Convex Calibrated Surrogates for Low-Rank Loss
Matrices with Applications to Subset Ranking Losses

Appendix

Proof of Theorem 4

Proof. Let p € Preinforce- We define uP € R”("+1)/2 again here for convenience:
Y.V Ui,
uP = Ey.p [”] = Dy (”) Vi,jelr]:i>3j.
Y 22:1 Y, );; 22:1 Yy
It is easy to see that uP € R"("+1)/2 i the unique minimizer of p " 15;4p(1) over u € R7("+1)/2,
Recall also that while ufj above is defined only for 7 > j, we also set ufj = u?i fori < j.
For brevity, we will write £yap as £ below. We have from the definition of the MAP loss,
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Now define the following sets:

II*(p) = argminaeSTpTﬂg

I(p) = {a €S, up >uf; = o(i) < O’(j)} .
From Lemma 8 below, we have that II(p) C II*(p).
By the definition of pred,;,p and TI(p), we also have that 3¢ > 0 such that for any u € R"("+1)/2,
lu—uP| < e = predyup(u) € I(p).

Thus, we have

. T, 1% _ : T, %
inf ) P Yuap(u) = inf P Yuap(u)
ueR™(m+1)/2:predy;,p(u) ¢argmin, p T £, ueR™("+1)/2:predy;,p (w) €11* (P)
. T %
> inf P Yuap(u)
ueR™("+1)/2:predy;,p (0) 11(p)
. T %
> inf P Yyap(u)
= MAP
u€R"(r+1)/2;|lu—uP||>e
. T %
> inf u
u€R7‘(7‘+1)/2p PYuap(u),

where the last inequality follows since p | 954p (1) is a strictly convex function of u and uP is its
unique minimizer.

Since the above holds for all p € Preinforce» We have that (Y5ap, Predyap) 18 (Umap, Preinforce)-
calibrated.

The proof of Theorem 4 makes use of the following technical lemma:

Lemma 8. Let p € Preinforce- Let the sets I1* (p) and I1(p) be defined as in the proof of Theorem 4
above. Then I1(p) C II*(p).
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Proof of Lemma 8. As in the proof of Theorem 4, for brevity, we will write {yap as ¢ below.

We first observe that all permutations o € II(p) have the same value of p'#£,. To see this, note
that permutations in II(p) differ only in positions they assign to elements ¢, j € [r] with u}, = u;’j.

But since p € Preinforces We have that if u}, = ufj, then uw = u forall v € [r] \ {i,7}. Thus,
from the form of p ' £, we can see that if ub, = ] > then 1nterchang1ng the positions of ¢ and j in a

permutation o does not change the value of p " £,. This establishes that all permutations o € II(p)
have the same value of p " £,.

We will show below that 3 a permutation o* € II(p) N IT*(p). This will give that o* € II(p) and
p' £, = argmin_p " £,; by the above observation, we will then have that p " £,, = argmin_p ' £,
forall o' € TI(p), i.e. that II(p) C II*(p).

In order to show the existence of a permutation o* € II(p) N II*(p), we will start with an arbitrary
element 0° € II*(p), and will construct a sequence of permutations o', 02,..., 0™ = o* by
transposing one adjacent pair at a time, such that all elements in the sequence remain in IT*(p), and
the final permutation o is also in TI(p).

Leto? € H*( ). If o € H( ), we are done, so let us assume ¢ ¢ I1(p). Thus there must exist an
adjacent pair of elements in ¢ that are not ordered according to the scores u}, i.e. there must exist
a,b, ¢ € [r] such that

i1

o’(a)=¢, o’(b)=c+1, and uP, <ufy.

Define o! to be such that o' (a) = ¢+ 1,01 (b) = ¢, and o (i) = o(i) for all other i € [r]. We will
show that o € IT*(p). For convenience let us denote (¢°)~! as ¥ and (o)~ as !. Note that

7(c) =71l (c+1)=a
mc+1)=nl(c)=b
70(>i) = (i) Vi € [r] \ {c,c + 1}.

From the expression for p " £, in Eq. (2) in the proof of Theorem 4 above, we have

c c+1
1 1
T T _ P P p o
P loo—p b = - E(u’”@)wlu) ~Unomo) | o ,z;(uﬂ(cﬂ)ﬂl(j) = Uzo (o 1)n0 ()
Jj= Jj=
1 c 1 c+1
_ P _.,P P . o
T ¢ Zf%ﬂlm Ugmogi)) | + c+1 quwm Upro(j))
Jj= Jj=

c—1

1 1
Z bl (5) U’uﬂ'l(J)) + E(ull:b - uga) c+1 (uapb + U’apa

Jj=1

(i) S
c—1
1 1
- (c ot 1) : 1(%1(]‘) ~ Ugry) Uy — U
j=
1 1 c—1
= (C c+ 1> ubb (Uga + Z:l(usﬂ,l(j) - U§ﬂ1(j))>
j=
> 1 p P P
- c+1 upy —  u6a + Z (Ugmr () = U1 () +
jE€lr],i¢{c,c+1}
> 0,

where the last inequality follows since p € Preinforce- Lhis gives ol e II* (p). Moreover, the number

of adjacent pairs in 0! that disagree with the ordering according to Y, is one less than that in o°.

Since there can be at most (g) such pairs in ¢ to start with, by repeating the above process, we will
eventually end up with a permutation ™ € II(p) NII* (p) (with M < (7)). The claim follows. [J
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Proof of Theorem 6

Proof. Letp € Pr. Define uP € R" as

W =By [f(Y)] = 3 pf(y).

yey
It is easy to see that uP is the unique minimizer of p "¢ (u) over u € R”.
Also define yP € R"("~1) as
i = EyplYij] = Z PyYij ViFj.
yey

For brevity, we will write {pp as ¢ below. Define the following sets:

r i—1

IT*(p) = argmin, ¢ p' £ = argmin,cg > > (45 —yP) - 1(a(i) > 0(4))
i=1 j=1

I(p) = {g €5, uP >uP = o(i) < a(j)}.
We claim that II(p) C II*(p). To see this, let 0 € II(p). Since p € P¢, we have
yfj >y§’i = uf’>u§’ = o(i) < o(j),
Uy < yh = up <ub = o(i) > 0o(j).
This clearly gives o € II*(p). Thus II(p) C II*(p).
By the definition of pred and II(p), we also have that Je > 0 such that for any u € R",
lu —uP| < ¢ = pred(u) € II(p).

Thus, we have

inf T inf T
weRr oy gmin, o7, VT werrpragr o P PE
> inf T
o uERT:pré(Iil(u)QH(p) P ¢f(u)
=z inf P e(u)

ueR”:||lu—uP||>e
: T
> inf u
WeR” P ’lpf ( ) ’
where the last inequality follows since p " 4¢(u) is a strictly convex function of u and uP is its
unique minimizer.

Since the above holds for all p € Pg, we have that (¢, pred) is (¢pp, Pr)-calibrated. O

Proof of Theorem 7

Proof. Let p € Ppag. Define uP € R"("—1) a5
wP = Eyp[Vi] = Y pyyis -
yey
It is easy to see that uP is the unique minimizer of p " p (1) over u € R"("~1),

For brevity, we will write /pp as £ below. Define the following sets:

r i—1

I (p) = argminUeSTpTEU = argmin, cg_ ZZ(UZ —uf;) - Lo(i) > o(j))
i=1 j=1

II(p) = {0 € S, : o corresponds to a topological order that could be returned by predPD(up)} .
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We claim that II(p) C II*(p). To see this, let o € II(p). Since p € Ppac, we have that the graph

with edge weights (u}; — u%;), formed by pred(uP) is a DAG, and therefore o must agree with the

edges in this graph, i.e. ’
up; > uf, = o(i) < o(j),
up; < b = o(i) > o(j).
This clearly gives o € IT*(p). Thus II(p) C IT*(p).
Now, let
Alp) ={ue R""Y: predpp (u) ¢ argminUpTEU} ={ue R""=1 : predpp (u) ¢ " (p) } -
In order to show that

inf pTepy(u) > inf plapiy(u
ueA(p)p pp(u) ue]RTp pp(u),
we will show that any sequence {u,, } in R"("~1) converging to uP must eventually lie outside A(p),
i.e. that any such sequence must eventually have predpp (u,,) € IT*(p); the result will then follow
by strict convexity of the function u + p " 4pp (1) and the fact that uP is its unique minimizer.

Let {u,,} be any sequence in R"("~1) converging to uP. Let

i P_,P.,P __.P
€= Igél;l {um Ujy Uy — Uy > 0}.

Then for large enough m, we must have the following (by convergence of {u,,} to uP):

p_ P m __ ,m
Uiy —ug; >0 = ujj ujiZE/Q,

uf}fu?i:() = u:?fu;’; <e/4.
Thus, for large enough m, the directed graph induced by u,,, contains the DAG induced by u®, and
any edge (4, j) such that u?; — u¥; > 0 will not be deleted by the algorithm when predpp (u,,) is

evaluated. Thus, for large enough m, we have predpp(u,,) € II(p) C IT*(p).

Since the above holds for all p € Ppag, we have that (¢, predpp ) 18 (épp, Ppac)-calibrated. O
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