200

0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
2

0.
4

0.
6

0.
8

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

EPIC
GLASSO.RC
CLIME.RC
CLIME.SC

(i) d = 400

Figure 2: Average ROC curves of different methods on the chain (a-c), Erdös-Rényi (d-e), and scale-
free (f-h) models. We can see that EPIC uniformly outperforms the competing estimators throughout
all settings.

We randomly divide the data into a training set of 83 RD and 29 pCR subjects, and a testing set of the
remaining 16 RD and 5 pCR subjects. Then by conducting a Wilcoxon test between two categories
for each gene, we further reduce the dimension by choosing the 113 most signcant genes with the
smallest p-values. We assume that the gene expression data in each category is elliptical distributed,
and the two categories have the same covariance matrix Σ but different means µ(k), where k = 0
for RD and k = 1 for pCR. In Cai et al. (2011), the sample mean is adopted to estimate µ(k)’s, and
CLIME.RC is adopted to estimate Ω = Σ−1. In contrast, we adopt the Catoni’s M-estimator to
estimate µk’s, and EPIC is adopted to estimate Ω. We classify a sample x to pCR if

(
x− µ̂

(1) + µ̂(0)

2

)T
Ω̂
(
µ̂(1) − µ̂(0)

)
≥ 0,

and to RD otherwise. We use the testing set to evaluate the performance of CLIME.RC and EPIC.
For the tuning parameter selection, we use a 5-fold cross validation on the training data to pick λ
with the minimum classification error rate.

To evaluate the classification performance, we use the criteria of specificity, sensitivity, and Mathews
Correlation Coefficient (MCC). More specifically, let yi’s and ŷi’s be true labels and predicted labels
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Table 1: Quantitive comparison of EPIC, GLASSO.RC, CLIME.RC, and CLIME.SC on the chain,
Erdös-Rényi, and scale-free models. We see that EPIC outperforms the competing estimators
throughout all settings.

Spectral Norm: ||Ω̂−Ω||2
Model d EPIC GLASSO.RC CLIME.RC CLIME.SC

Chain
100 0.8405(0.1247) 1.1880(0.1003) 0.9337(0.5389) 3.2991(0.0512)
200 0.9147(0.1009) 1.3433(0.0870) 1.0716(0.4939) 3.7303(0.4477)
400 1.0058(0.1231) 1.4842(0.0760) 1.3567(0.3706) 3.8462(0.4827)

Erdös-Rényi
100 0.9846(0.0970) 1.6037(0.2289) 1.6885(0.1704) 3.7158(0.0663)
200 1.1944(0.0704) 1.6105(0.0680) 1.7507(0.0389) 3.5209(0.0419)
400 1.9010(0.0462) 2.2613(0.1133) 2.6884(0.5988) 4.1342(0.1079)

Scale-free
100 0.9779(0.1379) 1.6619(0.1553) 2.1327(0.0986) 3.4548(0.0513)
200 2.9278(0.3367) 4.0882(0.0962) 4.5820(0.0604) 8.8904(0.0575)
400 1.1816(0.1201) 1.8304(0.0710) 2.1191(0.0629) 3.4249(0.0849)

Frobenius Norm: ||Ω̂−Ω||F
Model d EPIC GLASSO.RC CLIME.RC CLIME.SC

Chain
100 3.3108(0.1521) 4.5664(0.1034) 3.4406(0.4319) 16.282(0.1346)
200 5.0309(0.1833) 7.2154(0.0831) 5.4776(0.2586) 23.403(0.2727)
400 7.5134(0.1205) 11.300(0.1851) 7.8357(1.2217) 33.504(0.1341)

Erdös-Rényi
100 3.5122(0.0796) 3.9600(0.1459) 4.4212(0.1065) 13.734(0.0629)
200 6.3000(0.0868) 7.3385(0.0994) 7.3501(0.1589) 20.151(0.1899)
400 11.489(0.0858) 12.594(0.1633) 13.026(0.4124) 30.030(0.1289)

Scale-free
100 2.6369(0.1125) 3.1154(0.1001) 3.1363(0.1014) 10.717(0.0844)
200 4.1280(0.1389) 7.7543(0.0934) 7.8916(0.0556) 16.370(0.1490)
400 5.3440(0.0511) 6.3741(0.0723) 5.7643(0.0625) 20.687(0.1373)

of the testing samples, we define

Specificity =
TN

TN + FP
, Sensitivity =

TP

TP + FN
,

MCC =
TPTN− FPFN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where

TP =
∑
i

I(ŷi = yi = 1), FP =
∑
i

I(ŷi = 0, yi = 1)

TN =
∑
i

I(ŷi = yi = 0), FN =
∑
i

I(ŷi = 1, yi = 0).

Table 2 summarizes the performance of both methods over 100 replications. We see that EPIC
outperforms CLIME.RC on the specificity. The overall classification performance measured by
MCC shows that EPIC has a 4% improvement over CLIME.RC.

Table 2: Quantitive comparison of EPIC and CLIME.RC in the breast cancer data analysis.

Method Specificity Sensitivity MCC

CLIME.RC 0.7412(0.0131) 0.7911(0.0251) 0.4905(0.0288)

EPIC 0.7935(0.0211) 0.8087(0.0324) 0.5301(0.0375)
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