
A Appendix

A.1 Free-energy derivation

The following is a derivation of the well-known formula for the free-energy of an RBM. This
tractable form is made possible by the bipartite interaction structure of the RBM’s units:

p(x) =
∑
h

1

Zθ
exp(x>Wh+ c>x+ b>h)

=
1

Zθ
exp(c>x)

∏
j

∑
hj∈{0,1}

exp(x>[W]jhj + bjhj)

=
1

Zθ
exp(c>x) exp(

∑
j

(log
∑

hj∈{0,1}

exp(x>[W]jhj + bjhj)))

=
1

Zθ
exp(c>x+

∑
j

log[1 + exp(x>[W]j + bj)])

=
1

Zθ
exp(−Fθ(x))

A.2 Proofs for Section 2.4

We begin with a useful technical result:
Proposition 11. For arbitrary y ∈ R the following basic facts for the softplus function hold:

y − soft(y) = − soft(−y)
soft(y) ≤ exp(y)

Proof. The first fact follows from:

y− soft(y) = log(exp(y))− log(1 + exp(y)) = log

(
exp(y)

1 + exp(y)

)
= log

(
1

exp(−y) + 1

)
= − log(1 + exp(y)) = − soft(−y)

To prove the second fact, we will show that the function f(y) = exp(y)− soft(y) is positive. Note
that f tends to 0 as y goes to −∞ since both exp(y) and soft(y) do. It remains to show that f is
monotonically increasing, which we establish by showing that its derivative is positive:

f ′(y) = exp(y)− 1

1 + exp(−y)
> 0

⇔ exp(y)(1 + exp(−y))− 1 + exp(−y)
1 + exp(−y)

> 0

⇔ exp(y) + 1− 1 > 0 ⇔ exp(y) > 0

Proof of Lemma 2. Consider a single neuron in the RBM network and the corresponding neuron
in the hardplus RBM network, whose net-input are given by y = w>x+ b.

For each x, there are two cases for y. If y ≥ 0, we have by hypothesis that y ≥ C, and so:
|hard(y)− soft(y)| = |y − soft(y)| = | − soft(−y)| = soft(−y)

≤ exp(−y) ≤ exp(−C)
And if y < 0, we have by hypothesis that y ≤ −C and so:

|hard(y)− soft(y)| = |0− soft(y)| = soft(y)

≤ exp(y) ≤ exp(−C)

10

Thus, each corresponding pair of neurons computes the same function up to an error bounded by
exp(−C). From this it is easy to show that the entire circuits compute the same function, up to an
error bounded by m exp(−C), as required.

Proof of Theorem 3. Suppose we have a softplus RBM network with a number of hidden neurons
given bym. To simulate this with a hardplus RBM network we will replace each neuron with a group
of hardplus neurons with weights and biases chosen so that the sum of their outputs approximates the
output of the original softplus neuron, to within a maximum error of 1/p where p is some constant
> 0.

First we describe the construction for the simulation of a single softplus neurons by a group of
hardplus neurons.

Let g be a positive integer and a > 0. We will define these more precisely later, but for what follows
their precise value is not important.

At a high level, this construction works by approximating soft(y), where y is the input to the neuron,
by a piece-wise linear function expressed as the sum of a number of hardplus functions, whose
“corners” all lie inside [−a, a]. Outside this range of values, we use the fact that soft(y) converges
exponentially fast (in a) to 0 on the left, and y on the right (which can both be trivially computed by
hardplus functions).

Formally, for i = 1, 2, ..., g, g + 1, let:

qi = (i− 1)
2a

g
− a

For i = 1, 2, ..., g, let:

νi =
soft(qi+1)− soft(qi)

qi+1 − qi

and also let ν0 = 0 and νg+1 = 1. Finally, for i = 1, 2, ..., g, g + 1, let:

ηi = νi − νi−1

With these definitions it is straightforward to show that 1 ≥ νi > 0, νi > νi−1 and consequently
0 < ηi < 1 for each i. It is also easy to show that qi > qi−1, q0 = −a and qg+1 = a.

For i = 1, 2, ..., g, g + 1, we will set the weight vector wi and bias bi of the i-th hardplus neuron in
our group so that the neuron outputs hard(ηi(y − qi)). This is accomplished by taking wi = ηiw
and bi = ηi(b − qi), where w and b (without the subscripts), are the weight vector and bias of the
original softplus neuron.

Note that since |ηi| ≤ 1 we have that the weights of these hard neurons are smaller in magnitude
than the weights of the original soft neuron and thus bounded by C as required.

The total output (sum) for this group is:

T (y) =

g+1∑
i=1

hard(ηi(y − qi))

We will now bound the approximation error |T (y)− soft(y)| of our single neuron simulation.

Note that for a given y we have that the i-th hardplus neuron in the group has a non-negative input
iff y ≥ qi. Thus for y < −a all of the neurons have a negative input. And for y ≥ −a , if we take
j to be the largest index i s.t. qi ≤ y, then each neuron from i = 1 to i = j will have positive input
and each neuron from i = j + 1 to i = g + 1 will have negative input.

Consider the case that y < −a. Since the input to each neuron is negative, they each output 0 and
thus T (y) = 0. This results in an approximation error ≤ exp(−a):

|T (y)− soft(y)| = |0− soft(y)| = soft(y) < soft(−a) ≤ exp(−a)

11

Next, consider the case that y ≥ −a, and let j be as given above. In such a case we have:

T (y) =

g+1∑
i=1

hard(ηi(y − qi)) =
j∑
i=1

ηi(y − qi) + 0

=

j∑
i=1

(νi − νi−1)(y − qi)

= y

j∑
i=1

(νi − νi−1)−
j∑
i=1

(νi − νi−1)qi

= yνj − yν0 − νjqj +
j−1∑
i=1

νi(qi+1 − qi) + ν0q1

= νj(y − qj) +
j−1∑
i=1

(soft(qi+1)− soft(qi))

= νj(y − qj) + soft(qj)− soft(q1)

For y ≤ a we note that νj(y − qj) + soft(qj) is a secant approximation to soft(y) generated by the
secant from qj to qj+1 and upperbounds soft(y) for y ∈ [qj , qj+1]. Thus a crude bound on the error
is soft(qj+1)− soft(qj), which only makes use of the fact that soft(y) is monotonic. Then because
the slope (derivative) of soft(y) is σ(y) = 1/(1 + exp(−y)) < 1, we can further (crudely) bound
this by qj+1 − qj . Thus the approximation error at such y’s may be bounded as:

|T (y)− soft(y)| = |(νj(y − qj) + soft(qj)− soft(q1))− soft(y)|
≤ max{|νj(y − qj) + soft(qj)− soft(y)|, soft(q1)}

≤ max{qj+1 − qj , exp(−a)} = max

{
2a

g
, exp(−a)

}
where we have also used soft(q1) = soft(−a) ≤ exp(−a).
For the case y > a, all qi > y and the largest index j such that qj ≤ y is j = g + 1. So
νj(y − qj) + soft(qj)− soft(q1) = y − a+ soft(a)− soft(−a) = y. Thus the approximation error
at such y’s is:

|y − soft(y)| = | − soft(−y)| = soft(−y) ≤ soft(−a) ≤ exp(−a)

Having covered all cases for y we conclude that the general approximation error for a single softplus
neuron satisfies the following bound:

|y − soft(y)| ≤ max

{
2a

g
, exp(−a)

}
For a softplus RBM network with m neurons, our hardplus RBM neurons constructed by replacing
each neuron with a group of hardplus neurons as described above will require a total of m(g + 1)
neurons, and have an approximation error bounded by the sum of the individual approximation
errors, which is itself bounded by:

mmax

{
2a

g
, exp(−a)

}
Taking a = log(mp), g = d2mpae. This gives:

mmax

{
2a

d2mpae
,

1

mp

}
≤ mmax

{
2a

2mpa
,

1

mp

}
= max

{
1

p
,
1

p

}
=

1

p

Thus we see that with m(g + 1) = m(d2mp log(mp)e + 1) ≤ 2m2p log(mp) + m neurons we
can produce a hardplus RBM network which approximates the output of our softplus RBM network
with error bounded by 1/p.

12

Remark 12. Note that the construction used in the above lemma is likely far from optimal, as the
placement of the qi’s could be done more carefully. Also, the error bound we proved is crude and
does not make strong use of the properties of the softplus function. Nonetheless, it seems good
enough for our purposes.

A.3 Proofs for Section 2.5

Proof of Proposition 5. Suppose that there is an RBM network of size m with weights bounded in
magnitude by C computes a function g which represent f with margin δ.

Then taking p = 2/δ and applying Theorem 3 we have that there exists an hardplus RBM network
of size 4m2 log(2m/δ)/δ +m which computes a function g′ s.t. |g(x) − g′(x)| ≤ 1/p = δ/2 for
all x.

Note that f(x) = 1 ⇒ thresh(g(x)) = 1 ⇒ g(x) ≥ δ ⇒ g′(x) ≥ δ − δ/2 = δ/2 and similarly,
f(x) = 0 ⇒ thresh(g(x)) = 0 ⇒ g(x) ≤ −δ ⇒ g′(x) ≤ −δ + δ/2 = −δ/2. Thus we conclude
that g′ represents f with margin δ/2.

A.4 Proofs for Section 2.7

Proof of Theorem 6. Let f be a Boolean function on n variables computed by a size s hardplus RBM
network, with parameters (W, b, d) . We will first construct a three layer hybrid Boolean/threshold
circuit/network where the output gate is a simple weighted sum, the middle layer consists of AND
gates, and the bottom hidden layer consists of threshold neurons. There will be n·mAND gates, one
for every i ∈ [n] and j ∈ [m]. The (i, j)th AND gate will have inputs: (1) xi and (2) (x>[W]j ≥ bj).
The weights going from the (i, j)th AND gate to the output will be given by [W]i,j . It is not hard to
see that our three layer netork computes the same Boolean function as the original hardplus RBM
network.

In order to obtain a single hidden layer threshold network, we replace each sub-network rooted at
an AND gate of the middle layer by a single threshold neuron. Consider a general sub-network
consisting of an AND of: (1) a variable xj and (2) a threshold neuron computing (

∑n
i=1 aixi ≥ b).

Let Q be some number greater than the sum of all the ai’s. We replace this sub-network by a single
threshold gate that computes (

∑n
i=1 aixi + Qxj ≥ b + Q). Note that if the input x is such that∑

i aixi ≥ b and xj = 1, then
∑
i aixi + Qαj will be at least b + Q, so the threshold gate will

output 1. In all other cases, the threshold will output zero. (If
∑
i aixi < b, then even if xj = 1,

the sum will still be less than Q + b. Similarly, if xj = 0, then since
∑
i aixi is never greater than∑

i ai, the total sum will be less than Q ≤ (n+ 1)C.)

A.5 Proof of Theorem 7

Proof. We will first describe how to construct a hardplus RBM network which satisfies the properties
required for part (i). It will be composed of n special groups of hardplus neurons (which are defined
and discussed below), and one additional one we call the “zero-neuron”, which will be defined later.

Definition 13 A “building block” is a group of n hardplus neurons, parameterized by the scalars γ
and e, where the weight vector w ∈ Rn between the i-th neuron in the group and the input layer is
given by wi =M − γ and wj = −γ for j 6= i and the bias will be given by b = γe−M , where M
is a constant chosen so that M > γe.

For a given x, the input to the i-th neuron of a particular building block is given by:

n∑
j=1

wjxj + b = wixi +
∑
j 6=i

wjxj + b

= (M − γ)xi − γ(X − xi) + γe−M
= γ(e−X)−M(1− xi)

13

When xi = 0, this is γ(e − X) −M < 0, and so the neuron will output 0 (by definition of the
hardplus function). On the other hand, when xi = 1, the input to the neuron will be γ(e −X) and
thus the output will be max(0, γ(e−X)).

In general, we have that the output will be given by:

ximax(0, γ(e−X))

From this it follows that the combined output from the neurons in the building block is:

n∑
i=1

(ximax(0, γ(e−X))) = max(0, γ(e−X))

n∑
i=1

xi

= max(0, γ(e−X))X = max(0, γX(e−X))

Note that whenever X is positive, the output is a concave quadratic function in X , with zeros at
X = 0 and X = e, and maximized at X = e/2, with value γe2/4.

Next we show how the parameters of the n building blocks used in our construction can be set to
produce a hardplus RBM network with the desired output.

First, define d to be any number greater than or equal to 2n2
∑
j |tj |.

Indexing the building blocks by j for 1 ≤ j ≤ n we define their respective parameters γj , ej as
follows:

γn =
tn + d

n2
, γj =

tj + d

j2
− tj+1 + d

(j + 1)2

en = 2n, ej =
2

γj

(
tj + d

j
− tj+1 + d

j + 1

)
where we have assumed that γj 6= 0 (which will be established, along with some other properties of
these definitions, in the next claim).

Claim 1. For all j, 1 ≤ j ≤ n, (i) γj > 0 and (ii) for all j, 1 ≤ j ≤ n− 1, j ≤ ej ≤ j + 1.

Proof of Claim 1. Part (i): For j = n, by definition we know that γn = tn+d
n2 . For d ≥

2n2
∑
j |tj | > |tn|, the numerator will be positive and therefore γn will be positive.

For j < n, we have:

γj > 0

⇔ tj + d

j2
>
tj+1 + d

(j + 1)2

⇔ (j + 1)2(tj + d) > j2(tj+1 + d)

⇔ d((j + 1)2 − j2) > j2tj+1 − (j + 1)2tj

⇔ d >
j2tj+1 − (j + 1)2tj

2j + 1

The right side of the above inequality is less than or equal to (j+1)2(|tj+1|+|tj |)
2j+1 ≤ (j+1)(|tj+1|+|tj |)

which is strictly upper bounded by 2n2
∑
j |tj |, and thus by d. So it follows that γj > 0 as needed.

Part (ii):

14

j ≤ ej =
2

γj

(
tj + d

j
− tj+1 + d

j + 1

)
⇔ jγj ≤ 2

(
tj + d

j
− tj+1 + d

j + 1

)
⇔ tj + d

j
− j(tj+1 + d)

(j + 1)2
≤ 2

(
tj + d

j
− tj+1 + d

j + 1

)
⇔ − j(tj+1 + d)

(j + 1)2
≤ tj + d

j
− 2

tj+1 + d

j + 1

⇔ − (tj+1 + d)j2 ≤ (tj + d)(j + 1)2 − 2(tj+1 + d)j(j + 1)

⇔ d(j2 − 2j(j + 1) + (j + 1)2) ≥ −j2tj+1 + 2j(j + 1)tj+1 − (j + 1)2tj

⇔ d ≥ −j2tj+1 + 2j(j + 1)tj+1 − (j + 1)2tj

where we have used j2 − 2j(j + 1) + (j + 1)2 = (j − (j + 1))2 = 12 = 1 at the last line. Thus it
suffices to make d large enough to ensure that j ≤ ej . For our choice of d, this will be true.

For the upper bound we have:

2

γj

(
tj + d

j
− tj+1 + d

j + 1

)
= ej ≤ j + 1

⇔ 2

(
tj + d

j
− tj+1 + d

j + 1

)
≤ (j + 1)γj =

(j + 1)(tj + d)

j2
− tj+1 + d

j + 1

⇔ 2
tj + d

j
− tj+1 + d

j + 1
≤ (j + 1)(tj + d)

j2

⇔ 2(tj + d)j(j + 1)− (tj+1 + d)j2 ≤ (j + 1)2(tj + d)

⇔ −(d− tj+1)

j + 1
+ 2

(d+ tj)

j
≤ (j + 1)

(d+ tj)

j2

⇔ − j2(d+ tj+1) + 2j(j + 1)(d+ tj) ≤ (j + 1)2(d+ tj)

⇔ d(j2 − 2j(j + 1) + (j + 1)2)

≥ −j2tj+1 + 2j(j + 1)tj − (j + 1)2tj

⇔ d ≥ −j2tj+1 + 2j(j + 1)tj − (j + 1)2tj

where we have used j2 − 2j(j + 1) + (j + 1)2 = 1 at the last line. Again, for our choice of d the
above inequality is satisfied.

Finally, define M to be any number greater than max(t0 + d,maxi{γiei}).
In addition to the n building blocks, our hardplus RBM will include an addition unit that we will call
the zero-neuron, which handles x = 0. The zero-neuron will have weights w defined by wi = −M
for each i, and b = t0 + d.

Finally, the output bias B of our hardplus RBM network will be set to −d.

The total output of the network is simply the sum of the outputs of the n different building blocks,
the zero neuron, and constant bias −d.

To show part (i) of the theorem we want to prove that for all k, whenever X = k, our circuit outputs
the value tk.

We make the following definitions:

ak ≡ −
n∑
j=k

γj bk ≡
n∑
j=k

γjej

15

Claim 2.

ak =
−(tk + d)

k2
bk =

2(tk + d)

k
bk = −2kak

This claim is self-evidently true by examining basic definitions of γj and ej and realizing that ak
and bk are telescoping sums.

Given these facts, we can prove the following:

Claim 3. For all k, 1 ≤ k ≤ n, when X = k the sum of the outputs of all the n building blocks is
given by tk + d.

Proof of Claim 3. For X = n, the (γn, en)-block computes max(0, γnX(en − X)) =
max(0,−γnX2+γnenX). By the definition of en, n ≤ en, and thus whenX ≤ n, γnX(en−X) ≥
0. For all other building blocks (γj , ej), j < n, since ej ≤ j + 1, this block outputs zero since
γjX(ej −X) is less than or equal to zero. Thus the sum of all of the building blocks when X = n
is just the output of the (γn, en)-block which is

γn · n(en − n) = −γn · n2 + γnen · n = −(tn + d) + 2(tn + d) = tn + d

as desired.

For X = k, 1 ≤ k < n the argument is similar. For all building blocks j ≥ k, by Claim 1 we know
that ej ≥ j and therefore this block on X = k is nonnegative and therefore contributes to the sum.
On the other hand, for all building blocks j < k, by Claim 1 we know that ej ≤ j + 1 and therefore
this outputs 0 and so does not contribute to the sum.

Thus the sum of all of the building blocks is equal to the sum of the non-zero regions of the building
blocks j for j ≥ k. Since each of this is a quadratic function ofX , it can written as a single quadratic
polynomial of the form akX

2 + bkX where ak and bk are defined as before.

Plugging in the above expressions for ak and bk from Claim 2, we see that the value of this polyno-
mial at X = k is:

akk
2 + bkk =

−(tk + d)

k2
k2 +

2(tk + d)

k
k = −(tk + d) + 2(tk + d) = tk + d

Finally, it remains to ensure that our hardplus RBM network outputs t0 for X = 0. Note that the
sum of the outputs of all n building blocks and the output bias is −d at X = 0. To correct this, we
set the incoming weights and the bias of the zero-neuron according to wi = −M for each i, and
b = t0 + d. When X = 0, this neuron will output t0 + d, making the total output of the network
−d+ t0 + d = t0 as needed. Furthermore, note that the addition of the zero-neuron does not affect
the output of the network when X = k > 0 because the zero-neuron outputs 0 on all of these inputs
as long as M ≥ t0 + d.

This completes the proof of part (i) of the theorem and it remains to prove part (ii).

Observe that the size of the weights grows linearly inM and d, which follows directly from their def-
initions. And note that the magnitude of the input to each neuron is lower bounded by a positive lin-
ear function ofM and d (a non-trivial fact which we will prove below). From these two observations
it follows that to achieve the condition that the magnitude of the input to each neuron is greater than
C(n) for some function C of n, the weights need to grow linearly with C. Noting that error bound
condition ε ≤ (n2 + 1) exp(−C) in Lemma 2 can be rewritten as C ≤ log((n2 + 1)) + log(1/ε),
from which part (ii) of the theorem then follows.

There are two cases where a hardplus neuron in building block j has a negative input. Either the
input is γj(ej −X) −M , or it is γj(ej −X) for X ≥ j + 1. In the first case it is clear that as M
grows the net input becomes more negative since ej doesn’t depend on M at all.

16

The second case requires more work. First note that from its defintion, ej can be rewritten as
2

(j+1)aj+1−jaj
γj

. Then for any X ≥ j + 1 and j ≤ n− 1 we have:

γj(ej −X) ≤ γj(ej − (j + 1))

= γj

(
2
(j + 1)aj+1 − jaj

γj
− (j + 1)

)
= 2(j + 1)aj+1 − 2jaj − (j + 1)γj

= 2(j + 1)aj+1 − 2jaj − (j + 1)(aj+1 − aj)
= (j + 1)aj+1 − 2jaj + (j + 1)aj

=
−(d− tj+1)

j + 1
+ 2

(d+ tj+1)

j
− (j + 1)

d+ tj+1

j2

=
−j2(d+ tj+1) + 2j(j + 1)(d+ tj)− (j + 1)2(d+ tj)

j2(j + 1)

=
−(j2 − 2j(j + 1) + (j + 1)2)d− j2tj + 2j(j + 1)tj

j2(j + 1)

=
−(j − (j + 1))2d− j2tj + 2j(j + 1)tj

j2(j + 1)

=
−d− j2tj + 2j(j + 1)tj

j2(j + 1)

=
−d

j2(j + 1)
+
−j2tj + 2j(j + 1)tj

j2(j + 1)

So we see that as d increases, this bound guarantees that γj(ej − X) becomes more negative for
each X ≥ j + 1. Also note that for the special zero-neuron, for X ≥ 1 the net input will be
−MX + t0 + d ≤ −M + t0 + d, which will shrink as M grows.

For neurons belonging to building block j which have a positive valued input, we have that X < ej .
Note that for any X ≤ j and j < n we have:

γj(ej −X) ≥ γj(ej − j) = γj

(
2
(j + 1)aj+1 − jaj

γj
− j
)

= 2(j + 1)aj+1 − 2jaj − jγj
= 2(j + 1)aj+1 − 2jaj − j(aj+1 − aj)
= 2(j + 1)aj+1 − jaj − jaj+1

= 2
−(d+ tj+1)

j + 1
+

(d+ tj)

j
+ j

(d+ tj+1)

(j + 1)2

=
−2j(j + 1)(d+ tj+1) + (j + 1)2(d+ tj) + j2(d+ tj+1)

j(j + 1)2

=
((j + 1)2 − 2j(j + 1) + j2)d+ (j + 1)2tj − 2j(j + 1)tj+1 + j2tj+1

j(j + 1)2

=
(j + 1− j)2d+ (j + 1)2tj − 2j(j + 1)tj+1 + j2tj+1

j(j + 1)2

=
d+ (j + 1)2tj − 2j(j + 1)tj+1 + j2tj+1

j(j + 1)2

=
d

j(j + 1)2
+

(j + 1)2tj − 2j(j + 1)tj+1 + j2tj+1

j(j + 1)2

And for the case j = n, we have for X ≤ j that:

γj(ej −X) ≥ γj(ej − j) =
d+ tn
n2

(2n− n) = d

n
+
tn
n

17

So in all cases we see that as d increases, this bound guarantees that γj(ej − X) grows linearly.
Also note that for the special zero-neuron, the net input will be t0 + d for X = 0, which will grow
linearly as d increases.

A.6 Proofs for Section 4

A.6.1 Proof of Theorem 8

We first state some basic facts which we need.
Fact 14 (Muroga (1971)). Let f : {0, 1}n → {0, 1} be a Boolean function computed by a threshold
neuron with arbitrary real incoming weights and bias. There exists a constant K and another
threshold neuron computing f , all of whose incoming weights and bias are integers with magnitude
at most 2Kn logn.

A direct consequence of the above fact is the following fact, by now folklore, whose simple proof
we present for the sake of completeness.
Fact 15. Let fn be the set of all Boolean functions on {0, 1}n. For each 0 < α < 1, let fα,n be the
subset of such Boolean functions that are computable by threshold networks with one hidden layer
with at most s neurons. Then, there exits a constant K such that,∣∣fα,n∣∣ ≤ 2K(n2s logn+s2 log s).

Proof. Let s be the number of hidden neurons in our threshold network. By using Fact 14 repeatedly
for each of the hidden neurons, we obtain another threshold network having still s hidden units com-
puting the same Boolean function such that the incoming weights and biases of all hidden neurons
is bounded by 2Kn logn. Finally applying Fact 14 to the output neuron, we convert it to a threshold
gate with parameters bounded by 2Ks log s. Henceforth, we count only the total number of Boolean
functions that can be computed by such threshold networks with integer weights. We do this by
establishing a simple upper bound on the total number of distinct such networks. Clearly, there are
at most 2Kn

2 logn ways to choose the incoming weights of a given neuron in the hidden layer. There
are s incoming weights to choose for the output threshold, each of which is an integer of magnitude
at most 2Ks log s. Combining these observations, there are at most 2Ks·n

2 logn × 2Ks
2 log s distinct

networks. Hence, the total number of distinct Boolean functions that can be computed is at most
2K(n2s logn+s2 log s).

With these basic facts in hand, we prove below Theorem 8 using Proposition 5 and Theorem 6.

Proof of Theorem 8. Consider any thresholded RBM network withm hidden units that is computing
a n-dimensional Boolean function with margin δ. Using Proposition 5, we can obtain a thresholded
hardplus RBM network of size 4m2/δ · log(2m/δ) +m that computes the same Boolean function
as the thresholded original RBM network. Applying Theorem 6 and thresholding the output, we
obtain a thresholded network with 1 hidden layer of thresholds which is the same size and computes
the same Boolean function. This argument shows that the set of Boolean functions computed by
thresholded RBM networks of m hidden units and margin δ is a subset of the Boolean functions
computed by 1-hidden-layer threshold networks of size 4m2n/δ ·log(2m/δ)+mn. Hence, invoking
Fact 15 establishes our theorem.

A.6.2 Proof of Theorem 9

Note that the theorems from Hajnal et al. (1993) assume integer weights, but this hypthosis can
be easily removed from their Theorem 3.6. In particular, Theorem 3.6 assumes nothing about the
lower weights, and as we will see, the integrality assumption on the top level weights can be easily
replaced with a margin condition.

First note that their Lemma 3.3 only uses the integrality of the upper weights to establish that the
margin must be ≥ 1. Otherwise it is easy to see that with a margin δ, Lemma 3.3 implies that
a threshold neuron in a thresholded network of size m is a 2δ

α -discriminator (α is the sum of the

18

absolute values of the 2nd-level weights in their notation). Then Theorem 3.6’s proof gives m ≥
δ2(1/3−ε)n for sufficiently large n (instead of just m ≥ 2(1/3−ε)n). A more precise bound that they
implictly prove in Theorem 3.6 is m ≥ 6δ2n/3

C .

Thus we have the following fact adapted from Hajnal et al. (1993):
Fact 16. For a neural network of sizem with a single hidden layer of threshold neurons and weights
bounded by C that computes a function that represents IP with margin δ, we have m ≥ 6δ2n/3

C .

Proof of Theorem 9. By Proposition 5 it suffices to show that no thresholded hardplus RBM network
of size ≤ 4m2 log(2m/δ)/δ+m with parameters bounded by C can compute IP with margin δ/2.

Well, suppose by contradiction that such a thresholded RBM network exists. Then by Theorem 6
there exists a single hidden layer threshold network of size≤ 4m2n log(2m/δ)/δ+mnwith weights
bounded in magnitude by (n+ 1)C that computes the same function, i.e. one which represents IP
with margin δ/2.

Applying the above Fact we have 4m2n log(2m/δ)/δ +mn ≥ 3δ2n/3

(n+1)C .

It is simple to check that this bound is violated if m is bounded as in the statement of this theorem.

A.6.3 Proof of Theorem 10

We prove a more general result here from which we easily derive Theorem 10 as a special case.
To state this general result, we introduce some simple notions. Let h : R → R be an activation
function. We say h is monotone if it satisfies the following: Either h(x) ≤ h(y) for all x < y OR
h(x) ≥ h(y) for all x < y. Let ` : {0, 1}n → R be an inner function. An (h, `) gate/neuron Gh,`
is just one that is obtained by composing h and ` in the natural way, i.e. Gh,`

(
x
)
= h

(
`(x)

)
. We

notate
∣∣∣∣(h, `)∣∣∣∣∞ = maxx∈{0,1}n

∣∣Gh,`(x)∣∣.
We assume for the discussion here that the number of input variables (or observables) is even and is
divided into two halves, called x and y, each being a Boolean string of n bits. In this language, the in-
ner production Boolean function, denoted by IP (x, y), is just defined as x1y1+ · · ·+xnyn (mod 2).
We call an inner function of a neuron/gate to be (x, y)-separable if it can be expressed as g(x)+f(y).
For instance, all affine inner functions are (x, y)-separable. Finally, given a set of activation func-
tions H and a set of inner functions I , an (H, I)- network is one each of whose hidden unit is a
neuron of the form Gh,` for some h ∈ H and ` ∈ I . Let

∣∣∣∣(H, I)∣∣∣∣∞ = sup
{∣∣∣∣(h, `)∣∣∣∣∞ : h ∈

H, ` ∈ I
}

.

Theorem 17. Let H be any set of monotone activation functions and I be a set of (x, y) separable
inner functions. Then, every (H, I) network with one layer of m hidden units computing IP with a
margin of δ must satisfy the following:

m ≥ δ

2
∣∣∣∣(H, I)∣∣∣∣∞ 2n/4.

In order to prove Theorem 17, it would be convenient to consider the following 1/-1 valued function:
(−1)IP(x,y) = (−1)x1y1+···+xnyn . Please note that when IP evaluates to 0, (−1)IP evaluates to 1 and
when IP evaluates to 1, (−1)IP evaluates to -1.

We also consider a matrix Mn with entries in {1,−1} which has 2n rows and 2n columns. Each
row of Mn is indexed by a unique Boolean string in {0, 1}n. The columns of the matrix are also
indexed similarly. The entry Mn[x, y] is just the 1/-1 value of (−1)IP(x,y). We need the following
fact that is a special case of the classical result of Lindsey.
Lemma 18 (Chor and Goldreich,1988). The magnitude of the sum of elements in every r × s sub-
matrix of Mn is at most

√
rs2n.

We use Lemma 18 to prove the following key fact about monotone activation functions:
Lemma 19. LetGh,` be any neuron with a monotone activation function h and inner function ` that
is (x, y)-separable. Then,

19

∣∣∣∣Ex,y[Gh,`(x, y)(−1)IP
(
x,y
)] ∣∣∣∣ ≤ ||(h, `)||∞ · 2−Ω(n). (2)

Proof. Let `(x, y) = g(x) + f(y) and let 0 < α < 1 be some constant specified later. Define a
total order ≺g on {0, 1}n by setting x ≺g x′ whenever g(x) ≤ g(x′) and x occurs before x′ in the
lexicographic ordering. We divide {0, 1}n into t = 2(1−α)n groups of equal size as follows: the first
group contains the first 2αn elements in the order specified by ≺g , the second group has the next
2αn elements and so on. The ith such group is denoted by Xi for i ≤ 2(1−α)n. Likewise, we define
the total order ≺f and use it to define equal sized blocks Y1, . . . , Y2(1−α)n .

The way we estimate the LHS of (2) is to pair points in the block (Xi, Yj) with (Xi+1, Yj+1)
in the following manner: wlog assume that the activation function h in non-decreasing. Then,
Gh,`(x, y) ≤ Gh,`(x′, y′) for each (x, y) ∈ (Xi, Yj) and (x′, y′) ∈ (Xi+1, Yj+1). Further, applying
Lemma 18, we will argue that the total number of points in (Xi, Yj) at which the product in the
LHS evaluates negative (positive) is very close to the number of points in (Xi+1, Yj+1) at which
the product evaluates to positive (negative). Moreover, by assumption, the composed function (h, `)
does not take very large values in our domain by assumption. These observations will be used to
show that the points in blocks that are diagonally across each other will almost cancel each other’s
contribution to the LHS. There are too few uncancelled blocks and hence the sum in the LHS will
be small. Forthwith the details.

Let P+
i,j = {(x, y) ∈ (Xi, Yj) | IP(x, y) = 1} and P−i,j = {(x, y) ∈ (Xi, Yi) | IP(x, y) = −1}.

Let t = 2(1−α)n. Let hi,j be the max value that the gate takes on points in (Xi, Yj). Note that the
non-decreasing assumption on h implies that hi,j ≤ hi+1,j+1. Using this observation, we get the
following:

Ex,y
[
Gh,`

(
x, y
)
(−1)IP

(
x,y
)]
≤ 1

4n

∣∣∣∣ ∑
(i,j)<t

hi,j

(∣∣P+
i,j

∣∣− ∣∣P−i+1,j+1

∣∣)∣∣∣∣+ 1

4n

∑
i=tORj=t

hi,j |Pi,j |

(3)

We apply Lemma 18 to conclude that
∣∣P+
i+1,j+1

∣∣− ∣∣P−i,j∣∣ is at most 2 · 2(α+1/2)n. Thus, we get

RHS of (3) ≤ ||(h, `)||∞ ·
(
2 · 2−(α− 1

2)n + 4 · 2−(1−α)n
)
. (4)

Thus, setting α = 3/4 gives us the bound that the RHS above is arbitrarily close to ||(h, `)||∞·2−n/4.

Similarly, pairing things slightly differently, we get

Ex,y
[
Gh,`

(
x, y
)
(−1)IP

(
x,y
)]
≥ 1

4n

∑
(i,j)<t

hi+1,j+1

(∣∣P+
i+1,j+1

∣∣− ∣∣P−i,j∣∣)∣∣∣∣− 1

4n

∑
i=tORj=t

|hi,j | · |Pi,j |

(5)

Again similar conditions and settings of α imply that RHS of (5) is no smaller than −||(h, `)||∞ ·
2−n/4, thus proving our lemma.

We are now ready to prove Theorem 17.

Proof of Theorem 17. Let C be any (H, I) network having m hidden units, Gh1,`1 , . . . , Ghm,`m ,
where each hi ∈ H and each `i ∈ I is (x, y)-separable. Further, let the output threshold gate
be such that whenever the sum is at least b, C outputs 1 and whenever it is at most a, C outputs
-1. Then, let f be the sum total of the function feeding into the top threshold gate of C. Define
t = f − (a+ b)/2. Hence,

Ex,y
[
f(x, y)(−1)IP(x,y)

]
= Ex,y

[
t(x, y)(−1)IP(x, y)

]
+
a+ b

2
Ex,y

[
(−1)IP(x,y)

]
≥ (b− a)/2 + a+ b

2
Ex,y

[
(−1)IP(x,y)

]
.

20

Thus, it follows easily ∣∣∣∣Ex,y[f(x, y)(−1)IP(x,y)
]∣∣∣∣ ≥ b− a

2
−
∣∣a+ b

∣∣
2

2−n. (6)

On the other hand, by linearity of expectation and applying Lemma 19, we get∣∣∣∣Ex,y[f(x, y)(−1)IP(x,y)
]∣∣∣∣ ≤ m∑

j=1

∣∣∣∣Ex,y[Ghj ,`j(x, y)(−1)IP(x,y)

]∣∣∣∣ ≤ m · ∣∣∣∣(H, I)∣∣∣∣∞ · 2−n/4.
(7)

Comparing (6) and (7), observing that each of |a| and |b| is at most m
∣∣∣∣(H, I)∣∣∣∣∞ and recalling that

δ = (b− a), our desired bound on m follows.

Proof of Theorem 10. The proof follows quite simply by noting that the set of activation functions in
this case is just the singleton set having only the monotone function soft(y) = log(1+exp(y)). The
set of inner functions are all affine functions with each coefficient having value at most C. As the
affine functions are (x, y)-separable, we can apply Theorem 17. We do so by noting

∣∣∣∣(H, I)∣∣∣∣∞ ≤
log(1 + exp(nC)) ≤ max

{
log 2, nC + log 2

}
. That yields our result.

Remark 20. It is also interesting to note that Theorem 17 appears to be tight in the sense that
none of the hypotheses can be removed. That is, for neurons with general non-montonic activation
functions, or for neurons with monotonic activation functions whose output magnitude violates the
aforementioned bounds, there are example networks that can efficiently compute any real-valued
function. Thus, to improve this result (e.g. removing the weight bounds) it appears one would need
to use a stronger property of the particular activation function than monotonicity.

21

