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Appendix

Proof of Theorem 4

Proof. Let p ∈ Preinforce. We define up ∈ Rr(r+1)/2 again here for convenience:

up
ij = EY∼p

�
YiYj�r
γ=1 Yγ

�
=

�

y∈Y
py

�
yiyj�r
γ=1 yγ

�
∀i, j ∈ [r] : i ≥ j .

It is easy to see that up ∈ Rr(r+1)/2 is the unique minimizer of p�ψ∗
MAP(u) over u ∈ Rr(r+1)/2.

Recall also that while up
ij above is defined only for i ≥ j, we also set up

ij = up
ji for i < j.

For brevity, we will write �MAP as � below. We have from the definition of the MAP loss,

p��σ = 1−
r�

i=1

i�

j=1

up
ij

1

max(σ(i),σ(j))

= 1−
r�

i=1

1

i

i�

j=1

up
σ−1(i)σ−1(j) . (2)

Now define the following sets:
Π∗(p) = argminσ∈Sr

p��σ

Π(p) =
�
σ ∈ Sr : up

ii > up
jj =⇒ σ(i) < σ(j)

�
.

From Lemma 8 below, we have that Π(p) ⊆ Π∗(p).

By the definition of predMAP and Π(p), we also have that ∃� > 0 such that for any u ∈ Rr(r+1)/2,

�u− up� < � =⇒ predMAP(u) ∈ Π(p) .

Thus, we have

inf
u∈Rr(r+1)/2:predMAP(u)/∈argminσp��σ

p�ψ∗
MAP(u) = inf

u∈Rr(r+1)/2:predMAP(u)/∈Π∗(p)
p�ψ∗

MAP(u)

≥ inf
u∈Rr(r+1)/2:predMAP(u)/∈Π(p)

p�ψ∗
MAP(u)

≥ inf
u∈Rr(r+1)/2:�u−up�≥�

p�ψ∗
MAP(u)

> inf
u∈Rr(r+1)/2

p�ψ∗
MAP(u) ,

where the last inequality follows since p�ψ∗
MAP(u) is a strictly convex function of u and up is its

unique minimizer.

Since the above holds for all p ∈ Preinforce, we have that (ψ∗
MAP, predMAP) is (�MAP,Preinforce)-

calibrated.

The proof of Theorem 4 makes use of the following technical lemma:
Lemma 8. Let p ∈ Preinforce. Let the sets Π∗(p) and Π(p) be defined as in the proof of Theorem 4
above. Then Π(p) ⊆ Π∗(p).
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Proof of Lemma 8. As in the proof of Theorem 4, for brevity, we will write �MAP as � below.

We first observe that all permutations σ ∈ Π(p) have the same value of p��σ . To see this, note
that permutations in Π(p) differ only in positions they assign to elements i, j ∈ [r] with up

ii = up
jj .

But since p ∈ Preinforce, we have that if up
ii = up

jj , then up
iγ = up

jγ for all γ ∈ [r] \ {i, j}. Thus,
from the form of p��σ , we can see that if up

ii = up
jj , then interchanging the positions of i and j in a

permutation σ does not change the value of p��σ . This establishes that all permutations σ ∈ Π(p)
have the same value of p��σ .

We will show below that ∃ a permutation σ∗ ∈ Π(p) ∩ Π∗(p). This will give that σ∗ ∈ Π(p) and
p��σ∗ = argminσp

��σ; by the above observation, we will then have that p��σ� = argminσp
��σ

for all σ� ∈ Π(p), i.e. that Π(p) ⊆ Π∗(p).

In order to show the existence of a permutation σ∗ ∈ Π(p) ∩ Π∗(p), we will start with an arbitrary
element σ0 ∈ Π∗(p), and will construct a sequence of permutations σ1,σ2, . . . ,σM = σ∗ by
transposing one adjacent pair at a time, such that all elements in the sequence remain in Π∗(p), and
the final permutation σM is also in Π(p).

Let σ0 ∈ Π∗(p). If σ0 ∈ Π(p), we are done, so let us assume σ0 /∈ Π(p). Thus there must exist an
adjacent pair of elements in σ that are not ordered according to the scores up

ii, i.e. there must exist
a, b, c ∈ [r] such that

σ0(a) = c, σ0(b) = c+ 1, and up
aa < up

bb .

Define σ1 to be such that σ1(a) = c+1,σ1(b) = c, and σ1(i) = σ0(i) for all other i ∈ [r]. We will
show that σ1 ∈ Π∗(p). For convenience let us denote (σ0)−1 as π0 and (σ1)−1 as π1. Note that

π0(c) = π1(c+ 1) = a

π0(c+ 1) = π1(c) = b

π0(i) = π1(i) ∀i ∈ [r] \ {c, c+ 1} .

From the expression for p��σ in Eq. (2) in the proof of Theorem 4 above, we have

p��σ0 − p��σ1 =
1

c



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j=1

(up
π1(c)π1(j) − up
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
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1
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
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(up
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


=
1

c



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j=1

(up
bπ1(j) − up

aπ0(j))


+

1

c+ 1



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j=1

(up
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bπ0(j))




=

�
1

c
− 1

c+ 1

� c−1�

j=1

(up
bπ1(j) − up

aπ1(j)) +
1

c
(up

bb − up
aa) +

1

c+ 1
(up

ab + up
aa − up

ba − up
bb)

=

�
1

c
− 1

c+ 1

�


c−1�

j=1

(up
bπ1(j) − up

aπ1(j)) + up
bb − up

aa




=

�
1

c
− 1

c+ 1

�
up

bb −
�
up
aa +

c−1�

j=1

(up
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�
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≥
�
1

c
− 1

c+ 1

�
up

bb −
�
up
aa +

�

j∈[r],j /∈{c,c+1}
(up

aπ1(j) − up
bπ1(j))+

�


≥ 0 ,

where the last inequality follows since p ∈ Preinforce. This gives σ1 ∈ Π∗(p). Moreover, the number
of adjacent pairs in σ1 that disagree with the ordering according to up

ii is one less than that in σ0.
Since there can be at most

�
r
2

�
such pairs in σ0 to start with, by repeating the above process, we will

eventually end up with a permutation σM ∈ Π(p)∩Π∗(p) (with M ≤
�
r
2

�
). The claim follows.
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Proof of Theorem 6

Proof. Let p ∈ Pf . Define up ∈ Rr as

up = EY∼p[f(Y )] =
�

y∈Y
pyf(y) .

It is easy to see that up is the unique minimizer of p�ψf (u) over u ∈ Rr.

Also define yp ∈ Rr(r−1) as

ypij = EY∼p[Yij ] =
�

y∈Y
pyyij ∀i �= j .

For brevity, we will write �PD as � below. Define the following sets:

Π∗(p) = argminσ∈Sr
p��σ = argminσ∈Sr

r�

i=1

i−1�

j=1

(ypij − ypji) · 1(σ(i) > σ(j))

Π(p) =
�
σ ∈ Sr : up

i > up
j =⇒ σ(i) < σ(j)

�
.

We claim that Π(p) ⊆ Π∗(p). To see this, let σ ∈ Π(p). Since p ∈ Pf , we have

ypij > ypji =⇒ up
i > up

j =⇒ σ(i) < σ(j) ,

ypij < ypji =⇒ up
i < up

j =⇒ σ(i) > σ(j) .

This clearly gives σ ∈ Π∗(p). Thus Π(p) ⊆ Π∗(p).

By the definition of pred and Π(p), we also have that ∃� > 0 such that for any u ∈ Rr,

�u− up� < � =⇒ pred(u) ∈ Π(p) .

Thus, we have

inf
u∈Rr:pred(u)/∈argminσp��σ

p�ψf (u) = inf
u∈Rr:pred(u)/∈Π∗(p)

p�ψf (u)

≥ inf
u∈Rr:pred(u)/∈Π(p)

p�ψf (u)

≥ inf
u∈Rr:�u−up�≥�

p�ψf (u)

> inf
u∈Rr

p�ψf (u) ,

where the last inequality follows since p�ψf (u) is a strictly convex function of u and up is its
unique minimizer.

Since the above holds for all p ∈ Pf , we have that (ψf , pred) is (�PD,Pf )-calibrated.

Proof of Theorem 7

Proof. Let p ∈ PDAG. Define up ∈ Rr(r−1) as

up = EY∼p[Yij ] =
�

y∈Y
pyyij .

It is easy to see that up is the unique minimizer of p�ψ∗
PD(u) over u ∈ Rr(r−1).

For brevity, we will write �PD as � below. Define the following sets:

Π∗(p) = argminσ∈Sr
p��σ = argminσ∈Sr

r�

i=1

i−1�

j=1

(up
ij − up

ji) · 1(σ(i) > σ(j))

Π(p) =
�
σ ∈ Sr : σ corresponds to a topological order that could be returned by predPD(u

p)
�
.
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We claim that Π(p) ⊆ Π∗(p). To see this, let σ ∈ Π(p). Since p ∈ PDAG, we have that the graph
with edge weights (up

ij − up
ji)+ formed by pred(up) is a DAG, and therefore σ must agree with the

edges in this graph, i.e.
up
ij > up

ji =⇒ σ(i) < σ(j) ,

up
ij < up

ji =⇒ σ(i) > σ(j) .

This clearly gives σ ∈ Π∗(p). Thus Π(p) ⊆ Π∗(p).

Now, let

A(p) =
�
u ∈ Rr(r−1) : predPD(u) /∈ argminσp

��σ
�
=

�
u ∈ Rr(r−1) : predPD(u) /∈ Π∗(p)

�
.

In order to show that

inf
u∈A(p)

p�ψ∗
PD(u) > inf

u∈Rr
p�ψ∗

PD(u) ,

we will show that any sequence {um} in Rr(r−1) converging to up must eventually lie outside A(p),
i.e. that any such sequence must eventually have predPD(um) ∈ Π∗(p); the result will then follow
by strict convexity of the function u �→ p�ψ∗

PD(u) and the fact that up is its unique minimizer.

Let {um} be any sequence in Rr(r−1) converging to up. Let

� = min
i�=j

�
up
ij − up

ji : u
p
ij − up

ji > 0
�
.

Then for large enough m, we must have the following (by convergence of {um} to up):

up
ij − up

ji > 0 =⇒ um
ij − um

ji ≥ �/2 ,

up
ij − up

ji = 0 =⇒ um
ij − um

ji ≤ �/4 .

Thus, for large enough m, the directed graph induced by um contains the DAG induced by up, and
any edge (i, j) such that up

ij − up
ji > 0 will not be deleted by the algorithm when predPD(um) is

evaluated. Thus, for large enough m, we have predPD(um) ∈ Π(p) ⊆ Π∗(p).

Since the above holds for all p ∈ PDAG, we have that (ψ∗
PD, predPD) is (�PD,PDAG)-calibrated.
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