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Abstract

In this work we develop efficient methods for learning random MAP predictors for
structured label problems. In particular, we construct posterior distributions over
perturbations that can be adjusted via stochastic gradient methods. We show that
any smooth posterior distribution would suffice to define a smooth PAC-Bayesian
risk bound suitable for gradient methods. In addition, we relate the posterior dis-
tributions to computational properties of the MAP predictors. We suggest mul-
tiplicative posteriors to learn super-modular potential functions that accompany
specialized MAP predictors such as graph-cuts. We also describe label-augmented
posterior models that can use efficient MAP approximations, such as those arising
from linear program relaxations.

1 Introduction

Learning and inference in complex models drives much of the research in machine learning
applications ranging from computer vision, natural language processing, to computational biol-
ogy [1, 18, 21]. The inference problem in such cases involves assessing the likelihood of possible
structured-labels, whether they be objects, parsers, or molecular structures. Given a training dataset
of instances and labels, the learning problem amounts to estimation of the parameters of the infer-
ence engine, so as to best describe the labels of observed instances. The goodness of fit is usually
measured by a loss function.

The structures of labels are specified by assignments of random variables, and the likelihood of the
assignments are described by a potential function. Usually, it is feasible to only find the most likely
or maximum a-posteriori (MAP) assignment, rather than sampling according to their likelihood. In-
deed, substantial effort has gone into developing algorithms for recovering MAP assignments, either
based on specific parametrized restrictions such as super-modularity [2] or by devising approximate
methods based on linear programming relaxations [21]. Learning MAP predictors is usually done
by structured-SVMs that compare a “loss adjusted” MAP prediction to its training label [25]. In
practice, most loss functions used decompose in the same way as the potential function, so as to not
increase the complexity of the MAP prediction task. Nevertheless, non-decomposable loss functions
capture the structures in the data that we would like to learn.

Bayesian approaches for expected loss minimization, or risk, effortlessly deal with non-
decomposable loss functions. The inference procedure samples a structure according to its like-
lihood, and computes its loss given a training label. Recently [17, 23] constructed probability
models through MAP predictions. These “perturb-max” models describe the robustness of the
MAP prediction to random changes of its parameters. Therefore, one can draw unbiased sam-
ples from these distributions using MAP predictions. Interestingly, when incorporating perturb-
max models to Bayesian loss minimization one would ultimately like to use the PAC-Bayesian risk
[11, 19, 3, 20, 5, 10].

Our work explores the Bayesian aspects that emerge from PAC-Bayesian risk minimization. We
focus on computational aspects when constructing posterior distributions, so that they could be used
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to minimize the risk bound efficiently. We show that any smooth posterior distribution would suffice
to define a smooth risk bound which can be minimized through gradient decent. In addition, we
relate the posterior distributions to the computational properties of MAP predictors. We suggest
multiplicative posterior models to learn super-modular potential functions, that come with special-
ized MAP predictors such as graph-cuts [2]. We also describe label-augmented posterior models
that can use MAP approximations, such as those arising from linear program relaxations [21].

2 Background

Learning complex models typically involves reasoning about the states of discrete variables whose
labels (assignments of values) specify the discrete structures of interest. The learning task which
we consider in this work is to fit parameters w that produce to most accurate prediction y ∈ Y
to a given object x. Structures of labels are conveniently described by a discrete product space
Y = Y1 × · · · × Yn. We describe the potential of relating a label y to an object x with respect to
the parameters w by real valued functions θ(y;x,w). Our goal is to learn the parameters w that best
describe the training data (x, y) ∈ S. Within Bayesian perspectives, the distribution that one learns
given the training data is composed from a distribution over the parameter space qw(γ) and over the
labels space P [y|w, x] ∝ exp θ(y;x,w). Using the Bayes rule we derive the predictive distribution
over the structures

P [y|x] =

∫
P [y|γ, x]qw(γ)dγ (1)

Unfortunately, sampling algorithms over complex models are provably hard in theory and tend to
be slow in many cases of practical interest [7]. This is in contrast to the maximum a-posteriori
(MAP) prediction, which can be computed efficiently for many practical cases, even when sampling
is provably hard.

(MAP predictor) yw(x) = arg max
y1,...,yn

θ(y;x,w) (2)

Recently, [17, 23] suggested to change of the Bayesian posterior probability models to utilize the
MAP prediction in a deterministic manner. These perturb-max models allow to sample from the
predictive distribution with a single MAP prediction:

(Perturb-max models) P [y|x]
def
= Pγ∼qw

[
y = yγ(x)

]
(3)

A potential function is decomposed along a graphical model if it has the form θ(y;x,w) =∑
i∈V θi(yi;x,w) +

∑
i,j∈E θi,j(yi, yj ;x,w). If the graph has no cycles, MAP prediction can

be computed efficiently using the belief propagation algorithm. Nevertheless, there are cases where
MAP prediction can be computed efficiently for graph with cycles. A potential function is called
supermodular if it is defined over Y = {−1, 1}n and its pairwise interactions favor adjacent states to
have the same label, i.e., θi,j(−1,−1;x,w)+θi,j(1, 1;x,w) ≥ θi,j(−1, 1;x,w)+θi,j(1,−1;x,w).
In such cases MAP prediction reduces to computing the min-cut (graph-cuts) algorithm.

Recently, a sequence of works attempt to solve the MAP prediction task for non-supermodular
potential function as well as general regions. These cases usually involve potentials function that
are described by a family R of subsets of variables r ⊂ {1, ..., n}, called regions. We denote by yr
the set of labels that correspond to the region r, namely (yi)i∈r and consider the following potential
functions θ(y;x,w) =

∑
r∈R θr(yr;x,w). Thus, MAP prediction can be formulated as an integer

linear program:

b∗ ∈ arg max
br(yr)

∑
r,yr

br(yr)θr(yr;x,w) (4)

s.t. br(yr) ∈ {0, 1},
∑
yr

br(yr) = 1,
∑
ys\yr

bs(ys) = br(yr) ∀r ⊂ s

The correspondence between MAP prediction and integer linear program solutions is (yw(x))i =
arg maxyi b

∗
i (yi). Although integer linear program solvers provide an alternative to MAP predic-

tion, they may be restricted to problems of small size. This restriction can be relaxed when one
replaces the integral constraints br(yr) ∈ {0, 1} with nonnegative constraints br(yr) ≥ 0. These
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linear program relaxations can be solved efficiently using different convex max-product solvers, and
whenever these solvers produce an integral solution it is guaranteed to be the MAP prediction [21].

Given training data of object-label pairs, the learning objective is to estimate a predictive distribution
over the structured-labels. The goodness of fit is measured by a loss function L(ŷ, y). As we focus
on randomized MAP predictors our goal is to learn the parameters w that minimize the expected
perturb-max prediction loss, or randomized risk. We define the randomized risk at a single instance-
label pair as

R(w, x, y) =
∑
ŷ∈Y

Pγ∼qw
[
ŷ = yγ(x)

]
L(ŷ, y).

Alternatively, the randomized risk takes the form R(w, x, y) = Eγ∼qw [L(yγ(x), y)]. The random-
ized risk originates within the PAC-Bayesian generalization bounds. Intuitively, if the training set is
an independent sample, one would expect that best predictor on the training set to perform well on
unlabeled objects at test time.

3 Minimizing PAC-Bayesian generalization bounds

Our approach is based on the PAC-Bayesian risk analysis of random MAP predictors. In the fol-
lowing we state the PAC-Bayesian generalization bound for structured predictors and describe the
gradients of these bounds for any smooth posterior distribution.

The PAC-Bayesian generalization bound describes the expected loss, or randomized risk, when con-
sidering the true distributions over object-labels in the worldR(w) = E(x,y)∼ρ [R(w, x, y)]. It upper
bounds the randomized risk by the empirical randomized risk RS(w) = 1

|S|
∑

(x,y)∈S R(w, x, y)

and a penalty term which decreases proportionally to the training set size. Here we state the PAC-
Bayesian theorem, that holds uniformly for all posterior distributions over the predictions.
Theorem 1. (Catoni [3], see also [5]). Let L(ŷ, y) ∈ [0, 1] be a bounded loss function. Let
p(γ) be any probability density function and let qw(γ) be a family of probability density functions
parameterized by w. Let KL(qw||p) =

∫
qw(γ) log(qw(γ)/p(γ)). Then, for any δ ∈ (0, 1] and for

any real number λ > 0, with probability at least 1−δ over the draw of the training set the following
holds simultaneously for all w

R(w) ≤ 1

1− exp(−λ)

(
λRS(w) +

KL(qw||p) + log(1/δ)

|S|

)
For completeness we present a proof sketch for the theorem in the appendix. This proof follows
Seeger’s PAC-Bayesian approach [19], and extended to the structured label case [13]. The proof
technique replaces prior randomized risk, with the posterior randomized risk that holds uniformly
for every w, while penalizing this change by their KL-divergence. This change-of-measure step is
close in spirit to the one that is performed in importance sampling. The proof is then concluded by
simple convex bound on the moment generating function of the empirical risk.

To find the best posterior distribution that minimizes the randomized risk, one can minimize its
empirical upper bound. We show that whenever the posterior distributions have smooth probability
density functions qw(γ), the perturb-max probability model is smooth as a function of w. Thus the
randomized risk bound can be minimized with gradient methods.
Theorem 2. Assume qw(γ) is smooth as a function of its parameters, then the PAC-Bayesian bound
is smooth as a function of w:

∇wRS(w) =
1

|S|
∑

(x,y)∈S

Eγ∼qw

[
∇w[log qw(γ)]L(yγ(x), y)

]
Moreover, the KL-divergence is a smooth function of w and its gradient takes the form:

∇wKL(qw||p) = Eγ∼qw

[
∇w[log qw(γ)]

(
log(qw(γ)/p(γ)) + 1

)]
Proof: First we note that R(w, x, y) =

∫
qw(γ)L(yγ(x), y)dγ. Since qw(γ) is a probability density

function and L(ŷ, y) ∈ [0, 1] we can differentiate under the integral (cf. [4] Theorem 2.27).

∇wR(w, x, y) =

∫
∇wqw(γ)L(yγ(x), y)dγ
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Using the identity ∇wqw(γ) = qw(γ)∇w log(qw(γ)) the first part of the proof follows. The
second part of the proof follows in the same manner, while noting that ∇w(qw(γ) log qw(γ)) =
(∇wqw(γ))(log qw(γ) + 1). �

The gradient of the randomized empirical risk is governed by the gradient of the log-probability
density function of its corresponding posterior model. For example, Gaussian model with mean w
and identity covariance matrix has the probability density function qw(γ) ∝ exp(−‖γ − w‖2/2),
thus the gradient of its log-density is the linear moment γ, i.e., ∇w[log qw] = γ − w.

Taking any smooth distribution qw(γ), we can find the parameters w by descending along the
stochastic gradient of the PAC-Bayesian generalization bound. The gradient of the random-
ized empirical risk is formed by two expectations, over the sample points and over the poste-
rior distribution. Computing these expectations is time consuming, thus we use a single sam-
ple ∇γ [log qw(γ)]L(yγ(x), y) as an unbiased estimator for the gradient. Similarly we estimate
the gradient of the KL-divergence with an unbiased estimator which requires a single sample of
∇w[log qw(γ)](log(qw(γ)/p(γ)) + 1). This approach, called stochastic approximation or online
gradient descent, amounts to use the stochastic gradient update rule

w ← w − η · λ∇w[log qw(γ)]
(
L(yγ(x), y) + log(qw(γ)/p(γ)) + 1

)
where η is the learning rate. Next, we explore different posterior distributions from computational
perspectives. Specifically, we show how to learn the posterior model so to ensure the computational
efficiency of its MAP predictor.

4 Learning posterior distributions efficiently

The ability to efficiently apply MAP predictors is key to the success of the learning process. Al-
though MAP predictions are NP-hard in general, there are posterior models for which they can
be computed efficiently. For example, whenever the potential function corresponds to a graphical
model with no cycles, MAP prediction can be efficiently computed for any learned parameters w.

Learning unconstrained parameters with random MAP predictors provides some freedom in choos-
ing the posterior distribution. In fact, Theorem 2 suggests that one can learn any posterior distri-
bution by performing gradient descent on its risk bound, as long as its probability density function
is smooth. We show that for unconstrained parameters, additive posterior distributions simplify the
learning problem, and the complexity of the bound (i.e., its KL-divergence) mostly depends on its
prior distribution.

Corollary 1. Let q0(γ) be a smooth probability density function with zero mean and set the posterior
distribution using additive shifts qw(γ) = q0(γ − w). Let H(q) = −Eγ∼q[log q(γ)] be the entropy
function. Then

KL(qw||p) = −H(q0)− Eγ∼q0 [log p(γ + w)]

In particular, if p(γ) ∝ exp(−‖γ‖2) is Gaussian then∇wKL(qw||p) = w

Proof: KL(qw||p) = −H(qw) − Eγ∼qw [log p(γ)]. By a linear change of variable, γ̂ = γ − w it
follows that H(qw) = H(q0) thus ∇wH(qw) = 0. Similarly Eγ∼qw [log p(γ)] = Eγ∼q0 [log p(γ +
w)]. Finally, if p(γ) is Gaussian then Eγ∼q0 [log p(γ + w)] = −w2 − Eγ∼q0 [γ2]. �

This result implies that every additively-shifted smooth posterior distribution may consider the KL-
divergence penalty as the square regularization when using a Gaussian prior p(γ) ∝ exp(−‖γ‖2).
This generalizes the standard claim on Gaussian posterior distributions [11], for which q0(γ) are
Gaussians. Thus one can use different posterior distributions to better fit the randomized empirical
risk, without increasing the computational complexity over Gaussian processes.

Learning unconstrained parameters can be efficiently applied to tree structured graphical models.
This, however, is restrictive. Many practical problems require more complex models, with many
cycles. For some of these models linear program solvers give efficient, although sometimes approx-
imate, MAP predictions. For supermodular models there are specific solvers, such as graph-cuts,
that produce fast and accurate MAP predictions. In the following we show how to define posterior
distributions that guarantee efficient predictions, thus allowing efficient sampling and learning.
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4.1 Learning constrained posterior models

MAP predictions can be computed efficiently in important practical cases, e.g., supermodular poten-
tial functions satisfying θi,j(−1,−1;x,w) + θi,j(1, 1;x,w) ≥ θi,j(−1, 1;x,w) + θi,j(1,−1;x,w).
Whenever we restrict ourselves to symmetric potential function θi,j(yi, yj ;x,w) = wi,jyiyj , super-
modularity translates to nonnegative constraint on the parameters wi,j ≥ 0. In order to model
posterior distributions that allow efficient sampling we define models over the constrained param-
eter space. Unfortunately, the additive posterior models qw(γ) = q0(γ − w) are inappropriate for
this purpose, as they have a positive probability for negative γ values and would generate non-
supermodular models.

To learn constrained parameters one requires posterior distributions that respect these constraints.
For nonnegative parameters we apply posterior distributions that are defined on the nonnegative
real numbers. We suggest to incorporate the parameters of the posterior distribution in a multi-
plicative manner into a distribution over the nonnegative real numbers. For any distribution qα(γ)
we determine a posterior distribution with parameters w as qw(γ) = qα(γ/w)/w. We show that
multiplicative posterior models naturally provide log-barrier functions over the constrained set of
nonnegative numbers. This property is important to the computational efficiency of the bound min-
imization algorithm.
Corollary 2. For any probability distribution qα(γ), let qα,w(γ) = qα(γ/w)/w be the parametrized
posterior distribution. Then

KL(qα,w||p) = −H(qα)− logw − Eγ∼qα [log p(wγ)]

Define the Gamma function Γ(α) =
∫∞
0
γα−1 exp(−γ). If p(γ) = qα(γ) = γα−1 exp(−γ)/Γ(α)

have the Gamma distribution with parameter α, then Eγ∼qα [log p(wγ)] = (α − 1) logw − αw.
Alternatively, if p(γ) are truncated Gaussians then Eγ∼qα [log p(wγ)] = −α2w

2 + log
√
π/2.

Proof: The entropy of multiplicative posterior models naturally implies the log-barrier function:

−H(qα,w)
γ̂=γ/w

=

∫
qα(γ̂)

(
log qα(γ̂)− logw

)
dγ̂ = −H(qα)− logw.

Similarly, Eγ∼qα,w [log p(γ)] = Eγ∼qα [log p(wγ)]. The special cases for the Gamma and the trun-
cated normal distribution follow by a direct computation. �

The multiplicative posterior distribution would provide the barrier function− logw as part of its KL-
divergence. Thus the multiplicative posterior effortlessly enforces the constraints of its parameters.
This property suggests that using multiplicative rules are computationally favorable. Interestingly,
using a prior model with Gamma distribution adds to the barrier function a linear regularization
term ‖w‖1 that encourages sparsity. On the other hand, a prior model with a truncated Gaussian
adds a square regularization term which drifts the nonnegative parameters away from zero. A com-
putational disadvantage of the Gaussian prior is that its barrier function cannot be controlled by a
parameter α.

4.2 Learning posterior models with approximate MAP predictions

MAP prediction can be phrased as an integer linear program, stated in Equation (4). The computa-
tional burden of integer linear programs can be relaxed when one replaces the integral constraints
with nonnegative constraints. This approach produces approximate MAP predictions. An important
learning challenge is to extend the predictive distribution of perturb-max models to incorporate ap-
proximate MAP solutions. Approximate MAP predictions are are described by the feasible set of
their linear program relaxations, that is usually called the local polytope:

L(R) =
{
br(yr) : br(yr) ≥ 0,

∑
yr

br(yr) = 1, ∀r ⊂ s
∑
ys\yr

bs(ys) = br(yr)
}

Linear programs solutions are usually the extreme points of their feasible polytope. The local poly-
tope is defined by a finite set of equalities and inequalities, thus it has a finite number of extreme
points. The perturb-max model that is defined in Equation (3) can be effortlessly extended to the
finite set of the local polytope extreme points [15]. This approach has two flaws. First, linear pro-
gram solutions might not be extreme points, and decoding such a point usually requires additional
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computational effort. Second, without describing the linear program solutions one cannot incorpo-
rate loss functions that take the structural properties of approximate MAP predictions into account
when computing the the randomized risk.

Theorem 3. Consider approximate MAP predictions that arise from relaxation of the MAP predic-
tion problem in Equation (4).

arg max
br(yr)

∑
r,yr

br(yr)θr(yr;x,w) s.t. b ∈ L(R)

Then any optimal solution b∗ is described by a vector ỹw(x) in the finite power sets over the regions,
Ỹ ⊂ ×r2Yr :

ỹw(x) = (ỹw,r(x))r∈R where ỹw,r(x) = {yr : b∗r(yr) > 0}

Moreover, if there is a unique optimal solution b∗ then it corresponds to an extreme point in the local
polytope.

Proof: The program is convex over a compact set, thus strong duality holds. Fixing the Lagrange
multipliers λr→s(yr) that correspond to the marginal constraints

∑
ys\yr bs(ys) = br(yr), and con-

sidering the probability constraints as the domain of the primal program, we derive the dual program∑
r

max
yr

{
θr(yr;x,w) +

∑
c:c⊂r

λc→r(yc)−
∑
p:p⊃r

λr→p(yr)
}

Lagrange optimality constraints (or equivalently, Danskin Theorem) determine the primal op-
timal solutions b∗r(yr) to be probability distributions over the set arg maxyr{θr(yr;x,w) +∑
c:c⊂r λ

∗
c→r(yc) −

∑
p:p⊃r λ

∗
r→p(yr)} that satisfy the marginalization constraints. Thus ỹw,r(x)

is the information that identifies the primal optimal solutions, i.e., any other primal feasible solution
that has the same ỹw,r(x) is also a primal optimal solution. �

This theorem extends Proposition 3 in [6] to non-binary and non-pairwise graphical models. The
theorem describes the discrete structures of approximate MAP predictions. Thus we are able to
define posterior distributions that use efficient, although approximate, predictions while taking into
account their structures. To integrate these posterior distributions to randomized risk we extend the
loss function to L(ỹw(x), y). One can verify that the results in Section 3 follow through, e.g., by
considering loss functions L : Ỹ × Ỹ → [0, 1] while the training examples labels belong to the
subset Y ⊂ Ỹ .

5 Empirical evaluation

We perform experiments on an interactive image segmentation. We use the Grabcut dataset proposed
by Blake et al. [1] which consists of 50 images of objects on cluttered backgrounds and the goal is
to obtain the pixel accurate segmentations of the object given an initial “trimap” (see Figure 1). A
trimap is an approximate segmentation of the image into regions that are well inside, well outside
and the boundary of the object, something a user can easily specify in an interactive application.

A popular approach for segmentation is the GrabCut approach [2, 1]. We learn parameters for the
“Gaussian Mixture Markov Random Field” (GMMRF) formulation of [1] using a potential func-
tion over foreground/background segmentations Y = {−1, 1}n: θ(y;x,w) =

∑
l∈V θi(yi;x,w) +∑

i,j∈E θi,j(yi, yj ;x,w). The local potentials are θi(yi;x,w) = wyi logP (yi|x), where wyi are
parameters to be learned while P (yi|x) are obtained from a Gaussian mixture model learned on the
background and foreground pixels for an image x in the initial trimap. The pairwise potentials are
θi,j(yi, yj ;x,w) = wa exp(−(xi − xj)2)yiyj , where xi denotes the intensity of image x at pixel
i, and wa are the parameters to be learned for the angles a ∈ {0, 90, 45,−45}◦. These potential
functions are supermodular as long as the parameters wa are nonnegative, thus MAP prediction can
be computed efficiently with the graph-cuts algorithm. For these parameters we use multiplicative
posterior model with the Gamma distribution. The dataset does not come with a standard train-
ing/test split so we use the odd set of images for training and even set of images for testing. We use
stochastic gradient descent with the step parameter decaying as ηt = η

to+t
for 250 iterations.
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Method Grabcut loss PASCAL loss
Our method 7.77% 5.29%

Structured SVM (hamming loss) 9.74% 6.66%
Structured SVM (all-zero loss) 7.87% 5.63%

GMMRF (Blake et al. [1]) 7.88% 5.85%
Perturb-and-MAP ([17]) 8.19% 5.76%

Table 1: Learning the Grabcut segmentations using two different loss functions. Our learned param-
eters outperform structured SVM approaches and Perturb-and-MAP moment matching

Figure 1: Two examples of image (left), input “trimap” (middle) and the final segmentation (right)
produced using our learned parameters.

We use two different loss functions for training/testing for our approach to illustrate the flexibility of
our approach for learning using various task specific loss functions. The “GrabCut loss” measures
the fraction of incorrect pixels labels in the region specified as the boundary in the trimap. The
“PASCAL loss”, which is commonly used in several image segmentation benchmarks, measures the
ratio of the intersection and union of the foregrounds of ground truth segmentation and the solution.

As a comparison we also trained parameters using moment matching of MAP perturbations [17] and
structured SVM. We use a stochastic gradient approach with a decaying step size for 1000 iterations.
Using structured SVM, solving loss-augmented inference maxŷ∈Y {L(y, ŷ) + θ(y;x,w)} with the
hamming loss can be efficiently done using graph-cuts. We also consider learning parameters with
all-zero loss function, i.e., L(y, ŷ) ≡ 0. To ensure that the weights remain non-negative we project
the weights into the non-negative side after each iteration.

Table 1 shows the results of learning using various methods. For the GrabCut loss, our method
obtains comparable results to the GMMRF framework of [1], which used hand-tuned parameters.
Our results are significantly better when PASCAL loss is used. Our method also outperforms the
parameters learned using structured SVM and Perturb-and-MAP approaches. In our experiments the
structured SVM with the hamming loss did not perform well – the loss augmented inference tended
to focus on maximum violations instead of good solutions which causes the parameters to change
even though the MAP solution has a low loss (a similar phenomenon was observed in [22]). Using
the all-zero loss tends to produce better results in practice as seen in Table 1. Figure 1 shows some
examples images, the input trimap, and the segmentations obtained using our approach.

6 Related work

Recent years have introduced many optimization techniques that lend efficient MAP predictors for
complex models. These MAP predictors can be integrated to learn complex models using structured-
SVM [25]. Structured-SVM has a drawback, as its MAP prediction is adjusted by the loss function,
therefore it has an augmented complexity. Recently, there has been an effort to efficiently integrate
non-decomposable loss function into structured-SVMs [24]. However this approach does not hold
for any loss function.

Bayesian approaches to loss minimization treat separately the prediction process and the loss in-
curred, [12]. However, the Bayesian approach depends on the efficiency of its sampling procedure,
but unfortunately, sampling in complex models is harder that the MAP prediction task [7].

The recent works [17, 23, 8, 9, 16] integrate efficient MAP predictors into Bayesian modeling. [23]
describes the Bayesian perspectives, while [17, 8] describe their relations to the Gibbs distribu-
tion and moment matching. [9] provide unbiased samples form the Gibbs distribution using MAP
predictors and [16] present their measure concentration properties. Other strategies for producing
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(pseudo) samples efficiently include Herding [26]. However, these approaches do not consider risk
minimization.

The perturb-max models in Equation (3) play a key role in PAC-Bayesian theory [14, 11, 19, 3, 20, 5,
10]. The PAC-Bayesian approaches focus on generalization bounds to the object-label distribution.
However, the posterior models in the PAC-Bayesian approaches were not extensively studied in the
past. In most cases the posterior model remained undefined. [10] investigate linear predictors with
Gaussian posterior models to have a structured-SVM like bound. This bound holds uniformly for
every λ and its derivation is quite involved. In contrast we use Catoni’s PAC-Bayesian bound that
is not uniform over λ but does not require the log |S| term [3, 5]. The simplicity of Catoni’s bound
(see Appendix) makes it amenable to different extensions. In our work, we extend these results
to smooth posterior distributions, while maintaining the quadratic regularization form. We also
describe posterior distributions for non-linear models. In different perspective, [3, 5] describe the
optimal posterior, but unfortunately there is no efficient sampling procedure for this posterior model.
In contrast, our work explores posterior models which allow efficient sampling. We investigate two
posterior models: the multiplicative models, for constrained MAP solvers such as graph-cuts, and
posterior models for approximate MAP solutions.

7 Discussion

Learning complex models requires one to consider non-decomposable loss functions that take into
account the desirable structures. We suggest to use the Bayesian perspectives to efficiently sample
and learn such models using random MAP predictions. We show that any smooth posterior distri-
bution would suffice to define a smooth PAC-Bayesian risk bound which can be minimized using
gradient decent. In addition, we relate the posterior distributions to the computational properties
of the MAP predictors. We suggest multiplicative posterior models to learn supermodular potential
functions that come with specialized MAP predictors such as graph-cuts algorithm. We also describe
label-augmented posterior models that can use efficient MAP approximations, such as those arising
from linear program relaxations. We did not evaluate the performance of these posterior models and
further explorations of such models is required.

The results here focus on posterior models that would allow for efficient sampling using MAP pre-
dictions. There are other cases for which specific posterior distributions might be handy, e.g., learn-
ing posterior distributions of Gaussian mixture models. In these cases, the parameters include the
covariance matrix, thus would require to sample over the family of positive definite matrices.

A Proof sketch for Theorem 1

Theorem 2.1 in [5]: For any distribution D over object-labels pairs, for any w-parametrized
distribution qw, for any prior distribution p, for any δ ∈ (0, 1], and for any convex function
D : [0, 1] × [0, 1] → R, with probability at least 1 − δ over the draw of the training set the di-
vergence D(Eγ∼qwRS(γ), Eγ∼qwR(γ)) is upper bounded simultaneously for all w by

1

|S|

[
KL(qw||p) + log

(1

δ
Eγ∼pES∼Dm exp

(
mD(RS(γ), R(γ))

))]

For D(RS(γ), R(γ)) = F(R(γ)) − λRS(γ), the bound reduces to a simple convex bound on the
moment generating function of the empirical risk: ES∼Dm exp

(
mD(RS(γ, x, y), R(γ, x, y))

)
=

exp(mF(R(γ)))ES∼Dm exp(−mλRS(γ)) Since the exponent function is a convex function of
RS(γ) = RS(γ) · 1 + (1−RS(γ)) · 0, the moment generating function bound is exp(−λRS(γ)) ≤
RS(γ) exp(−λ) + (1 − RS(γ)). Since ESRS(γ) = R(γ), the right term in the risk bound in
can be made 1 when choosing F(R(γ)) to be the inverse of the moment generating function
bound. This is Catoni’s bound [3, 5] for the structured labels case. To derive Theorem 1 we ap-
ply exp(−x) ≤ 1 − x to derive the lower bound (1 − exp(−λ))Eγ∼qwR(γ) − λEγ∼qwRS(γ) ≤
D(Eγ∼qwRS(γ), Eγ∼qwR(γ)).
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