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Abstract

In this paper we introduce a novel method that can efficiently estimate a family of
hierarchical dense sets in high-dimensional distributions. Our method can be re-
garded as a natural extension of the one-class SVM (OCSVM) algorithm that finds
multiple parallel separating hyperplanes in a reproducing kernel Hilbert space.
We call our method ¢-OCSVM, as it can be used to estimate ¢ quantiles of a high-
dimensional distribution. For this purpose, we introduce a new global convex
optimization program that finds all estimated sets at once and show that it can be
solved efficiently. We prove the correctness of our method and present empirical
results that demonstrate its superiority over existing methods.

1 Introduction

One-class SVM (OCSVM) [[14]] is a kernel-based learning algorithm that is often considered to be
the method of choice for set estimation in high-dimensional data due to its generalization power,
efficiency, and nonparametric nature. Let X be a training set of examples sampled i.i.d. from a
continuous distribution F* with Lebesgue density f in R?. The OCSVM algorithm takes X’ and a
parameter 0 < v < 1, and returns a subset of the input space with a small volume while bounding a
v portion of examples in X" outside the subset. Asymptotically, the probability mass of the returned
subset converges to o = 1 — v. Furthermore, when a Gaussian kernel with a zero tending bandwidth
is used, the solution also converges to the minimum-volume set (MV-set) at level « [19], which is a
subset of the input space with the smallest volume and probability mass of at least a.

In light of the above properties, the popularity of the OCSVM algorithm is not surprising. It appears,
however, that in some applications we are not actually interested in estimating a single MV-set but
in estimating multiple hierarchical MV-sets, which reveal more information about the distribution.
For instance, in cluster analysis [, we are interested in learning hierarchical MV-sets to construct a
cluster tree of the distribution. In outlier detection [6]], hierarchical MV-sets can be used to classify
examples as outliers at different levels of significance. In statistical tests, hierarchical MV-sets are
used for generalizing univariate tests to high-dimensional data [12} |4]. We are thus interested in a
method that generalizes the OCSVM algorithm for approximating hierarchical MV-sets. By doing
so we would leverage the advantages of the OCSVM algorithm in high-dimensional data and take it
a step forward by extending its solution for a broader range of applications.

Unfortunately, a straightforward approach of training a set of OCSVMs, one for each MV-set, would
not necessarily satisfy the hierarchy requirement. Let ¢ be the number of hierarchical MV-sets
we would like to approximate. A naive approach would be to train ¢ OCSVMs independently and
enforce hierarchy by intersection operations on the resulting sets. However, we find two major draw-
backs in this approach: (1) The v-property of the OCSVM algorithm, which provides us with bounds
on the number of examples in A" lying outside or on the boundary of each set, is no longer guaranteed
due to the intersection operator; (2) MV-sets of a distribution, which are also level sets of the dis-
tribution’s density f (under sufficient regularity conditions), are hierarchical by definition. Hence,



by learning ¢ OCSVMs independently, we ignore an important property of the correct solution, and
thus are less likely reach a generalized global solution.

In this paper we introduce a generalized version of the OCSVM algorithm for approximating hierar-
chical MV-sets in high-dimensional distributions. As in the naive approach, approximated MV-sets
in our method are represented as dense sets captured by separating hyperplanes in a reproducing ker-
nel Hilbert space. However, our method does not suffer from the two drawbacks mentioned above.
To preserve the v-property of the solution while fulfilling the hierarchy constraint, we require the
resulting hyperplanes to be parallel to one another. To provide a generalized global solution, we
introduce a new convex optimization program that finds all approximated MV-sets at once. Further-
more, we expect our method to have better generalization ability due to the parallelism constraint
imposed on the hyperplanes, which also acts as a regularization term on the solution.

Figure 1: An approximation of 4 hierarchical MV-sets

We call our method g-OCSVM, as it can be used by statisticians to generalize g-quantiles to high-
dimensional distributions. Figure[I|shows an example of 4-quantiles estimated for two-dimensional
data. We show that our method can be solved efficiently, and provide theoretical results showing
that it preserves both the density assumption for each approximated set in the same sense suggested
by [14]. In addition, we empirically compare our method to existing methods on a variety of real
high-dimensional data and show its advantages in the examined domains.

2 Background

In one-dimensional settings, g-quantiles, which are points dividing a cumulative distribution func-
tion (CDF) into equal-sized subsets, are widely used to understand the distribution of values. These
points are well defined as the inverse of the CDF, that is, the quantile function. It would be useful to
have the same representation of g-quantiles in high-dimensional settings. However, it appears that
generalizing quantile functions beyond one dimension is hard since the number of ways to define
them grows exponentially with the dimensions [3]. Furthermore, while various quantile regression
methods [7, |16, 9] can be to used to estimate a single quantile of a high-dimensional distribution,
extensions of those to estimate g-quantiles is mostly non-trivial.

Let us first understand the exponential complexity involved in estimating a generalized quantile
function in high-dimensional data. Let 0 < a1 < ao,...,< ag < 1 be a sequence of equally-
spaced ¢ quantiles. When d = 1, the quantile transforms ' ~!(c;) are uniquely defined as the points
z; € R satisfying F(X < xj) < «aj, where X is a random variable drawn from F'. Equivalently,
F~!(a;) can be identified with the unique hierarchical intervals [—oo, z;]. However, when d > 1,
intervals are replaced by sets C1 C Cy... C,Cj that satisfy F(C;) = «; but are not uniquely
defined. Assume for a moment that these sets are defined only by imposing directions on d — 1
dimensions (the direction of the first dimension can be chosen arbitrarily). Hence, we are left with
29=1 possible ways of defining a generalized quantile function for the data.

Hypothetically, any arbitrary hierarchical sets satisfying F'(Cj) = «; can be used to define a valid
generalized quantile function. Nevertheless, we would like the distribution to be dense in these
sets so that the estimation will be informative enough. Motivated in this direction, Polonik [12]
suggested using hierarchical MV-sets to generalize quantile functions. Let C(«) be the MV-set at
level o with respect to F and the Lebesgue density f. Let Lf(c) = {z : f(x) > c} be the level set



of f atlevel c. Polonik observed that, under sufficient regularity conditions on f, L (c) is an MV-set
of F at level o = F(Ly(c)). He thus suggested that level sets can be used as approximations of
the MV-sets of a distribution. Since level sets are hierarchical by nature, a density estimator over X’
would be sufficient to construct a generalized quantile function.

Polonik’s work was largely theoretical. In high-dimensional data, not only is the density estimation
hard, but extracting level sets of the estimated density is also not always feasible. Furthermore,
in high-dimensional settings, even attempting to estimate ¢ hierarchical MV-sets of a distribution
might be too optimistic an objective due to the exponential growth in the search space, which may
lead to overfitted estimates, especially when the sample is relatively small. Consequently, various
methods were proposed for estimating g-quantiles in multivariate settings without an intermediate
density estimation step [3} 21} 2} 20]. However, these methods were usually efficient only up to a
few dimensions. For a detailed discussion about generalized quantile functions, see Serfling [15].

One prominent method that uses a variant of the OCSVM algorithm for approximating level sets of a
distribution was proposed by Lee and Scott [[8]. Their method is called nested OCSVM (NOC-SVM)
and it is based on a new quadratic program that simultaneously finds a global solution of multiple
nested half-space decision functions. An efficient decomposition method is introduced to solve
this program for large-scale problems. This program uses the C-SVM formulation of the OCSVM
algorithm [18], where v is replaced by a different parameter, C' > 0, and incorporates nesting
constraints into the dual quadratic program of each approximated function. However, due to these
difference formulations, our method converges to predefined g-quantiles of a distribution while theirs
converges to approximated sets with unpredicted probability masses. The probability masses in their
solution are even less trackable because the constraints imposed by the NOC-SVM program on the
dual variables changes the geometric interpretation of the primal variables in a non-intuitive way.
An improved quantile regression variant of the OCSVM algorithm that also uses “non-crossing”
constraints to estimate “non-crossing” quantiles of a distribution was proposed by Takeuchi et al.
[L7]. However, similar to the NOC-SVM method, after enforcing these constraints, the v-property
of the solution is no longer guaranteed.

Recently, a greedy hierarchical MV-set estimator (HMVE) that uses OCSVMs as a basic component
was introduced by Glazer et al. [4]. This method approximates the MV-sets iteratively by train-
ing a sequence of OCSVMs, from the largest to the smallest sets. The superiority of HMVE was
shown over a density-based estimation method and over a different hierarchical MV-set estimator
that was also introduced in that paper and is based on the one-class neighbor machine (OCNM) al-
gorithm [11]]. However, as we shall see in experiments, it appears that approximations in this greedy
approach tend to become less accurate as the required number of MV-sets increases, especially for
approximated MV-sets with small « in the last iterations.

In contrast to the naive approach of training ¢ OCSVMs independently [1_1 our ¢-OCSVM estimator
preserves the v-property of the solution and converges to a generalized global solution. In contrast
to the NOC-SVM algorithm, ¢-OCSVM converges to predefined g-quantiles of a distribution. In
contrast to the HMVE estimator, g-OCSVM provides global and stable solutions. As will be seen,
we support these advantages of our method in theoretical and empirical analysis.

3 The ¢-OCSVM Estimator

In the following we introduce our g-OCSVM method, which generalizes the OCSVM algorithm so
that its advantages can be applied to a broader range of applications. ¢ stands for the number of
MV-sets we would like our method to approximate.

Let X = {x1,...,z,} be a set of feature vectors sampled i.i.d. with respect to F. Consider a
function ® : R — F mapping the feature vectors in X’ to a hypersphere in an infinite Hilbert space
F. Let H be a hypothesis space of half-space decision functions fc(z) = sgn ((w - ®(z)) — p)
such that fo(z) = +1if # € C, and —1 otherwise. The OCSVM algorithm returns a function
fo € H that maximizes the margin between the half-space decision boundary and the origin in F,
while bounding a portion of examples in X’ satisfying fo(x) = —1. This bound is predefined by a
parameter 0 < v < 1, and it is also called the v-property of the OCSVM algorithm. This function is

'In the following we call this method I-OCSVM (independent one-class SVMs).



specified by the solution of this quadratic program:

w2 = p+ — d (B (@) > p—&, & >
we;?é?npem” Pt qu (w-®(z:) = p— &, & =0, (1)

where ¢ is a vector of the slack variables. All training examples x; for which (w - ®(z)) — p < 0 ar
called support vectors (SVs). Outliers are referred to as examples that strictly satisfy (w - <I>( ))
p < 0. By solving the program for v = 1 — «, we can use the OCSVM to approximate C'(«).

Let0 < a1 < ap,...,< a4 < 1be asequence of ¢ quantiles. Our goal is to generalize the OCSVM
algorithm for approximating a set of MV-sets {C', . . ., Cy } such that a hierarchy constraint C; C C;
is satisfied for 7 < j. Given X, our ¢-OCSVM algorithm solves this primal program:

q q
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where v; = 1 — ;. This program generalizes Equation (ﬂ_'[) to the case of finding multiple, parallel
half-space decision functions by searching for a global minimum over their sum of objective func-
tions: the coupling between g half-spaces is done by summing ¢ OCSVM programs, while enforcing
these programs to share the same w. As a result, the ¢ half-spaces in the solution of Equation (2)) are
different only by their bias terms, and thus parallel to each other. This program is convex, and thus
a global minimum can be found in polynomial time.
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It is important to note that even with an ideal, unbounded number of examples, this program does
not necessarily converge to the exact MV-sets but to approximated MV-sets of a distribution. As
we shall see in Section 4] all decision functions returned by this program preserve the v-property.
We argue that the stability of these approximated MV-sets benefits from the parallelism constraint
imposed on the half-spaces in H, which acts as a regularizer.

In the following we show that our program can be solved efficiently in its dual form. Using multi-
pliers n; ; > 0, 8;,; > 0, the Lagrangian of this program is
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Setting the derivatives to be equal to zero with respect to the primal variables w, p;, §; yields
1 )
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Substituting Equation (4) into Equation (3, and replacing the dot product (®(z;) - ®(x;)) » with a
kernel function k (x;, z5) ﬂ we obtain the dual program
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mln—z Znﬂnps (i, xs), sthﬂ—l O<nﬂ_niyj,26[n],,7€[q]. (5)
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Similar to the formulation of the dual objective function in the original OCSVM algorithm, our dual
program depends only on the 1 multipliers, and hence can be solved more efficiently than the primal
one. The resulting decision function for j’th estimate is

fC,- = sgn ( an ,137, )a (6)

. . ol —za |2 . .
?A Gaussian kernel function k(z;, z5) = e~ !1#i=sI” was used in the following.




where n} = Z‘;—:l n;,:- This efficient formulation of the decision function, which derives from the
fact that parallel half-spaces share the same w, allows us to compute the outputs of all the ¢ decision
functions simultaneously.

As in the OCSVM algorithm, p; are recovered by identifying points ® (z;;) lying strictly on the

7’th decision boundary. These points are identified using the condition 0 < 7;; < ﬁ Therefore,
J

p; can be recovered from a point sv satisfying this condition by

1
oy = (w- @ () = 3 ik (i), )

Figure [1| shows the resulting estimates of our g-OCSVM method for 4 hierarchical MV-sets with
a = 0.2,04,0.6,0.8 El 100 train examples drawn i.i.d. from a bimodal distribution are marked
with black dots. It can be seen that the number of bounded SVs (outliers) at each level is no higher
than 100(1 — «;), as expected according to the properties of our ¢-OCSVM estimator, which will be
proven in the following section.

4 Properties of the ¢-OCSVM Estimator

In this section we provide theoretical results for the g-OCSVM estimator. The program we solve is
different from the one in Equation (T)). Hence, we can not rely on the properties of OCSVM to prove
the properties of our method. We provide instead similar proofs, in the spirit of Scholkopf et al. [[14]
and Glazer et al. [4], with some additional required extensions.

Definition 1. A set X = {x1,...,x,} is separable if there exists some w such that (®(z;) - w) > 0
forallie {1,...,n}.

Note that if a Gaussian kernel is used (implies k(z;, z5) > 0), as in our case, then X’ is separable.

Theorem 1. If X is separable, then a feasible solution exists for Equation with p; > 0 for all
je{l,...,q}

Proof. Define M as the convex hull of ®(x1),- -, ®(x,). Note that since X is separable, M does
not contain the origin. Then, by the supporting hyperplane theorem [10], there exists a hyperplane

(®(x;) - w) — p that contains M on one side of it and does not contain the origin. Hence, ( 0 - w ) —

p < 0, which leads to p > 0. Note that the solution p; = p for all j € [g] is a feasible solution for
Equation (). O

The following theorem shows that the regions specified by the decision functions fc,, ..., fc, are
(a) approximations for the MV-sets in the same sense suggested by |[Scholkopf et al., and (b) hierar-
chically nested.

Theorem 2. Let fc,, ..., fc, be the decision functions returned by the g-OCSVM estimator with
parameters {ay, ..., o0}, X, k(-,-). Assume X is separable. Let SV, be the set of SVs lying
strictly outside Cj, and SVj; be the set of SVs lying exactly on the boundary of C;. Then, the
SV, SVi, |+|SVa,
following statements hold:(1) C; C CY, for aj < oy (2) | “:{‘J‘ <1l-o; < % (3)
Suppose X is i.i.d. drawn from a distribution F' which does not contain discrete components, and

Ei

k (-, ) is analytic and non-constant. Then, —=(- is asymptotically equal to 1 — ;.

Proof. C; and C}, are associated with two parallel half-spaces in H with the same w. Therefore,
statement (1) can be proven by showing that p; > pr. «; < «ay leads to p; > pi since otherwise
the optimality of Equation would be contradicted. Assume by negation that v; = 1 — o >
SV |4+|SVs, . . . . .

% for some j € [q] in the optimal solution of Equation . Note that when parallel-
shifting the optimal hyperplane by slightly increasing p;, the term ) . £; ; in the equation will change
|SVh, [+]SVo, |

proportionally to [SV;, | + |SV,,|. However, since X

< 1, a slight increase in p; will

3Detailed setup parameters are discussed in Section



result in a decrease in the objective function, which contradicts the optimality of the hyperplane.
The same goes for the other direction: Assume by negation that lslgolj | > 1 — a; for some j € [q]
in the optimal solution of Equation . Then, a slight decrease in p; will result in a decrease in
the objective function, which contradicts the optimality of the hyperplane. We are now left to prove
statement (3): The covering number of the class of fc; functions (which are induced by k) is well-
behaved. Hence, asymptotically, the probability of points lying exactly on the hyperplanes converges

to zero (cf. [13)). O

5 Empirical Results

We extensively evaluated the effectiveness of our ¢-OCSVM method on a variety of real high-
dimensional data from the UCI repository and the 20-Newsgroup document corpus, and compared
its performance to competing methods.

5.1 Experiments on the UCI Repository

We first evaluated our method on datasets taken from the UCI repository ﬂ From each examined
dataset, a random set of 100 examples from the most frequent label was used as the training set X.
The remaining examples from the same label were used as the test set. We used all UCI datasets
with more than 50 test examples — a total of 61 data sets. The average number of features for a
dataset is 113F]

We compared the performance of our g-OCSVM method to three alternative methods that generalize
the OCSVM algorithm: HMVE (hierarchical minimum-volume estimator) [4]], I-OCSVM (indepen-
dent one-class SVMs), and NOC-SVM (nested one-class SVM) [18]]. For the NOC-SVM method, we
used the implementation provided by the authors El The LibSVM package [1] was used to implement
the HMVE and I-OCSVM methods. An implementation of our g-OCSVM estimator is available from:
http://www.cs.technion.ac.il/ ~assafqr/article.s/orocsvm. html. All ex-

periments were carried out with a Gaussian kernel (y = 57 = m)

For each data set, we trained the reference methods to approximate hierarchical MV-sets at levels
a1 = 0.05,a0 =0.1...,a19 =0.95 (19-quantiles)ﬂ Then, we evaluated the estimated g-quantiles
with the test set. Since the correct MV-sets are not known for the data, the quality of the approxi-
mated MV-sets was evaluated by the coverage ratio (CR): Let o/ be the empirical proportion of the
approximated MV-sets that was measured with the test data. The expected proportion of examples
that lie within the MV-set C'(«) is «. The coverage ratio is defined as % A perfect MV-set approx-
imation method would yield a coverage ratio of 1.0 for all approximated MV-sets ﬂ An advantage
of choosing this measure for evaluation is that it gives more weight for differences between o and
o’ in small quantiles associated with regions of high probability mass.

Results on test data for each approximated MV-set are shown in Figure[2] The left graph displays in
bars the empirical proportion of test examples in the approximated MV-sets (') as a function of the
expected proportion («v) averaged over all 61 data sets. The right graph displays the coverage ratio
of test examples as a function of « averaged over all 61 data sets. It can be seen that our g-OCSVM
method dominates the others with the best average o and average coverage ratio behaviors. In each
quantile separately, we tested the significance of the advantage of g-OCSVM over the competitors
using the Wilcoxon statistical test over the absolute difference between the expected and empirical
coverage ratios (|1.0 — C'R|). The superiority of our method against the three competitors was found
significant, with P < 0.01, for each of the 19 quantiles separately.

The I-OCSVM method shows inferior performance to that of g-OCSVM. We ascribe this behavior to
the fact that it trains ¢ OCSVMs independently, and thus reaches a local solution. Furthermore, we

Yarchive.ics.uci.edu/ml/datasets.html

*Nominal features were transformed into numeric ones using binary encoding; missing values were replaced
by their features’ average values.

Shttp://web.eecs.umich.edu/~cscott

"The equivalent C' (\) parameters of the NOC-SVM were initialized as suggested by the authors.

81n outlier detection, this measure reflects the ratio between expected and empirical false alarm rates.
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believe that by ignoring the fundamental hierarchical structure of MV-sets, the I-OCSVM method is
more likely than ours to reach an overfitted solution.

The HMVE method shows a decrease in performance from the largest to the smallest ov. We assume
this is due to the greedy nature of this method. HMVE approximates the MV-sets iteratively by
training a sequence of OCSVMs, from the largest to the smallest o . OCSVMs trained later in the
sequence are thus more constrained in their approximations by solutions from previous iterations,
so that the error in approximations accumulates over time. This is in contrast to g-OCSVM, which
converges to a global minimum, and hence is more scalable than HMVE with respect to the number
of approximated MV-sets (¢). The NOC-SVM method performs poorly in comparison to the other
methods. This is not surprising, since, unlike the other methods, we cannot set the parameters of
NOC-SVM to converge to predefined g-quantiles.
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Figure 2: The q-OCSVM, HMVE, I-OCSVM, and NOC-SVM methods were trained to estimate 19-quantiles
for the distribution of the most frequent label on the 61 UCI datasets. Left: o’ as a function of « averaged over
all datasets. Right: The coverage ratio as a function of « averaged over all datasets.

Interestingly, the solutions produced by the HMVE and I-OCSVM methods for the largest approxi-
mated MV-set (associated with 19 = 0.95) are equal to the solution of a single OCSVM algorithm
trained with v = 1 — a9 = 0.05. This equality derives from the definition of the HMVE and
I-OCSVM methods. Therefore, in this setup, we claim that g-OCSVM also outperforms the OCSVM
algorithm in the approximation of a single MV-set, and it does so with an average coverage ratio
of 0.871 versus 0.821. We believe this improved performance is due to the parallelism constraint
imposed by the ¢-OCSVM method on the hyperplanes, which acts as a regularization term on the
solution. This observation is an interesting research direction to address in our future studies.

In terms of runtime complexity, our ¢-OCSVM method has higher computational complexity than
HMVE and I-OCSVM, because we solve a global optimization problem rather than a series of smaller
localized subproblems. However, with regard to the runtime complexity on test samples, our method
is more efficient than HMVE and I-OCSVM by a factor of g, since the distances from each half-space
only differ by their bias terms (p;).

With regard to the choice of the Gaussian kernel width, parameter tuning for one-class classifiers,
in particular for OCSVMs, is an ongoing research area. Unlike binary classification tasks, negative
examples are not available to estimate the optimality of the solution. Consequently, we employed
a common practice [1]] of using a fixed width, divided by the number of features. However, in
future studies, it would be interesting to consider alternative optimization criteria to allow tuning
parameters with a cross-validation. For instance, using the average coverage ratio over all quantiles
as an optimality criterion.

5.2 [Experiments on Text Data

We evaluated our method on an additional setup of high-dimensional text data. We used the 20-
Newsgroup document corpusﬂ 500 words with the highest frequency count were picked to generate

The 20-Newsgroup corpus is atlhttp: //people.csail .mit.edu/jrennie/20Newsgroups)
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Figure 3: The q-OCSVM, HMVE, and I-OCSVM methods were trained to estimate 19 quantiles for the distri-

bution of the 20 categories in the 20-Newsgroup document corpus. Left: o’ as a function of « averaged over
all 20 categories. Right: The coverage ratio as a function of « averaged over all 20 categories.

500 bag-of-words features. We use the sorted-by-date version of the corpus with 18846 documents
associated with 20 news categories. From this series of documents, the first 100 documents from
each category were used as the training set X'. The subsequent documents from the same category
were used as the test set. We trained the reference methods with X’ to estimate 19-quantiles of a
distribution, and evaluated the estimated g-quantiles with the test set.

Results on test data for each approximated MV-set are shown in Figure [3|in the same manner as in
Figure [H Unlike the experiments on the UCI repository, results in these experiments are not so
close to the optimum, but still can provide useful information about the distributions. Again, our g-
OCSVM method dominates the others with the best average o’ and average coverage ratio behaviors.
According to the Wilcoxon statistical test with P < 0.01, our method performs significantly better
than the other competitors for each of the 19 quantiles separately.

It can be seen that the differences in coverage ratios between ¢-OCSVM and I-OCSVM in the largest
quantile (associated with a9 = 0.95) are relatively high, where the average coverage ratio for
q-OCSVM is 0.555, and 0.452 for I-OCSVM. Recall that the solution of I-OCSVM in the largest
quantile is equal to the solution of a single OCSVM algorithm trained with v = 0.05. These results
are aligned with our conclusions from the UCI repository experiments, that the parallelism con-
straint, which acts as a regularizer, may lead to improved performance even for the approximation
of a single MV-set.

6 Summary

The q-OCSVM method introduced in this paper can be regarded as a generalized OCSVM, as it
finds multiple parallel separating hyperplanes in a reproducing kernel Hilbert space. Theoretical
properties of our methods are analyzed, showing that it can be used to approximate a family of
hierarchical M V-sets while preserving the guaranteed separation properties (v-property), in the same
sense suggested by Scholkopf et al.|

Our g-OCSVM method is empirically evaluated on a variety of high-dimensional data from the UCI
repository and the 20-Newsgroup document corpus, and its advantage is verified in this setup. We
believe that our method will benefit practitioners whose goal is to model distributions by g-quantiles
in complex settings, where density estimation is hard to apply. An interesting direction for future
research would be to evaluate our method on problems in specific domains that utilize g-quantiles for
distribution representation. These domains include cluster analysis, outlier detection, and statistical
tests.

10Results for NOC-SVM were omitted from the graphs due to the limitation of the method in g-quantile
estimation, which results in inferior performance also in this setup.
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