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Châtenay-Malabry, France

{woj.zaremba,arthur.gretton}@gmail.com, matthew.blaschko@inria.fr

Abstract

A family of maximum mean discrepancy (MMD) kernel two-sample tests is intro-
duced. Members of the test family are called Block-tests or B-tests, since the test
statistic is an average over MMDs computed on subsets of the samples. The choice
of block size allows control over the tradeoff between test power and computation
time. In this respect, the B-test family combines favorable properties of previ-
ously proposed MMD two-sample tests: B-tests are more powerful than a linear
time test where blocks are just pairs of samples, yet they are more computation-
ally efficient than a quadratic time test where a single large block incorporating all
the samples is used to compute a U-statistic. A further important advantage of the
B-tests is their asymptotically Normal null distribution: this is by contrast with
the U-statistic, which is degenerate under the null hypothesis, and for which esti-
mates of the null distribution are computationally demanding. Recent results on
kernel selection for hypothesis testing transfer seamlessly to the B-tests, yielding
a means to optimize test power via kernel choice.

1 Introduction
Given two samples {xi}ni=1 where xi ∼ P i.i.d., and {yi}ni=1, where yi ∼ Q i.i.d, the two sample
problem consists in testing whether to accept or reject the null hypothesis H0 that P = Q, vs the
alternative hypothesis HA that P and Q are different. This problem has recently been addressed
using measures of similarity computed in a reproducing kernel Hilbert space (RKHS), which apply
in very general settings where P and Q might be distributions over high dimensional data or struc-
tured objects. Kernel test statistics include the maximum mean discrepancy [10, 6] (of which the
energy distance is an example [18, 2, 22]), which is the distance between expected features of P and
Q in the RKHS; the kernel Fisher discriminant [12], which is the distance between expected feature
maps normalized by the feature space covariance; and density ratio estimates [24]. When used in
testing, it is necessary to determine whether the empirical estimate of the relevant similarity mea-
sure is sufficiently large as to give the hypothesis P = Q low probability; i.e., below a user-defined
threshold α, denoted the test level. The test power denotes the probability of correctly rejecting the
null hypothesis, given that P 6= Q.

The minimum variance unbiased estimator MMDu of the maximum mean discrepancy, on the basis
of n samples observed from each of P and Q, is a U-statistic, costing O(n2) to compute. Unfor-
tunately, this statistic is degenerate under the null hypothesis H0 that P = Q, and its asymptotic
distribution takes the form of an infinite weighted sum of independent χ2 variables (it is asymptot-
ically Gaussian under the alternative hypothesis HA that P 6= Q). Two methods for empirically
estimating the null distribution in a consistent way have been proposed: the bootstrap [10], and a
method requiring an eigendecomposition of the kernel matrices computed on the merged samples
from P andQ [7]. Unfortunately, both procedures are computationally demanding: the former costs
O(n2), with a large constant (the MMD must be computed repeatedly over random assignments
of the pooled data); the latter costs O(n3), but with a smaller constant, hence can in practice be
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faster than the bootstrap. Another approach is to approximate the null distribution by a member
of a simpler parametric family (for instance, a Pearson curve approximation), however this has no
consistency guarantees.

More recently, an O(n) unbiased estimate MMDl of the maximum mean discrepancy has been pro-
posed [10, Section 6], which is simply a running average over independent pairs of samples from P
and Q. While this has much greater variance than the U-statistic, it also has a simpler null distribu-
tion: being an average over i.i.d. terms, the central limit theorem gives an asymptotically Normal
distribution, under bothH0 andHA. It is shown in [9] that this simple asymptotic distribution makes
it easy to optimize the Hodges and Lehmann asymptotic relative efficiency [19] over the family of
kernels that define the statistic: in other words, to choose the kernel which gives the lowest Type II
error (probability of wrongly accepting H0) for a given Type I error (probability of wrongly reject-
ing H0). Kernel selection for the U-statistic is a much harder question due to the complex form of
the null distribution, and remains an open problem.

It appears that MMDu and MMDl fall at two extremes of a spectrum: the former has the lowest
variance of any n-sample estimator, and should be used in limited data regimes; the latter is the
estimator requiring the least computation while still looking at each of the samples, and usually
achieves better Type II error than MMDu at a given computational cost, albeit by looking at much
more data (the “limited time, unlimited data” scenario). A major reason MMDl is faster is that its
null distribution is straightforward to compute, since it is Gaussian and its variance can be calculated
at the same cost as the test statistic. A reasonable next step would be to find a compromise between
these two extremes: to construct a statistic with a lower variance than MMDl, while retaining an
asymptotically Gaussian null distribution (hence remaining faster than tests based on MMDu). We
study a family of such test statistics, where we split the data into blocks of size B, compute the
quadratic-time MMDu on each block, and then average the resulting statistics. We call the resulting
testsB-tests. As long as we choose the sizeB of blocks such that n/B →∞, we are still guaranteed
asymptotic Normality by the central limit theorem, and the null distribution can be computed at the
same cost as the test statistic. For a given sample size n, however, the power of the test can increase
dramatically over the MMDl test, even for moderate block sizes B, making much better use of the
available data with only a small increase in computation.

The block averaging scheme was originally proposed in [13], as an instance of a two-stage U-
statistic, to be applied when the degree of degeneracy of the U-statistic is indeterminate. Differences
with respect to our method are that Ho and Shieh compute the block statistics by sampling with
replacement [13, (b) p. 863], and propose to obtain the variance of the test statistic via Monte
Carlo, jackknife, or bootstrap techniques, whereas we use closed form expressions. Ho and Shieh
further suggest an alternative two-stage U-statistic in the event that the degree of degeneracy is
known; we return to this point in the discussion. While we confine ourselves to the MMD in this
paper, we emphasize that the block approach applies to a much broader variety of test situations
where the null distribution cannot easily be computed, including the energy distance and distance
covariance [18, 2, 22] and Fisher statistic [12] in the case of two-sample testing, and the Hilbert-
Schmidt Independence Criterion [8] and distance covariance [23] for independence testing. Finally,
the kernel learning approach of [9] applies straightforwardly, allowing us to maximize test power
over a given kernel family. Code is available at http://github.com/wojzaremba/btest.

2 Theory
In this section we describe the mathematical foundations of theB-test. We begin with a brief review
of kernel methods, and of the maximum mean discrepancy. We then present our block-based average
MMD statistic, and derive its distribution under theH0 (P = Q) andHA (P 6= Q) hypotheses. The
central idea employed in the construction of the B-test is to generate a low variance MMD estimate
by averaging multiple low variance kernel statistics computed over blocks of samples. We show
simple sufficient conditions on the block size for consistency of the estimator. Furthermore, we
analyze the properties of the finite sample estimate, and propose a consistent strategy for setting the
block size as a function of the number of samples.

2.1 Definition and asymptotics of the block-MMD

Let Fk be an RKHS defined on a topological space X with reproducing kernel k, and P a Borel
probability measure on X . The mean embedding of P in Fk, written µk(p) ∈ Fk is defined such
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Figure 1: Empirical distributions under H0 and HA for different regimes of B for the music experiment
(Section 3.2). In both plots, the number of samples is fixed at 500. As we varyB, we trade off the quality of the
finite sample Gaussian approximation to the null distribution, as in Theorem 2.3, with the variances of the H0

and HA distributions, as outlined in Section 2.1. In (b) the distribution under H0 does not resemble a Gaussian
(it does not pass a level 0.05 Kolmogorov-Smirnov (KS) normality test [16, 20]), and a Gaussian approximation
results in a conservative test threshold (vertical green line). The remaining empirical distributions all pass a KS
normality test.

that Ex∼pf(x) = 〈f, µk(p)〉Fk
for all f ∈ Fk, and exists for all Borel probability measures when

k is bounded and continuous [3, 10]. The maximum mean discrepancy (MMD) between a Borel
probability measure P and a second Borel probability measure Q is the squared RKHS distance
between their respective mean embeddings,

ηk(P,Q) = ‖µk(P )− µk(Q)‖2Fk
= Exx′k(x, x′) + Eyy′k(y, y′)− 2Exyk(x, y), (1)

where x′ denotes an independent copy of x [11]. Introducing the notation z = (x, y), we write
ηk(P,Q) = Ezz′hk(z, z′), h(z, z′) = k(x, x′) + k(y, y′)− k(x, y′)− k(x′, y). (2)

When the kernel k is characteristic, then ηk (P,Q) = 0 iff P = Q [21]. Clearly, the minimum
variance unbiased estimate MMDu of ηk(P,Q) is a U-statistic.

By analogy with MMDu, we make use of averages of h(x, y, x′, y′) to construct our two-sample
test. We denote by η̂k(i) the ith empirical estimate MMDu based on a subsample of size B, where
1 ≤ i ≤ n

B (for notational purposes, we will index samples as though they are presented in a random
fixed order). More precisely,

η̂k(i) =
1

B(B − 1)

iB∑
a=(i−1)B+1

iB∑
b=(i−1)B+1,b 6=a

h(za, zb). (3)

The B-test statistic is an MMD estimate obtained by averaging the η̂k(i). Each η̂k(i) under H0

converges to an infinite sum of weighted χ2 variables [7]. Although settingB = n would lead to the
lowest variance estimate of the MMD, computing sound thresholds for a given p-value is expensive,
involving repeated bootstrap sampling [5, 14], or computing the eigenvalues of a Gram matrix [7].

In contrast, we note that η̂k(i)i=1,..., nB
are i.i.d. variables, and averaging them allows us to apply

the central limit theorem in order to estimate p-values from a normal distribution. We denote the
average of the η̂k(i) by η̂k,

η̂k =
B

n

n
B∑
i=1

η̂k(i). (4)

We would like to apply the central limit theorem to variables η̂k(i)i=1,..., nB
. It remains for us to

derive the distribution of η̂k under H0 and under HA. We rely on the result from [11, Theorem 8]
forHA. According to our notation, for every i,
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Theorem 2.1 Assume 0 < E(h2) <∞, then underHA, η̂k converges in distribution to a Gaussian
according to

B
1
2 (η̂k(i)−MMD2)

D→ N (0, σ2
u), (5)

where σ2
u = 4

(
Ez[(Ez′h(z, z′))2 − Ez,z′(h(z, z′))]2

)
.

This in turn implies that

η̂k(i)
D→ N (MMD2, σ2

uB
−1). (6)

For an average of {η̂k(i)}i=1,..., nB
, the central limit theorem implies that underHA,

η̂k
D→ N

(
MMD2, σ2

u (Bn/B)
−1
)

= N
(
MMD2, σ2

un
−1) . (7)

This result shows that the distribution of HA is asymptotically independent of the block size, B.
Turning to the null hypothesis, [11, Theorem 8] additionally implies that underH0 for every i,

Theorem 2.2

Bη̂k(i)
D→
∞∑
l=1

λl[z
2
l − 2], (8)

where zl ∼ N (0, 2)2 i.i.d, λl are the solutions to the eigenvalue equation∫
X
k̄(x, x′)ψl(x)dp(x) = λlψl(x

′), (9)

and k̄(xi, xj) := k(xi, xj)−Exk(xi, x)−Exk(x, xj)+Ex,x′k(x, x′) is the centered RKHS kernel.

As a consequence, under H0, η̂k(i) has expected variance 2B−2
∑∞
l=1 λ

2. We will denote this
variance by CB−2. The central limit theorem implies that underH0,

η̂k
D→ N

(
0, C

(
B2n/B

)−1)
= N

(
0, C(nB)−1

)
(10)

The asymptotic distributions for η̂k under H0 and HA are Gaussian, and consequently it is easy
to calculate the distribution quantiles and test thresholds. Asymptotically, it is always beneficial to
increase B, as the distributions for η under H0 and HA will be better separated. For consistency, it
is sufficient to ensure that n/B →∞.

A related strategy of averaging over data blocks to deal with large sample sizes has recently been
developed in [15], with the goal of efficiently computing bootstrapped estimates of statistics of
interest (e.g. quantiles or biases). Briefly, the approach splits the data (of size n) into s subsamples
each of size B, computes an estimate of the n-fold bootstrap on each block, and averages these
estimates. The difference with respect to our approach is that we use the asymptotic distribution
of the average over block statistics to determine a threshold for a hypothesis test, whereas [15] is
concerned with proving the consistency of a statistic obtained by averaging over bootstrap estimates
on blocks.

2.2 Convergence of Moments

In this section, we analyze the convergence of the moments of the B-test statistic, and comment on
potential sources of bias.

The central limit theorem implies that the empirical mean of {η̂k(i)}i=1,..., nB
converges to E(η̂k(i)).

Moreover it states that the variance {η̂k(i)}i=1,..., nB
converges to E(η̂k(i))2−E(η̂k(i)2). Finally, all

remaining moments tend to zero, where the rate of convergence for the jth moment is of the order(
n
B

) j+1
2 [1]. This indicates that the skewness dominates the difference of the distribution from a

Gaussian.
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Under bothH0 andHA, thresholds computed from normal distribution tables are asymptotically un-
biased. For finite samples sizes, however, the bias underH0 can be more severe. From Equation (8)
we have that under H0, the summands, η̂k(i), converge in distribution to infinite weighted sums of
χ2 distributions. Every unweighted term of this infinite sum has distribution N (0, 2)2, which has
finite skewness equal to 8. The skewness for the entire sum is finite and positive,

C =

∞∑
l=1

8λ3l , (11)

as λl ≥ 0 for all l due to the positive definiteness of the kernel k. The skew for the mean of the
η̂k(i) converges to 0 and is positively biased. At smaller sample sizes, test thresholds obtained from
the standard Normal table may therefore be inaccurate, as they do not account for this skew. In our
experiments, this bias caused the tests to be overly conservative, with lower Type I error than the
design level required (Figures 2 and 5).

2.3 Finite Sample Case

In the finite sample case, we apply the Berry-Esséen theorem, which gives conservative bounds on
the `∞ convergence of a series of finite sample random variables to a Gaussian distribution [4].

Theorem 2.3 Let X1, X2, . . . , Xn be i.i.d. variables. E(X1) = 0, E(X2
1 ) = σ2 > 0, and

E(|X1|3) = ρ <∞. Let Fn be a cumulative distribution of
∑n

i=1Xi√
nσ

, and let Φ denote the standard
normal distribution. Then for every x,

|Fn(x)− Φ(x)| ≤ Cρσ−3n−1/2, (12)

where C < 1.

This result allows us to ensure fast point-wise convergence of the B-test. We have that ρ(η̂k) =
O(1), i.e., it is dependent only on the underlying distributions of the samples and not on the sample
size. The number of i.i.d. samples is nB−1. Based on Theorem 2.3, the point-wise error can be
upper bounded by O(1)

O(B−1)
3
2
√

n
B

= O( B
2
√
n

) under HA. Under H0, the error can be bounded by

O(1)

O(B−2)
3
2
√

n
B

= O(B
3.5
√
n

).

While the asymptotic results indicate that convergence to an optimal predictor is fastest for larger
B, the finite sample results support decreasing the size of B in order to have a sufficient number
of samples for application of the central limit theorem. As long as B → ∞ and n

B → ∞, the
assumptions of the B-test are fulfilled.

By varying B, we make a fundamental tradeoff in the construction of our two sample test. When B
is small, we have many samples, hence the null distribution is close to the asymptotic limit provided
by the central limit theorem, and the Type I error is estimated accurately. The disadvantage of a
small B is a lower test power for a given sample size. Conversely, if we increase B, we will have
a lower variance empirical distribution for H0, hence higher test power, but we may have a poor
estimate of the number of Type I errors (Figure 1). A sensible family of heuristics therefore is to set

B = [nγ ] (13)

for some 0 < γ < 1, where we round to the nearest integer. In this setting the number of samples
available for application of the central limit theorem will be [n(1−γ)]. For given γ computational
complexity of the B-test is O

(
n1+γ

)
. We note that any value of γ ∈ (0, 1) yields a consistent

estimator. We have chosen γ = 1
2 in the experimental results section, with resulting complexity

O
(
n1.5

)
: we emphasize that this is a heuristic, and just one choice that fulfils our assumptions.

3 Experiments

We have conducted experiments on challenging synthetic and real datasets in order to empirically
measure (i) sample complexity, (ii) computation time, and (iii) Type I / Type II errors. We evaluate
B-test performance in comparison to the MMDl and MMDu estimators, where for the latter we
compare across different strategies for null distribution quantile estimation.
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Method Kernel parameters Additional
parameters

Minimum number
of samples

Computation
time (s)

Consistent

B-test

σ = 1
B = 2 26400 0.0012 X
B = 8 3850 0.0039 X
B =

√
n 886 0.0572 X

σ = median any B > 60000 X

multiple kernels
B = 2 37000 0.0700 X
B = 8 5400 0.1295 X
B =

√
n
2 1700 0.8332 X

Pearson curves

σ = 1

B = n

186 387.4649 ×
Gamma approximation 183 0.2667 ×
Gram matrix spectrum 186 407.3447 X

Bootstrap 190 129.4094 X

Pearson curves

σ = median
> 60000, or 2h

per iteration
timeout

×
Gamma approximation ×
Gram matrix spectrum X

Bootstrap X

Table 1: Sample complexity for tests on the distributions described in Figure 3. The fourth column indicates
the minimum number of samples necessary to achieve Type I and Type II errors of 5%. The fifth column is the
computation time required for 2000 samples, and is not presented for settings that have unsatisfactory sample
complexity.
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Figure 2: Type I errors on the distributions shown in Figure 3 for α = 5%: (a) MMD, single kernel, σ = 1, (b)
MMD, single kernel, σ set to the median pairwise distance, and (c) MMD, non-negative linear combination of
multiple kernels. The experiment was repeated 30000 times. Error bars are not visible at this scale.

3.1 Synthetic data
Following previous work on kernel hypothesis testing [9], our synthetic distributions are 5× 5 grids
of 2D Gaussians. We specify two distributions, P and Q. For distribution P each Gaussian has
identity covariance matrix, while for distribution Q the covariance is non-spherical. Samples drawn
from P and Q are presented in Figure 3. These distributions have proved to be very challenging for
existing non-parametric two-sample tests [9].

(a) Distribution P (b) Distribution Q

Figure 3: Synthetic data distributions P and
Q. Samples belonging to these classes are
difficult to distinguish.

We employed three different kernel selection strategies
in the hypothesis test. First, we used a Gaussian kernel
with σ = 1, which approximately matches the scale of
the variance of each Gaussian in mixture P . While this
is a somewhat arbitrary default choice, we selected it as
it performs well in practice (given the lengthscale of the
data), and we treat it as a baseline. Next, we set σ equal
to the median pairwise distance over the training data,
which is a standard way to choose the Gaussian kernel
bandwidth [17], although it is likewise arbitrary in this
context. Finally, we applied a kernel learning strategy, in
which the kernel was optimized to maximize the test power for the alternative P 6= Q [9]. This
approach returned a non-negative linear combination combination of base kernels, where half the
data were used in learning the kernel weights (these data were excluded from the testing phase).

The base kernels in our experiments were chosen to be Gaussian, with bandwidths in the set σ ∈
{2−15, 2−14, . . . , 210}. Testing was conducted using the remaining half of the data.

6



10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Size of inner block

E
m

pr
ic

al
 n

um
be

r 
of

 T
yp

e 
II 

er
ro

rs

 

 

B−test, a single kernel, σ = 1
B−test, a single kernel, σ = median
B−test kernel selection
Tests estimating MMD
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Figure 4: Synthetic experiment: number of Type II er-
rors vs B, given a fixed probability α of Type I er-
rors. As B grows, the Type II error drops quickly when
the kernel is appropriately chosen. The kernel selec-
tion method is described in [9], and closely approx-
imates the baseline performance of the well-informed
user choice of σ = 1.

For comparison with the quadratic time U -
statistic MMDu [7, 10], we evaluated four
null distribution estimates: (i) Pearson curves,
(ii) gamma approximation, (iii) Gram matrix
spectrum, and (iv) bootstrap. For methods us-
ing Pearson curves and the Gram matrix spec-
trum, we drew 500 samples from the null distri-
bution estimates to obtain the 1 − α quantiles,
for a test of level α. For the bootstrap, we fixed
the number of shuffles to 1000. We note that
Pearson curves and the gamma approximation
are not statistically consistent. We considered
only the setting with σ = 1 and σ set to the
median pairwise distance, as kernel selection is
not yet solved for tests using MMDu [9].

In the first experiment we set the Type I error to
be 5%, and we recorded the Type II error. We
conducted these experiments on 2000 samples
over 1000 repetitions, with varying block size,
B. Figure 4 presents results for different kernel
choice strategies, as a function of B. The me-
dian heuristic performs extremely poorly in this
experiment. As discussed in [9, Section 5], the reason for this failure is that the lengthscale of the
difference between the distributions P and Q differs from the lengthscale of the main data variation
as captured by the median, which gives too broad a kernel for the data.

In the second experiment, our aim was to compare the empirical sample complexity of the various
methods. We again fixed the same Type I error for all methods, but this time we also fixed a Type
II error of 5%, increasing the number of samples until the latter error rate was achieved. Column
four of Table 1 shows the number of samples required in each setting to achieve these error rates.
We additionally compared the computational efficiency of the various methods. The computation
time for each method with a fixed sample size of 2000 is presented in column five of Table 1. All
experiments were run on a single 2.4 GHz core.

Finally, we evaluated the empirical Type I error for α = 5% and increasing B. Figure 2 displays the
empirical Type I error, where we note the location of the γ = 0.5 heuristic in Equation (13). For the
user-chosen kernel (σ = 1, Figure 2(a)), the number of Type I errors closely matches the targeted
test level. When median heuristic is used, however, the test is overly conservative, and makes fewer
Type I errors than required (Figure 2(b)). This indicates that for this choice of σ, we are not in the
asymptotic regime, and our Gaussian null distribution approximation is inaccurate. Kernel selection
via the strategy of [9] alleviates this problem (Figure 2(c)). This setting coincides with a block size
substantially larger than 2 (MMDl), and therefore achieves lower Type II errors while retaining the
targeted Type I error.

3.2 Musical experiments
In this set of experiments, two amplitude modulated Rammstein songs were compared (Sehnsucht
vs. Engel, from the album Sehnsucht). Following the experimental setting in [9, Section 5], samples
from P and Q were extracts from AM signals of time duration 8.3 × 10−3 seconds in the original
audio. Feature extraction was identical to [9], except that the amplitude scaling parameter was set
to 0.3 instead of 0.5. As the feature vector had size 1000 we set the block size B =

⌈√
1000

⌉
=

32. Table 2 summarizes the empirical Type I and Type II errors over 1000 repetitions, and the
average computation times. Figure 5 shows the average number of Type I errors as a function of
B: in this case, all kernel selection strategies result in conservative tests (lower Type I error than
required), indicating that more samples are needed to reach the asymptotic regime. Figure 1 shows
the empiricalH0 andHA distributions for different B.

4 Discussion
We have presented experimental results both on a difficult synthetic problem, and on real-world data
from amplitude modulated audio recordings. The results show that the B-test has a much better
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Method Kernel
parameters

Additional
parameters

Type I error Type II error Computational
time (s)

B-test

σ = 1
B = 2 0.038 0.927 0.039
B =

√
n 0.006 0.597 1.276

σ = median B = 2 0.043 0.786 0.047
B =

√
n 0.026 0 1.259

multiple kernels B = 2 0.0481 0.867 0.607
B =

√
n
2 0.025 0.012 18.285

Gram matrix spectrum
σ = 1

B = 2000

0 0 160.1356
Bootstrap 0.01 0 121.2570

Gram matrix spectrum
σ = median 0 0 286.8649

Bootstrap 0.01 0 122.8297

Table 2: A comparison of consistent tests on the music experiment described in Section 3.2. Here computation
time is reported for the test achieving the stated error rates.
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Figure 5: Empirical Type I error rate for α = 5% on the music data (Section 3.2). (a) A single kernel test with
σ = 1, (b) A single kernel test with σ = median, and (c) for multiple kernels. Error bars are not visible at this
scale. The results broadly follow the trend visible from the synthetic experiments.

sample complexity than MMDl over all tested kernel selection strategies. Moreover, it is an order
of magnitude faster than any test that consistently estimates the null distribution for MMDu (i.e.,
the Gram matrix eigenspectrum and bootstrap estimates): these estimates are impractical at large
sample sizes, due to their computational complexity. Additionally, the B-test remains statistically
consistent, with the best convergence rates achieved for large B. The B-test combines the best
features of MMDl and MMDu based two-sample tests: consistency, high statistical efficiency, and
high computational efficiency.

A number of further interesting experimental trends may be seen in these results. First, we have
observed that the empirical Type I error rate is often conservative, and is less than the 5% targeted
by the threshold based on a Gaussian null distribution assumption (Figures 2 and 5). In spite of this
conservatism, the Type II performance remains strong (Tables 1 and 2), as the gains in statistical
power of the B-tests improve the testing performance (cf. Figure 1). Equation (7) implies that the
size ofB does not influence the asymptotic variance underHA, however we observe in Figure 1 that
the empirical variance of HA drops with larger B. This is because, for these P and Q and small B,
the null and alternative distributions have considerable overlap. Hence, given the distributions are
effectively indistinguishable at these sample sizes n, the variance of the alternative distribution as a
function of B behaves more like that ofH0 (cf. Equation (10)). This effect will vanish as n grows.

Finally, [13] propose an alternative approach for U-statistic based testing when the degree of de-
generacy is known: a new U-statistic (the TU-statistic) is written in terms of products of centred
U-statistics computed on the individual blocks, and a test is formulated using this TU-statistic. Ho
and Shieh show that a TU-statistic based test can be asymptotically more powerful than a test using
a single U-statistic on the whole sample, when the latter is degenerate underH0, and nondegenerate
underHA. It is of interest to apply this technique to MMD-based two-sample testing.
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