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Abstract

We present a PAC-Bayes-Empirical-Bernstein inequality. The inequality is based
on a combination of the PAC-Bayesian bounding technique with an Empirical
Bernstein bound. We show that when the empirical variance is significantly
smaller than the empirical loss the PAC-Bayes-Empirical-Bernstein inequality is
significantly tighter than the PAC-Bayes-kl inequality of Seeger (2002) and oth-
erwise it is comparable. Our theoretical analysis is confirmed empirically on a
synthetic example and several UCI datasets. The PAC-Bayes-Empirical-Bernstein
inequality is an interesting example of an application of the PAC-Bayesian bound-
ing technique to self-bounding functions.

1 Introduction

PAC-Bayesian analysis is a general and powerful tool for data-dependent analysis in machine learn-
ing. By now it has been applied in such diverse areas as supervised learning [1–4], unsupervised
learning [4, 5], and reinforcement learning [6]. PAC-Bayesian analysis combines the best aspects
of PAC learning and Bayesian learning: (1) it provides strict generalization guarantees (like VC-
theory), (2) it is flexible and allows the incorporation of prior knowledge (like Bayesian learning),
and (3) it provides data-dependent generalization guarantees (akin to Radamacher complexities).

PAC-Bayesian analysis provides concentration inequalities for the divergence between expected and
empirical loss of randomized prediction rules. For a hypothesis space H a randomized prediction
rule associated with a distribution ρ over H operates by picking a hypothesis at random according
to ρ from H each time it has to make a prediction. If ρ is a delta-distribution we recover classical
prediction rules that pick a single hypothesis h ∈ H. Otherwise, the prediction strategy resembles
Bayesian prediction from the posterior distribution, with a distinction that ρ does not have to be the
Bayes posterior. Importantly, many of PAC-Bayesian inequalities hold for all posterior distributions
ρ simultaneously (with high probability over a random draw of a training set). Therefore, PAC-
Bayesian bounds can be used in two ways. Ideally, we prefer to derive new algorithms that find the
posterior distribution ρ that minimizes the PAC-Bayesian bound on the expected loss. However, we
can also use PAC-Bayesian bounds in order to estimate the expected loss of posterior distributions ρ
that were found by other algorithms, such as empirical risk minimization, regularized empirical risk
minimization, Bayesian posteriors, and so forth. In such applications PAC-Bayesian bounds can be
used to provide generalization guarantees for other methods and can be applied as a substitute for
cross-validation in paratemer tuning (since the bounds hold for all posterior distributions ρ simul-
taneously, we can apply the bounds to test multiple posterior distributions ρ without suffering from
over-fitting, in contrast with extensive applications of cross-validation).

There are two forms of PAC-Bayesian inequalities that are currently known to be the tightest de-
pending on a situation. One is the PAC-Bayes-kl inequality of Seeger [7] and the other is the PAC-
Bayes-Bernstein inequality of Seldin et. al. [8]. However, the PAC-Bayes-Bernstein inequality is
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expressed in terms of the true expected variance, which is rarely accessible in practice. Therefore, in
order to apply the PAC-Bayes-Bernstein inequality we need an upper bound on the expected variance
(or, more precisely, on the average of the expected variances of losses of each hypothesis h ∈ H
weighted according to the randomized prediction rule ρ). If the loss is bounded in the [0, 1] interval
the expected variance can be upper bounded by the expected loss and this bound can be used to
recover the PAC-Bayes-kl inequality from the PAC-Bayes-Bernstein inequality (with slightly sub-
optimal constants and suboptimal behavior for small sample sizes). In fact, for the binary loss this
result cannot be significantly improved (see Section 3). However, when the loss is not binary it may
be possible to obtain a tighter bound on the variance, which will lead to a tighter bound on the loss
than the PAC-Bayes-kl inequality. For example, in Seldin et. al. [6] a deterministic upper bound
on the variance of importance-weighted sampling combined with PAC-Bayes-Bernstein inequality
yielded an order of magnitude improvement relative to application of PAC-Bayes-kl inequality to
the same problem. We note that the bound on the variance used by Seldin et. al. [6] depends on
specific properties of importance-weighted sampling and does not apply to other problems.

In this work we derive the PAC-Bayes-Empirical-Bernstein bound, in which the expected average
variance of the loss weighted by ρ is replaced by the weighted average of the empirical variance
of the loss. Bounding the expected variance by the empirical variance is generally tighter than
bounding it by the empirical loss. Therefore, the PAC-Bayes-Empirical-Bernstein bound is generally
tighter than the PAC-Bayes-kl bound, although the exact comparison also depends on the divergence
between the posterior and the prior and the sample size. In Section 5 we provide an empirical
comparison of the two bounds on several synthetic and UCI datasets.

The PAC-Bayes-Empirical-Bernstein bound is derived in two steps. In the first step we combine the
PAC-Bayesian bounding technique with the Empirical Bernstein inequality [9] and derive a PAC-
Bayesian bound on the variance. The PAC-Bayesian bound on the variance bounds the divergence
between averages [weighted by ρ] of expected and empirical variances of the losses of hypotheses
in H and holds with high probability for all averaging distributions ρ simultaneously. In the second
step the PAC-Bayesian bound on the variance is substituted into the PAC-Bayes-Bernstein inequality
yielding the PAC-Bayes-Empirical-Bernstein bound.

The remainder of the paper is organized as follows. We start with some formal definitions and
review the major PAC-Bayesian bounds in Section 2, provide our main results in Section 3 and their
proof sketches in Section 4, and finish with experiments in Section 5 and conclusions in Section 6.
Detailed proofs are provided in the supplementary material.

2 Problem Setting and Background

We start with providing the problem setting and then give some background on PAC-Bayesian anal-
ysis.

2.1 Notations and Definitions

We consider supervised learning setting with an input space X , an output space Y , an i.i.d. training
sample S = {(Xi, Yi)}ni=1 drawn according to an unknown distribution D on the product-space
X × Y , a loss function ` : Y2 → [0, 1], and a hypothesis class H. The elements of H are functions
h : X → Y from the input space to the output space. We use `h(X,Y ) = `(Y, h(X)) to denote the
loss of a hypothesis h on a pair (X,Y ).

For a fixed hypothesis h ∈ H denote its expected loss by L(h) = E(X,Y )∼D[`h(X,Y )],
the empirical loss Ln(h) = 1

n

∑n
i=1 `h(Xi, Yi), and the variance of the loss V(h) =

Var(X,Y )∼D[`h(X,Y )] = E(X,Y )∼D

[(
`h(X,Y )− E(X,Y )∼D [`h(X,Y )]

)2]
.

We define Gibbs regression rule Gρ associated with a distribution ρ over H in the following way:
for each point X Gibbs regression rule draws a hypothesis h according to ρ and applies it to X . The
expected loss of Gibbs regression rule is denoted by L(Gρ) = Eh∼ρ[L(h)] and the empirical loss is

denoted by Ln(Gρ) = Eh∼ρ[Ln(h)]. We use KL(ρ‖π) = Eh∼ρ
[
ln ρ(h)

π(h)

]
to denote the Kullback-

Leibler divergence between two probability distributions [10]. For two Bernoulli distributions with
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biases p and q we use kl(q‖p) as a shorthand for KL([q, 1 − q]‖[p, 1 − p]). In the sequel we use
Eρ [·] as a shorthand for Eh∼ρ [·].

2.2 PAC-Bayes-kl bound

Before presenting our results we review several existing PAC-Bayesian bounds. The result in The-
orem 1 was presented by Maurer [11, Theorem 5] and is one of the tightest known concentration
bounds on the expected loss of Gibbs regression rule. Theorem 1 generalizes (and slightly tightens)
PAC-Bayes-kl inequality of Seeger [7, Theorem 1] from binary to arbitrary loss functions bounded
in the [0, 1] interval.

Theorem 1. For any fixed probability distribution π over H, for any n ≥ 8 and δ > 0, with
probability greater than 1 − δ over a random draw of a sample S, for all distributions ρ over H
simultaneously:

kl
(
Ln(Gρ)‖L(Gρ)

)
≤

KL(ρ‖π) + ln 2
√
n
δ

n
. (1)

Since by Pinsker’s inequality |p − q| ≤
√

kl(q‖p)/2, Theorem 1 directly implies (up to minor
factors) the more explicit PAC-Bayesian bound of McAllester [12]:

L(Gρ) ≤ Ln(Gρ) +

√
KL(ρ‖π) + ln 2

√
n
δ

2n
, (2)

which holds with probability greater than 1 − δ for all ρ simultaneously. We note that kl is easy
to invert numerically and for small values of Ln(Gρ) (less than 1/4) the implicit bound in (1)
is significantly tighter than the explicit bound in (2). This can be seen from another relaxation
suggested by McAllester [2], which follows from (1) by the inequality p ≤ q +

√
2qkl(q‖p) +

2kl(q‖p) for p < q:

L(Gρ) ≤ Ln(Gρ) +

√√√√2Ln(Gρ)
(

KL(ρ‖π) + ln 2
√
n
δ

)
n

+
2
(

KL(ρ‖π) + ln 2
√
n
δ

)
n

. (3)

From inequality (3) we clearly see that inequality (1) achieves “fast convergence rate” or, in other
words, when L(Gρ) is zero (or small compared to 1/

√
n) the bound converges at the rate of 1/n

rather than 1/
√
n as a function of n.

2.3 PAC-Bayes-Bernstein Bound

Seldin et. al. [8] introduced a general technique for combining PAC-Bayesian analysis with con-
centration of measure inequalities and derived the PAC-Bayes-Bernstein bound cited below. (The
PAC-Bayes-Bernstein bound of Seldin et. al. holds for martingale sequences, but for simplicity in
this paper we restrict ourselves to i.i.d. variables.)

Theorem 2. For any fixed distribution π over H, for any δ1 > 0, and for any fixed c1 > 1, with
probability greater than 1− δ1 (over a draw of S) we have

L(Gρ) ≤ Ln(Gρ) + (1 + c1)

√√√√ (e− 2)Eρ[V(h)]
(

KL(ρ‖π) + ln ν1
δ1

)
n

(4)

simultaneously for all distributions ρ overH that satisfy√
KL(ρ‖π) + ln ν1

δ1

(e− 2)Eρ[V(h)]
≤
√
n,

where

ν1 =

⌈
1

ln c1
ln

(√
(e− 2)n

4 ln(1/δ1)

)⌉
+ 1,
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and for all other ρ we have:

L(Gρ) ≤ Ln(Gρ) + 2
KL(ρ‖π) + ln ν1

δ1

n
.

Furthermore, the result holds if Eρ [V(h)] is replaced by an upper bound V̄ (ρ), as long as
Eρ [V(h)] ≤ V̄ (ρ) ≤ 1

4 for all ρ.

A few comments on Theorem 2 are in place here. First, we note that Seldin et. al. worked with
cumulative losses and variances, whereas we work with normalized losses and variances, which
means that their losses and variances differ by a multiplicative factor of n from our definitions.
Second, we note that the statement on the possibility of replacing Eρ [V(h)] by an upper bound is
not part of [8, Theorem 8], but it is mentioned and analyzed explicitly in the text. The requirement
that V̄ (ρ) ≤ 1

4 is not mentioned explicitly, but it follows directly from the necessity to preserve the
relevant range of the trade-off parameter λ in the proof of the theorem. Since 1

4 is a trivial upper
bound on the variance of a random variable bounded in the [0, 1] interval, the requirement is not a
limitation. Finally, we note that since we are working with “one-sided” variables (namely, the loss is
bounded in the [0, 1] interval rather than “two-sided” [−1, 1] interval, which was considered in [8])
the variance is bounded by 1

4 (rather than 1), which leads to a slight improvement in the value of ν1.

Since in reality we rarely have access to the expected variance Eρ [V(h)] the tightness of Theorem
2 entirely depends on the tightness of the upper bound V̄ (ρ). If we use the trivial upper bound
Eρ [V(h)] ≤ 1

4 the result is roughly equivalent to (2), which is inferior to Theorem 1. Design of a
tighter upper bound on Eρ [V(h)] that holds for all ρ simultaneously is the subject of the following
section.

3 Main Results

The key result of our paper is a PAC-Bayesian bound on the average expected variance Eρ [V(h)]
given in terms of the average empirical variance Eρ[Vn(h)] = Eh∼ρ[Vn(h)], where

Vn(h) =
1

n− 1

n∑
i=1

(
`h(Xi, Yi)− Ln(h)

)2
(5)

is an unbiased estimate of the variance V(h). The bound is given in Theorem 3 and it holds with
high probability for all distributions ρ simultaneously. Substitution of this bound into Theorem 2
yields the PAC-Bayes-Empirical-Bernstein inequality given in Theorem 4. Thus, the PAC-Bayes-
Empirical-Bernstein inequality is based on two subsequent applications of the PAC-Bayesian bound-
ing technique.

3.1 PAC-Bayesian bound on the variance

Theorem 3 is based on an application of the PAC-Bayesian bounding technique to the difference
Eρ [V(h)]−Eρ [Vn(h)]. We note that Vn(h) is a second-order U-statistics [13] and Theorem 3 pro-
vides an interesting example of combining PAC-Bayesian analysis with concentration inequalities
for self-bounding functions.
Theorem 3. For any fixed distribution π over H, any c2 > 1 and δ2 > 0, with probability greater
than 1− δ2 over a draw of S, for all distributions ρ overH simultaneously:

Eρ[V(h)] ≤ Eρ[Vn(h)] + (1 + c2)

√√√√Eρ [Vn(h)]
(

KL(ρ‖π) + ln ν2
δ2

)
2(n− 1)

+
2c2

(
KL(ρ‖π) + ln ν2

δ2

)
n− 1

,

(6)
where

ν2 =

⌈
1

ln c2
ln

(
1

2

√
n− 1

ln(1/δ2)
+ 1 +

1

2

)⌉
.

Note that (6) closely resembles the explicit bound on L(Gρ) in (3). If the empirical variance Vn(h)
is close to zero the impact of the second term of the bound (that scales with 1/

√
n) is relatively small

and we obtain “fast convergence rate” of Eρ [Vn(h)] to Eρ [V(h)]. Finally, we note that the impact
of c2 on ln ν2 is relatively small and so c2 can be taken very close to 1.
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3.2 PAC-Bayes-Empirical-Bernstein bound

Theorem 3 controls the average variance Eρ[V(h)] for all posterior distributions ρ simultaneously.
By taking δ1 = δ2 = δ

2 we have the claims of Theorems 2 and 3 holding simultaneously with
probability greater than 1 − δ. Substitution of the bound on Eρ [V(h)] from Theorem 3 into the
PAC-Bayes-Bernstein inequality in Theorem 2 yields the main result of our paper, the PAC-Bayes-
Empirical-Bernstein inequality, that controls the loss of Gibbs regression rule Eρ [L(h)] for all pos-
terior distributions ρ simultaneously.
Theorem 4. Let Vn(ρ) denote the right hand side of (6) (with δ2 = δ

2 ) and let V̄n(ρ) =

min
(
Vn(ρ), 14

)
. For any fixed distribution π over H, for any δ > 0, and for any c1, c2 > 1,

with probability greater than 1− δ (over a draw of S) we have:

L(Gρ) ≤ Ln(Gρ) + (1 + c1)

√
(e− 2)V̄n(ρ)

(
KL(ρ‖π) + ln 2ν1

δ

)
n

(7)

simultaneously for all distributions ρ overH that satisfy√
KL(ρ‖π) + ln 2ν1

δ

(e− 2)V̄n(ρ)
≤
√
n,

where ν1 was defined in Theorem 2 (with δ1 = δ
2 ), and for all other ρ we have:

L(Gρ) ≤ Ln(Gρ) + 2
KL(ρ‖π) + ln 2ν1

δ

n
.

Note that all the quantities in Theorem 4 are computable based on the sample.

As we can see immediately by comparing the O(1/
√
n) term in PAC-Bayes-Empirical-Bernstein

inequality (PB-EB for brevity) with the corresponding term in the relaxed version of the PAC-Bayes-
kl inequality (PB-kl for brevity) in equation (3), the PB-EB inequality can potentially be tighter
when Eρ [Vn(h)] ≤ (1/(2(e − 2)))Ln(Gρ) ≈ 0.7Ln(Gρ). We also note that when the loss is
bounded in the [0,1] interval we have Vn(h) ≤ (n/(n− 1))Ln(h) (since `h(X,Y )2 ≤ `h(X,Y )).
Therefore, the PB-EB bound is never much worse than the PB-kl bound and if the empirical variance
is small compared to the empirical loss it can be much tighter. We note that for the binary loss
(`(y, y′) ∈ {0, 1}) we have V(h) = L(h)(1− L(h)) and in this case the empirical variance cannot
be significantly smaller than the empirical loss and PB-EB does not provide an advantage over
PB-kl. We also note that the unrelaxed version of the PB-kl inequality in equation (1) has better
behavior for very small sample sizes and in such cases PB-kl can be tighter than PB-EB even when
the empirical variance is small. To summarize the discussion, when Eρ [Vn(h)] ≤ 0.7Ln(Gρ) the
PB-EB inequality can be significantly tighter than the PB-kl bound and otherwise it is comparable
(except for very small sample sizes). In Section 5 we provide a more detailed numerical comparison
of the two inequalities.

4 Proofs

In this section we present a sketch of a proof of Theorem 3 and a proof of Theorem 4. Full details
of the proof of Theorem 3 are provided in the supplementary material. The proof of Theorem 3 is
based on the following lemma, which is at the base of all PAC-Bayesian theorems. (Since we could
not find a reference, where the lemma is stated explicitly its proof is provided in the supplementary
material.)
Lemma 1. For any function fn : H × (X × Y)

n → R and for any distribution π over H, such
that π is independent of S, with probability greater than 1 − δ over a random draw of S, for all
distributions ρ overH simultaneously:

Eρ [fn(h, S)] ≤ KL(ρ‖π) + ln
1

δ
+ lnEπ

[
ES′∼Dn

[
efn(h,S

′)
]]
. (8)

The smart part is to choose fn(h, S) so that we get the quantities of interest on the left hand side
of (8) and at the same time are able to bound the last term on the right hand side of (8). Bounding
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Figure 1: The Ratio of the gap between PB-EB and Ln(Gρ) to the gap between PB-kl and Ln(Gρ)
for different values of n, Eρ[Vn(h)], and Ln(Gρ). PB-EB is tighter below the dashed line with label
1. The axes of the graphs are in log scale.

of the moment generating function (the last term in (8)) is usually done by involving some known
concentration of measure results. In the proof of Theorem 3 we use the fact that nVn(h) satisfies
the self-bounding property [14]. Specifically, for any λ > 0:

ES∼Dn
[
eλ(nV(h)−nVn(h))−

λ2

2
n2

n−1V(h)
]
≤ 1 (9)

(see, for example, [9, Theorem 10]). We take fn(h, S) = λ
(
nV(h) − nVn(h)

)
− λ2

2
n2

n−1V(h)
and substitute fn and the bound on its moment generating function in (9) into (8). To complete the
proof it is left to optimize the bound with respect to λ. Since it is impossible to minimize the bound
simultaneously for all ρ with a single value of λ, we follow the technique suggested by Seldin et. al.
and take a grid of λ-s in a form of a geometric progression and apply a union bound over this grid.
Then, for each ρ we pick a value of λ from the grid, which is the closest to the value of λ that
minimizes the bound for the corresponding ρ. (The approximation of the optimal λ by the closest λ
from the grid is behind the factor c2 in the bound and the ln ν2 factor is the result of the union bound
over the grid of λ-s.) Technical details of the derivation are provided in the supplementary material.

Proof of Theorem 4. By our choice of δ1 = δ2 = δ
2 the upper bounds of Theorems 2 and 3 hold

simultaneously with probability greater than 1 − δ. Therefore, with probability greater than 1 − δ2
we have Eρ [V(h)] ≤ V̄n(h) ≤ 1

4 and the result follows by Theorem 2.

5 Experiments

Before presenting the experiments we present a general comparison of the behavior of the PB-EB
and PB-kl bounds as a function of Ln(Gρ), Eρ [Vn(h)], and n. In Figure 1.a and 1.b we examine
the ratio of the complexity parts of the two bounds

PB-EB− Ln(Gρ)

PB-kl− Ln(Gρ)
,

where PB-EB is used to denote the value of the PB-EB bound in equation (7) and PB-kl is used
to denote the value of the PB-kl bound in equation (1). The ratio is presented in the Ln(Gρ) by
Eρ [Vn(h)] plane for two values of n. In the illustrative comparison we took KL(ρ‖π) = 18 and in
all the experiments presented in this section we take c1 = c2 = 1.15 and δ = 0.05. As we wrote
in the discussion of Theorem 4, PB-EB is never much worse than PB-kl and when Eρ [Vn(h)] �
Ln(Gρ) it can be significantly tighter. In the illustrative comparison in Figure 1, in the worst case
the ratio is slightly above 2.5 and in the best case it is slightly above 0.3. We note that as the sample
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size grows the worst case ratio decreases (asymptotically down to 1.2) and the improvement of the
best case ratio is unlimited.

As we already said, the advantage of the PB-EB inequality over the PB-kl inequality is most promi-
nent in regression (for classification with zero-one loss it is roughly comparable to PB-kl). Below
we provide regression experiments with L1 loss on synthetic data and three datasets from the UCI
repository [15]. We use the PB-EB and PB-kl bounds to bound the loss of a regularized empirical
risk minimization algorithm. In all our experiments the inputs Xi lie in a d-dimensional unit ball
centered at the origin (‖Xi‖2 ≤ 1) and the outputs Y take values in [−0.5, 0.5]. The hypothesis
classHW is defined as

HW =
{
hw(X) = 〈w, X〉 : w ∈ Rd, ‖w‖2 ≤ 0.5

}
.

This construction ensures that the L1 regression loss `(y, y′) = |y − y′| is bounded in the [0, 1]

interval. We use uniform prior distribution over HW defined by π(w) =
(
V (1/2, d)

)−1
, where

V (r, d) is the volume of a d-dimensional ball with radius r. The posterior distribution ρŵ is taken to
be a uniform distribution on a d-dimensional ball of radius ε centered at the weight vector ŵ, where
ŵ is the solution of the following minimization problem:

ŵ = arg min
w

1

n

n∑
i=1

|Yi − 〈w, Xi〉|+ λ∗‖w‖22. (10)

Note that (10) is a quadratic program and can be solved by various numerical solvers (we used
Matlab quadprog). The role of the regularization parameter λ∗‖w‖22 is to ensure that the posterior
distribution is supported by HW . We use binary search in order to find the minimal (non-negative)
λ∗, such that the posterior ρŵ is supported by HW (meaning that the ball of radius ε around ŵ is
within the ball of radius 0.5 around the origin). In all the experiments below we used ε = 0.05.

5.1 Synthetic data

Our synthetic datasets are produced as follows. We take inputs X1, . . . , Xn uniformly distributed in
a d-dimensional unit ball centered at the origin. Then we define

Yi = σ0 (50 · 〈w0, Xi〉) + εi

with weight vector w0 ∈ Rd, centred sigmoid function σ0(z) = 1
1+e−z − 0.5 which takes values in

[−0.5, 0.5], and noise εi independent of Xi and uniformly distributed in [−ai, ai] with

ai =

{
min

(
0.1, 0.5− σ0(50 · 〈w0, Xi〉)

)
, for σ0(50 · 〈w0, Xi〉) ≥ 0;

min
(
0.1, 0.5 + σ0(50 · 〈w0, Xi〉)

)
, for σ0(50 · 〈w0, Xi〉) < 0.

This design ensures that Yi ∈ [−0.5, 0.5]. The sigmoid function creates a mismatch between the
data generating distribution and the linear hypothesis class. Together with relatively small level of
the noise (εi ≤ 0.1) this results in small empirical variance of the loss Vn(h) and medium to high
empirical loss Ln(h). Let us denote the j-th coordinate of a vector u ∈ Rd by uj and the number
of nonzero coordinates of u by ‖u‖0. We choose the weight vector w0 to have only a few nonzero
coordinates and consider two settings. In the first setting d ∈ {2, 5}, ‖w0‖0 = 2, w1

0 = 0.12, and
w2

0 = −0.04 and in the second setting d ∈ {3, 6}, ‖w0‖0 = 3, w1
0 = −0.08, w2

0 = 0.05, and
w3

0 = 0.2.

For each sample size ranging from 300 to 4000 we averaged the bounds over 10 randomly generated
datasets. The results are presented in Figure 2. We see that except for very small sample sizes
(n < 1000) the PB-EB bound outperforms the PB-kl bound. Inferior performance for very small
sample sizes is a result of domination of the O(1/n) term in the PB-EB bound (7). As soon as n
gets large enough this term significantly decreases and PB-EB dominates PB-kl.

5.2 UCI datasets

We compare our PAC-Bayes-Empirical-Bernstein inequality (7) with the PAC-Bayes-kl inequal-
ity (1) on three UCI regression datasets: Wine Quality, Parkinsons Telemonitoring, and Concrete
Compressive Strength. For each dataset we centred and normalised both outputs and inputs so that
Yi ∈ [−0.5, 0.5] and ‖Xi‖ ≤ 1. The results for 5-fold train-test split of the data together with basic
descriptions of the datasets are presented in Table 1.
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(b) d = 5, ‖w0‖0 = 2
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(c) d = 3, ‖w0‖0 = 3
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Figure 2: The values of the PAC-Bayes-kl and PAC-Bayes-Empirical-Bernstein bounds together
with the test and train errors on synthetic data. The values are averaged over the 10 random draws
of training and test sets.

Table 1: Results for the UCI datasets

Dataset n d Train Test PB-kl bound PB-EB bound
winequality 6497 11 0.106± 0.0005 0.106± 0.0022 0.175± 0.0006 0.162 ± 0.0006
parkinsons 5875 16 0.188± 0.0014 0.188± 0.0055 0.266± 0.0013 0.250 ± 0.0012
concrete 1030 8 0.110± 0.0008 0.111± 0.0038 0.242 ± 0.0010 0.264± 0.0011

6 Conclusions and future work

We derived a new PAC-Bayesian bound that controls the convergence of averages of empirical vari-
ances of losses of hypotheses inH to averages of expected variances of losses of hypothesis inH si-
multaneously for all averaging distributions ρ. This bound is an interesting example of combination
of PAC-Bayesian bounding technique with concentration inequalities for self-bounding functions.
We applied the bound to derive the PAC-Bayes-Empirical-Bernstein inequality which is a powerful
Bernstein-type inequality outperforming the state-of-the-art PAC-Bayes-kl inequality of Seeger [7]
in situations, where the empirical variance is smaller than the empirical loss and otherwise com-
parable to PAC-Bayes-kl. We also demonstrated an empirical advantage of the new PAC-Bayes-
Empirical-Bernstein inequality over the PAC-Bayes-kl inequality on several synthetic and real-life
regression datasets.

Our work opens a number of interesting directions for future research. One of the most important of
them is to derive algorithms that will directly minimize the PAC-Bayes-Empirical-Bernstein bound.
Another interesting direction would be to decrease the last term in the bound in Theorem 3, as it is
done in the PAC-Bayes-kl inequality. This can probably be achieved by deriving a PAC-Bayes-kl
inequality for the variance.
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A Proof of Theorem 3

First, we are going to use the so-called self-bounding property [14] of the random variable Vn(h) to
derive a tight bound on the moment generating function of the difference V(h)− Vn(h). It is done
by using the following result which is an intermediate step in the proof of a concentration inequality
for self-bounding functions presented in [16, Theorem 13]. The result is given in the forth line
before the end of the proof of [16, Theorem 13].

Theorem 5. Let X = (X1, . . . , Xn) be a vector of independent random variables with values in
some set X . For 1 ≤ k ≤ n and x ∈ X , we will write Xk,x to denote the vector obtained from X
by replacing Xk by x. Suppose that a ≥ 1 and that Z = Z(X) is a random variable Z : Xn → R
that satisfies

∀k : Z(X)− inf
x∈X

Z(Xk,x) ≤ 1, (11)

n∑
k=1

(
Z(X)− inf

x∈X
Z(Xk,x)

)2 ≤ aZ(X) (12)

almost surely. Then for s > 0

E
[
es(E[Z]−Z)

]
≤ eas

2E[Z]/2. (13)

We will also need the following simple result:
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Lemma 2. For any finite sequence of real numbers {x1, . . . , xn} the following holds:

1

n(n− 1)

∑
1≤i<j≤n

(xi − xj)2 =
1

n− 1

n∑
i=1

(
xi −

1

n

n∑
j=1

xj

)2

.

Proof.

1

n− 1

n∑
i=1

(
xi −

1

n

n∑
j=1

xj

)2

=
1

n− 1

n∑
i=1

x2i − 2

n
xi

n∑
j=1

xj +
1

n2

(
n∑
j=1

xj

)2


=
1

n− 1

 n∑
i=1

x2i −
2

n

n∑
i=1

xi

n∑
j=1

xj +
1

n2

n∑
i=1

(
n∑
j=1

xj

)2


=
1

n− 1

 n∑
i=1

x2i −
1

n

(
n∑
j=1

xj

)2


=
1

n(n− 1)

(
(n− 1)

n∑
i=1

x2i − 2
∑

1≤i<j≤n

xixj

)

=
1

n(n− 1)

∑
1≤i<j≤n

(xi − xj)2.

Proof of Theorem 3. It is proved in [9, Theorem 10] that the random variable nVn(h) satisfies con-
ditions (11) and (12) with a = n

n−1 . Hence, by (13) for any λ > 0 we obtain

E
[
eλ(nV(h)−nVn(h))

]
≤ e

λ2

2
n2

n−1V(h)

or, equivalently,

E
[
eλ(nV(h)−nVn(h))−

λ2

2
n2

n−1V(h)
]
≤ 1, (14)

which is a bound on the moment generating function of the random variable

Φλ(h) = λn

(
1− λn

2(n− 1)

)
V(h)− λnVn(h).

By substituting Φλ(h) into Lemma 1 we obtain that for π that is independent of the data, with
probability greater than 1− δ for all distributions ρ simultaneously:

Eρ[Φλ(h)] ≤ KL(ρ‖π) + ln
1

δ
,

or (
1− λn

2(n− 1)

)
Eρ[V(h)] ≤ Eρ[Vn(h)] +

KL(ρ‖π) + ln 1
δ

λn
.

By assuming that λ ≤ 2(n−1)
n and dividing both sides of the inequality by 1− λn

2(n−1) we obtain:

Eρ[V(h)] ≤ Eρ[Vn(h)](
1− λn

2(n−1)

) +
KL(ρ‖π) + ln 1

δ

λn
(

1− λn
2(n−1)

) . (15)

Note that the right hand side of (15) cannot be minimized simultaneously for all ρ by a single value
of λ. In the remainder of the proof we first find the optimal value of λ that minimizes (15) and
then design a grid of λ-s in a form of a geometric progression and approximate the optimal λ by the
nearest λ from the grid. This bounding technique is inspired by [8].
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Let us introduce the following notations:

t =
λn

2(n− 1)
, a = Eρ[Vn(h)], b =

KL(ρ‖π) + ln 1
δ

2(n− 1)
. (16)

Then we can rewrite (15) as:

Eρ[V(h)] ≤ F (t) =
a

1− t
+

b

t(1− t)
, (17)

where a, b ≥ 0 and 0 < t ≤ 1 since we assumed that λ ≤ 2(n−1)
n .

Note that for t ∈ (0, 1]

∂F

∂t
=

a

(1− t)2
− (1− 2t)b

t2(1− t)2
,

∂2F

∂t2
=

2a

(1− t)3
+

2bt2(1− t)2 + 2b(2t− 1)2(1− t)t
t4(1− t)4

≥ 0,

and, therefore, F (t) is convex on the interval of interest and achieves its minimum at the positive
solution of

at2 + 2bt− b = 0,

which is

t∗ =

√
b2 + ab− b

a
=

√
b(
√
a+ b−

√
b)

(a+ b)− b
=

√
b

√
a+ b+

√
b

=
1√

a/b+ 1 + 1
≤ 1

2
. (18)

Now we are going to cover the relevant interval of t-s by a geometrically spaced sequence of
(tk)k∈N+ . We have already obtained an upper bound on the relevant interval in (18). For the lower
bound we substitute the values of a and b into (18) and obtain

t∗ =

(√
2(n− 1)Eρ[Vn(h)]

KL(ρ‖π) + ln 1/δ
+ 1 + 1

)−1
.

Considering the fact that KL(ρ‖π) ≥ 0 and Vn(h) ≤ 1
2 (which is a simple consequence of Lemma 2

and our assumption that the loss is bounded in the [0, 1] interval) we have

t∗ ≥

(√
n− 1

ln 1/δ
+ 1 + 1

)−1
.

Therefore, the range of t we are interested in is

t ∈

(√ n− 1

ln 1/δ
+ 1 + 1

)−1
,

1

2

 .
We cover the above range with the following sequence of t-s: ti = ci

(√
n−1
ln 1/δ + 1 + 1

)−1
, i =

0, . . . ,m− 1, where c > 1. It suffices to take

m =

⌈
1

ln c
ln

(
1

2

√
n− 1

ln 1/δ
+ 1 +

1

2

)⌉

in order to cover the relevant interval. The value tm−1 is the last value that is strictly less than 1
2 .

For any particular training set we can find the value ti∗ , i∗ ∈ {0, . . . ,m− 1}, which satisfies

ti∗ ≤ t∗ ≤ ti∗+1 ≤ cti∗ ,
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where t∗ is the optimal value that minimizes the r.h.s. of (17) for a given ρ. Using this fact we get

F (ti∗) =
a

1− ti∗
+

b

ti∗(1− ti∗)

≤ a

1− t∗
+

b

(t∗/c)(1− t∗)

=
a

1−
√
b√

b+
√
a+b

+
cb(

1−
√
b√

b+
√
a+b

) √
b√

b+
√
a+b

=
a+ cb+ c

√
b(a+ b)

1−
√
b√

b+
√
a+b

=

(
a+ cb+ c

√
b(a+ b)

)(√
a+ b+

√
b
)

√
a+ b

= a+ cb+ c
√
b(a+ b) +

a
√
b√

a+ b
+

cb
√
b√

a+ b
+ cb

≤ a+ (1 + c)
√
ab+ 4cb, (19)

where in the last inequality we used the fact that
√
a+ b ≤

√
a+
√
b. Substitution of the values of

a and b yields (6)

B Appendix to Section 5

Here we provide proofs of results from section 5 and some technical discussion. First we will need
the following result.
Lemma 3. Consider the random variable ξ = 〈w,v〉 where w ∈ Rd is distributed uniformly over
the d-dimentional ball of radius ε centred at the origin and v ∈ Rd is a fixed vector with nonzero and
finite euclidian norm 0 < ‖v‖2 ≤ ∞. Then random variable ξ has the following density function
pξ(x) with finite support

[
−ε‖v‖2, ε‖v‖2

]
:

pξ(x) =

(
1− x2

ε2‖v‖22

) d−1
2

N(v, ε, d)

where

N(v, ε, d) = 2 ε‖v‖2
∫ π

2

0

cosd(t)dt.

Also

E[ξ] = 0, V[ξ] =
(ε‖v‖2)2

d+ 2
.

Proof. First of all note that ξ ∈
[
−ε‖v‖2, ε‖v‖2

]
which is the consequence of Cauchy–Schwarz

inequality. Also dew to the symmetry of the support of w we can restrict ourselves to the situation
when v has only one nonzero coordinate which we’ll assume to be the first cordinate.

Let us denote j-th coordinate of a vector u ∈ Rd, j = 1, . . . , d, using the upper index uj . Then for
any value C from the support of pξ condition ξ = C is equivalent to w1 = C/v1 and restricts w
to lie in the (d − 1)-dimensional ball of radius

√
ε2 − (C/‖v‖2)2 centred at the origin. Then it is

obvious that

pξ(x) ∝
(

1− x2

ε2‖v‖22

) d−1
2

.

Now it suffices to find the normalizing constant which we’ll denote N(v, ε, d):

N(v, ε, d) =

∫ ε‖v‖2

−ε‖v‖2

(
1− x2

ε2‖v‖22

) d−1
2

dx = 2

∫ ε‖v‖2

0

(
1− x2

ε2‖v‖22

) d−1
2

dx.
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Denoting sin(t) = x
ε‖v‖2 we get

N(v, ε, d) = 2 ε‖v‖2
∫ π

2

0

cosd(t)dt,

which completes the proof of the first part of lemma.

Equation E[ξ] = 0 follows from the fact that ξ has symmetric distribution. Finally we use the
following reduction formula to compute the variance V[ξ]. It states that for any m,n ∈ N∫

sinm(t) cosn(t)dt = − sinm−1(t) cosn+1(t)

m+ n
+
m− 1

m+ n

∫
sinm−2(t) cosn(t)dt. (20)

Since

V[ξ] =
2
∫ ε‖v‖2
0

x2
(

1− x2

ε2‖v‖22

) d−1
2

dx

N(v, ε, d)
,

again denoting sin(t) = x
ε‖v‖2 we get

V[ξ] =
2(ε‖v‖2)3

N(v, ε, d)

∫ π
2

0

sin2(t) cosd(t)dt.

Using reduction formula (20) we conclude that

V[ξ] =
2(ε‖v‖2)3

N(v, ε, d)

1

d+ 2

∫ π
2

0

cosd(t)dt =
(ε‖v‖2)2

d+ 2
.

Note that it is easy to recursively compute N(v, ε, d) using the following reduction formula:∫
cosd(t)dt =

1

d
cosd−1(t) sin(t) +

d− 1

d

∫
cosd−2(t)dt.

Now we are ready to derive all the quantities appearing in the PAC-Bayes bounds for our experi-
mental setting. We will begin with the following result, which holds only for the particular choice
of the radius ε of the posterior distribution.

Theorem 6. Let the posterior and prior distributions ρŵ and π be defined as in Section 5, take the
radius of posterior distribution to be ε̂ = mini=1,...,n |Yi − 〈ŵ, Xi〉|, and assume that ε̂ > 0. Then
we have

KL(ρŵ‖π) = d ln
2

ε̂
; (21)

Eh∼ρŵ [Ln(h)] = Ln(hŵ); (22)

Eh∼ρŵ [Vn(h)] =
1

n− 1

n∑
i=1

(
(Yi − 〈ŵ, Xi〉)2 +

ε̂2

d+ 2
‖Xi‖22

)
− n

n− 1

(
Ln(hŵ)

)2 −
− ε̂2

4n(n− 1)(d+ 2)

n∑
i=1

n∑
j=1

〈Xi, Xj〉sgn
{

(Yi − 〈ŵ, Xi〉)(Yj − 〈ŵ, Xj〉)
}
. (23)

Proof. Let us start from the derivation of (21):

KL(ρ‖π) =

∫
‖w‖≤ 1

2

ρŵ(w) ln
ρŵ(w)

π(w)
dw =

=

∫
‖w‖≤ 1

2

1{‖w − ŵ‖2 ≤ ε̂}
1

V (ε̂, d )
ln
V (1/2, d)

V (ε̂, d )
dw = d ln

2

ε̂
,

where V (ε, d) is the volume of d-dimensional ball with radius ε.
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Now recall the definition
ε̂ = min

i=1,...,n
(|Yi − 〈ŵ, Xi〉|).

It implies that for any i = 1, . . . , n random variables ξi = Yi − 〈w, Xi〉 (where w ∼ ρŵ) do not
change their signs. Then equation (22) follows immediately from the definition:

Eh∼ρŵ [Ln(h)] =
1

n

n∑
i=1

Ew∼ρŵ [|Yi − 〈w, Xi〉|] =
1

n

n∑
i=1

|Yi − 〈ŵ, Xi〉|] = Ln(ĥ).

Finally let us derive (23). Using Lemma 2 we write

Eh∼ρŵ [Vn(h)] =
1

n− 1

n∑
i=1

Ew∼ρŵ
[
(Yi−〈w, Xi〉)2

]
− 1

n(n− 1)
Ew∼ρŵ

( n∑
i=1

|Yi − 〈w, Xi〉|

)2
 .

(24)
Now note that

Ew∼ρŵ
[
(Yi − 〈w, Xi〉)2

]
= Ew∼ρŵ

[
(Yi − 〈ŵ, Xi〉+ 〈ŵ −w, Xi〉)2

]
=

= (Yi − 〈ŵ, Xi〉)2 + 2Ew∼ρŵ
[
(Yi − 〈ŵ, Xi〉)(〈ŵ −w, Xi〉)

]
+ Ew∼ρŵ

[
(〈ŵ −w, Xi〉)2

]
.

The second summand in the last expression is equal to zero since Ew∼ρŵ [w] = ŵ. By the same
reason we conclude that

Ew∼ρŵ
[
(〈ŵ −w, Xi〉)2

]
= Vw∼ρŵ [〈ŵ −w, Xi〉].

Now note that vector (ŵ −w) ∈ Rd is uniformly distributed in the d-dimensional ball with radius
ε̂ centred at the origin and also that ‖Xi‖2 ≤ 1. We can apply Lemma 3 to get

Ew∼ρŵ
[
(〈ŵ −w, Xi〉)2

]
=

(ε̂‖Xi‖2)2

d+ 2
,

meaning that

Ew∼ρŵ
[
(Yi − 〈w, Xi〉)2

]
= (Yi − 〈ŵ, Xi〉)2 +

(ε̂‖Xi‖2)2

d+ 2
. (25)

Finally

Ew∼ρŵ

( n∑
i=1

|Yi − 〈w, Xi〉|

)2
 = Vw∼ρŵ

[
n∑
i=1

|Yi − 〈w, Xi〉|

]
+

(
n∑
i=1

Ew∼ρŵ [|Yi − 〈w, Xi〉|]

)2

=

= Vw∼ρŵ

[
n∑
i=1

|Yi − 〈w, Xi〉|

]
+
(
nLn(ĥ)

)2
, (26)

where we used (22). For any sequence of random variables ξ1, . . . , ξn we have

V

[
n∑
i=1

ξi

]
=

n∑
i=1

n∑
j=1

E
[
(ξi − E[ξi])(ξj − E[ξj ])

]
.

Using
ξi = |Yi − 〈w, Xi〉| = |Yi − 〈ŵ, Xi〉+ 〈ŵ −w, Xi〉|,

we can rewrite

Vw∼ρŵ

[
n∑
i=1

|Yi − 〈w, Xi〉|

]
=

=

n∑
i=1

n∑
j=1

Ew∼ρŵ

[(
ξi − |Yi − 〈ŵ, Xi〉|

)(
ξj − |Yj − 〈ŵ, Xj〉|

)]
, (27)

where we again used the fact that random variables Yi− 〈w, Xi〉, i = 1, . . . , n, does not change the
sign. Since for any a, b ∈ R such that |b| ≥ |a| we have |b+ a| − |b| = sgn{b} · a we can write

ξi − |Yi − 〈ŵ, Xi〉| = sgn
{
Yi − 〈ŵ, Xi〉

}
〈ŵ −w, Xi〉.
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Then we have

Ew∼ρŵ

[(
ξi − |Yi − 〈ŵ, Xi〉|

)(
ξj − |Yj − 〈ŵ, Xj〉|

)]
=

= sgn
{

(Yi − 〈ŵ, Xi〉)(Yj − 〈ŵ, Xj〉)
}
Ew∼ρŵ

[
〈ŵ −w, Xi〉〈ŵ −w, Xj〉

]
. (28)

Now use the fact that

Ew∼ρŵ

[
〈ŵ −w, Xi〉〈ŵ −w, Xj〉

]
=

=
1

4
Ew∼ρŵ

[(
〈ŵ −w, Xi +Xj〉

)2 − (〈ŵ −w, Xi −Xj〉
)2]

=

=
1

4
Vw∼ρŵ

[
〈ŵ −w, Xi +Xj〉

]
− 1

4
Vw∼ρŵ

[
〈ŵ −w, Xi −Xj〉

]
.

Again noting that vector (ŵ − w) ∈ Rd is uniformly distributed in the d-dimensional ball with
radius ε̂ centred at the origin and that ‖Xi −Xj‖2 ≤ 1 ,‖Xi + Xj‖2 ≤ 1, we can apply Lemma 3
and get

Ew∼ρŵ

[
〈ŵ −w, Xi〉〈ŵ −w, Xj〉

]
=

=
(ε̂‖Xi +Xj‖2)2

4(d+ 2)
− (ε̂‖Xi −Xj‖2)2

4(d+ 2)
=
ε̂2〈Xi, Xj〉
4(d+ 2)

. (29)

Combining (24)–(29) altogether we complete the proof.

Note that the choice ε̂ = mini=1,...,n |Yi − 〈ŵ, Xi〉| can lead to very large values of KL(ρŵ, π)
because of the equation (21). We can overcome this problem using the following theorem which lets
us pick arbitrary value of ε.
Theorem 7. Let nε be the number of points such that |Yi − 〈ŵ, Xi〉| < ε. Then for posterior and
prior distributions ρŵ and π defined as in Section 5 we have

KL(ρŵ‖π) = d ln
2

ε
;

Eh∼ρŵ [Ln(h)] ≤ Ln(hŵ) + ε
nε
n

;

Eh∼ρŵ [Vn(h)] ≤ 1

n− 1

n∑
i=1

(
(Yi − 〈ŵ, Xi〉)2 +

ε2

d+ 2
‖Xi‖22

)
−

− 1

n(n− 1)

(
n∑
i=1

1{|Yi − 〈ŵ, Xi〉| ≥ ε}
[
|Yi − 〈ŵ, Xi〉|

])2

− 1

n(n− 1)

n∑
i=1

n∑
j=1

γi,j ;

γi,j =


sgn
{

(Yi − 〈ŵ, Xi〉)(Yj − 〈ŵ, Xj〉)
} ε2〈Xi,Xj〉

4(d+2) , if Ai ∩Aj ;
− ε

2‖Xi‖2√
d+2

, if Ai ∩Acj ;
− ε

2‖Xj‖2√
d+2

, if Aci ∩Aj ;
−ε2, if Aci ∩Acj .

where we have defined events Ai =
{
|Yi − 〈ŵ, Xi〉| ≥ ε

}
and Ac is the complement of event A.

Proof. The proof repeats the one of Theorem 6 with minor changes. The main difference is that
now for indices i such that |Yi − 〈ŵ, Xi〉| < ε random variables ξi = Yi − 〈w, Xi〉 change their
signs as w varies. Thus for these ξi the mean value E[|ξi|] is no longer |Yi − 〈ŵ, Xi〉| and has more
complicated form. Instead of computing Eh∼ρŵ [Ln(h)] precisely we will upper bound E[|ξi|] for
such a i using

Ew∼ρŵ [|Yi − 〈w, Xi〉|] = Ew∼ρŵ [|Yi − 〈ŵ, Xi〉+ 〈ŵ −w, Xi〉|] ≤
≤ |Yi − 〈ŵ, Xi〉|+ ε‖Xi‖2 ≤ |Yi − 〈ŵ, Xi〉|+ ε

which completes the proof for the Eh∼ρŵ [Ln(h)].
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We will also derive an upper bound for Eh∼ρŵ [Vn(h)]. To do so we need the lower bound for the
second term in right hand side of (24) (first term stays unchanged compared to Theorem 6). First we
will use the following lower bound for the term appearing in (26):(

n∑
i=1

Ew∼ρŵ [|Yi − 〈w, Xi〉|]

)2

≥

(
n∑
i=1

1{|Yi − 〈ŵ, Xi〉| ≥ ε}[|Yi − 〈ŵ, Xi〉|]

)2

.

Finally we need the lower bound for the variance

Vw∼ρŵ

[
n∑
i=1

|Yi − 〈w, Xi〉|

]
which we derive through the lower bounds for the covariance terms appearing in (27) corresponding
to the pairs (i, j) such that either |Yi − 〈ŵ, Xi〉| < ε or |Yj − 〈ŵ, Xj〉| < ε (for all the other terms
we have already derived the precise forms in previous proof). It is known that for random variables
ξ, η of finite variances the following holds:∣∣E[(ξ − E[ξ])(η − E[η])

]∣∣ ≤√V[ξ]V[η],

meaning
E
[
(ξ − E[ξ])(η − E[η])

]
≥ −

√
V[ξ]V[η].

Note that if |Yi − 〈ŵ, Xi〉| < ε then |Yi − 〈w, Xi〉| ≤ 2ε and we have

Vw∼ρŵ [|Yi − 〈w, Xi〉|] ≤ ε2,
where we used the fact that for random variable ξ ∈ [0, 1] we have V[ξ] ≤ 1/4.

If |Yi − 〈ŵ, Xi〉| ≥ ε we have

Vw∼ρŵ [|Yi − 〈w, Xi〉|] = Vw∼ρŵ [〈ŵ −w, Xi〉] =
(ε‖Xi‖2)2

d+ 2

which completes the proof.

Comments on section 5. Note that for posterior distribution ρŵ defined as in Section 5 we clearly
have B(x, ρŵ) = Ew∼ρŵ [hw(x)] = hŵ(x) meaning that the weighted (Bayes) regression rule
coincides with the deterministic hypothesis hŵ. Also note that the convexity of absolute deviation
loss implies that

E(X,Y )∼D
[
|B(X, ρ)− Y |

]
≤ E(X,Y )∼DEw∼ρ

[
|hw(X)− Y |

]
= L(Gρ)

for any distribution ρ. Together these two facts yield that any upper bound on the true loss of
Gibbs regression rule associated with posterior distribution ρŵ also upper bounds the true loss of
deterministic hypothesis hŵ. The same is true if we use quadratic or any other convex loss function
instead of the absolute loss.

C PAC-Bayesian Lemma

Proof of Lemma 1. We start with Donsker-Varadhan’s variational definition of relative entropy [17],
which states that KL(ρ‖π) = supf

(
Eρ [f(h)] + lnEπ

[
ef(h)

])
, where the supremum is taken over

all measurable functions f : H → R. Obviously, we can extend the range of f and take f = fn :
H× (X × Y)

n → R. Changing sides in the definition we have that

Eρ [fn(h, S)] ≤ KL(ρ‖π) + lnEπ
[
efn(h,S)

]
(30)

for all pairs (ρ, π) simultaneously and any S. Note that there is nothing probabilistic in the above
argument.

Now we fix π (so that π does not depend on S). Then with probability greater than 1 − δ (over the
randomness of the data) we have:

Eπ
[
efn(h,S)

]
≤ 1

δ
ES′∼Dn

[
Eh∼π

[
efn(h,S

′)
]]

=
1

δ
Eh∼π

[
ES′∼Dn

[
efn(h,S

′)
]]
,
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where the first step follows by Markov’s inequality (we consider Eπ
[
efn(h,S)

]
as a random variable

and apply Markov’s inequality to this random variable) and in the second step we can exchange the
order of expectations because π is independent of S. Substituting this result back into (30) we obtain
that with probability greater than 1− δ simultaneously for all ρ:

Eρ [fn(h, S)] ≤ KL(ρ‖π) + ln
1

δ
+ lnEπ

[
ES′∼Dn

[
efn(h,S

′)
]]
.
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