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Optimal retrieval dynamics for generalized Hebbian learning

Here and later in this supplement, we repeat selected text from the main paper concerning the math-
ematical argument, and add the details that we lacked the space to discuss.

For retrieval dynamics based on Gibbs sampling a key quantity is the the log-odds ratio, which, for
neuron i, is:

Ii = log

(
P(xi = 1|x¬i,W, x̃)

P(xi = 0|x¬i,W, x̃)

)
(1)

corresponding to the total current entering the unit. This translates into a probability of firing given
by the sigmoid activation function f(Ii) = 1

(1+e−Ii )
.

The total current entering a neuron is a sum of two terms: one term from the external input, Iexti ,
and the other from recurrent collaterals, Ireci . The external current has the form: Iexti = c1 · x̃i + c2,

with constants c1 = 2 log
(
1−r
r

)
and c2 = log

(
fr

(1−f)(1−r)

)
.

For computing the recurrent component, let us first consider the case of symmetric additive learning,
when reciprocal connections are perfectly correlated. In this case, the probability P(W|x) can
be written as

∏
i,j δ(Wij ,Wji) · N (W/,µ/,C/), where the subscript / marks the fact that the

multivariate normal is defined in the space of the weights from the upper triangular part of matrix
W. Writing down the exact expression for the log-odds ratio determining the current in this case
yields:

Ireci =
1

2(T−1)

((
W| − µ

(0)
W

)T
C−11

(
W| − µ

(0)
W

)
−
(
W| − µ

(1)
W

)T
C−11

(
W| − µ

(1)
W

))
,

(2)
where µ

(0/1)
W = Ω(x(0/1)) + (T − 1)µ1, x(0/1) is the vector of activities obtained from x in which

the activity of neuron i is set to 0, or 1, respectively, and the subscript | marks the fact that the
weights are reorganised as a column vector.
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When computing the current to a neuron i all the terms that are not local to i cancel out1. Hence, the
above expression reduces to:

Ireci =
∑
j,k

C−1Idx(i,j),Idx(i,k)(Wij − Ω(1, xj))(Wik − Ω(1, xk))−

∑
j,k

C−1Idx(i,j),Idx(i,k)(Wij − Ω(0, xj))(Wi,k − Ω(0, xk)), (3)

where Idx(i, j) represents the index of synapse Wij in the column-version representation W|. Im-
portantly, the exact optimal dynamics depending only on incoming synapses to the neuron. If the
learning rule would not be symmetric, the expression for the current above would include additional
terms corresponding to the covariance between other types of pairs – incoming-outgoing, outgoing-
outgoing, and reciprocal connections, making the decoder no longer strictly local. It is still possible
to construct approximately optimal dynamics that are local by replacing the non-local component,
by its expectation, conditioned on the local information:

Itotali = I locali (Wi,·,x) +
〈
Inonlocali (W,x) |Wi,·,x

〉
(4)

Lastly, what does the remaining local term mean for circuit dynamics? The current in Eq.3 can be
separated in one component summing over the terms with j = k and the other for all remaining
terms:

Irec,1i =
clin
2

∑
j

(
2Wijxj − 2βWij − (1− 2α)(1− 2β)xj − (1− 2α)β2

)
(5)

Irec,2i =
vnonlin(2α− 1)

2

∑
j 6=i

xj
∑
k 6=i

Wik −
∑
j 6=i

xj
∑
k 6=i

xk

 (6)

where we have used the generalised Hebbian learning rule, Ω(xi, xj) = (xi − α)(xj − β) and
factored out clin = C−1Idx(i,j),Idx(i,j), cnonlin = C−1Idx(i,j),Idx(i,k)(same for all terms). In the case of the
covariance rule, the second component cancels out, as cnonlin = 0. For any other Hebbian learning
rule in the family considered, the total current involves the second term, which is has a quadratic
dependence on the total activity nb =

∑
j xj , translating into nonlinear dynamic inhibition in the

neural circuit.

Cascade details

Learning is stochastic and local, with changes in the state of a synapse Vij being determined only
by the activation of the pre- and post-synaptic neurons, xj and xi. The transition matrices for
potentiation, M+ and depression, M− (of size 2n×2n, with n being the cascade depth), are defined
using Fusi’s cascade model [1], which assumes that the probability of potentiation and depression
decays with cascade depth i as a geometric progression, q±i = χi−1, with q±n = χn−1

1−χ to compensate

for boundary effects. The transition between metastates is given by p±i = ς±
χi

1−χ , with the correction

factors ς+ = 1−f
f and ς− = f

1−f ensuring that different metastates are equally occupied for different
pattern sparseness values f [1].

Additionally, we consider three possible mappings from neural activity to potentiation events:

• a post-synaptically gated learning rule, R1: M(0, 0) = I, M(0, 1) = I, M(1, 0) = M−,
M(1, 1) = M+;

• a pre-synaptically gated learning rule, R2: M(0, 0) = I, M(0, 1) = M−,M(1, 0) = I,
M(1, 1) = M+

• the XOR-like learning rule of Ben Dayan Rubin et al [2], R3: M(0, 0) = M+, M(0, 1) =
M−,M(1, 0) = M−,M(1, 1) = M+.

1This is only true for the class of additive learning rules because the same covariance matrix appears in both
of the terms of the above sum; the non-local terms will not cancel out in the palimpsest case.
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Estimating the covariance matrix

To estimate the degree of correlations for different synaptic configurations we need to compute the
joint distribution of synaptic pairs. As an illustration, we take the case of two incoming synapses
to the same neuron; other configurations are very similar. We represent the joint probability of a
synaptic states pair as a matrix ρ, with 2n rows and 2n columns, with , ρab = P(Vij = a, Vik = b).

For the first synapse, between neurons i and j, a column v in matrix ρ, is proportional to the condi-
tional distribution P(Vij |Vik = v). Hence, an encoding event for this synapse, means a multiplica-
tion by M(xi, xj). For the second synapse the distribution over states is a row vector, so we need an
additional transposition, before applying the corresponding transition operator, M(xi, xk). Putting
the two together, we obtain the operator for encoding: (xpre1, xpre2, xpost) as:

ρ(1) =

(
M(xpost, xpre2) ·

(
M(xpost, xpre1) · ρ(0)

)T)T

= M(xpost, xpre1)·ρ(0)·M(xpost, xpre2)T,

(7)
with ρ(0) the stationary distribution, corresponding to storing an infinite number of triplets from the
pattern distribution.2

Replacing πV with ρ (which is now a function of the triplet (xpre1, xpre2, xpost) and the multiplica-
tion with M by the slightly more complicated operator above, we can estimate the evolution of the
joint distribution over synaptic states in a manner very similar to the calculations above:

ρ(t) =
∑
xi

Pstore(xi) · M̂(xi) · ρ(t−1) · M̂(xi)
T, (8)

where M̂(xi) =
∑
xj

Pstore(xj)M(xi, xj) is an analog of M, conditioned on the shared neuron’s
activity. The final joint distribution over states can be mapped in a joint over synaptic weights as
MV→W · ρ(t) ·MT

V→W , as done above, which see use for constructing covariance matrix C .

For outgoing pairs, we would obtain a very similar expression, just changing the activity component
that is shared between the two ρ′(1) = M(xpost1, xpre)·ρ′(0) ·M(xpost2, xpre)

T (which also implies
defining a different average transition matrix M̂′(xi) =

∑
xj

Pstore(xj)M(xj , xi)), and so on.

TAP procedure for fitting the maximum entropy model

To consider the effect of synaptic correlations, we approximate P(W|x) by a maximum entropy
distribution with the same marginals and covariance structure, ignoring the higher order moments:

P(W|x, t) =
1

Z(x, t)
exp

∑
ij

kij(x, t) ·Wij +
1

2

∑
ijkl

Jijkl(x, t) ·WijWkl

 (9)

We use the TAP mean-field method [3] to compute the model parameters, k and J, and the partition
function, Z, for each possible activity pattern x, given the mean and covariance for the synaptic
weights derived in the main text.3

Briefly, given the target mean m and covariance C in the spin representation, the parameters can be
computed by solving the equations4:

tanh−1(mij) = kij +
∑

(i,j) 6=(k,l)

J(ij)(kl) ·mkl −
∑

(i,j)6=(k,l)

J2
(ij)(kl) ·mij(1−m2

kl) (10)

(C−1)(ij)(kl) = −J(ij)(kl) − 2mijmklJ
2
(ij)(kl) (11)

where we first solve the second equation for Jij (additional continuity constraints determine which
of the two solutions to select, see [4]), then solve the first equation for ki. Lastly, the normalizing

2In this case, we estimate the stationary distribution numerically, by repeatedly applying the operator in 8.
3The TAP fit uses a spin-based representation for the variables; we subsequently convert the parameters K

and J back to a binary representation.
4To keep things simple, we keep the dependence of the parameters x implicit here.
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constant Z can be computed as [5]:

log(Z) =
∑
i,j

log (2 cosh(kij + Lij))−
∑
i,j

Lijmij +
1

2

∑
(i,j)6=(kl)

J(ij)(kl)mijmkl + (12)

1

4

∑
(i,j) 6=(kl)

J2
(ij)(kl)

(
1−m2

ij

) (
1−m2

kl

)
(13)

where Lij = 1
2

(∑
(i,j)6=(kl) J(ij)(kl)mkl −mij

∑
(i,j)6=(kl) J

2
(ij)(kl)

(
1−m2

kl

))
.

We use the TAP method to find parameters k and J and the partition function, Z, for each possi-
ble activity pattern x, given the mean and covariance for the synaptic weights matrix. This seems
computationally daunting, as the number of distributions needed to be fitted is exponential in the
network size. However, due to the all-to-all connectivity assumption, we can use symmetry argu-
ments to reduce this computation from 2N , corresponding to all possible values of the pattern x, to
N + 1 TAP runs, corresponding to patterns including 0 to N bits set to 1. Intuitively, because of the
all-to-all connectivity, there is no inherent indexing of the neurons; if we have computed P(W|x1),
for a pattern x1 = (1 0 0), then when estimating the evidence for a pattern x2 = (0 1 0), P(W|x2),
we do not need to recompute the max entropy parameters, as they are the same lest for a permutation
of neuron indices (the mean and covariance matrices are the same after reordering the indices; this is
because we compute the mean and covariance analytically, from the joint ρ(t), so they are the same
for all synaptic pairs receiving the same activity pattern). Hence all patterns with the same number
of active bits are isomorphic. The TAP procedure is nonetheless very computationally expensive,
since the parameter space is of the order N4 (we could simulate networks of up to 50 neurons).

Simulation parameters

Default parameters: f = 0.5, r = 0.1. For the additive learning rule, we use T = 5; we simulate
Nrun = 100 retrieval episodes; for each we generate a sequence of T random patterns, used for
computing W ; we pick the first as the target for retrieval and generate a corresponding recall cue;
starting from this recall cue we run the Gibbs sampler for 10000 steps, use all the samples for
estimating the mean of the posterior (no burn-in), with the final error given by the euclidian distance
between the network response and the true pattern. In the palimpsest case, the simulations assume
cascade depth n = 5, t = 3, Nrun = 50 and the same general procedure, with a sequence of cascade
transitions for the encoding (starting from the stationary distribution).
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Figure 1: Implications of synaptic correlations on neural dynamics. a) Parameters for the local
component of the neural dynamics for a pre-synaptically gated cascade. b) Same for the XOR rule.
c) Approximation of the non-local term for post-synaptically gated learning. The nonlocal current is
replaced by a linear function in nb, with parameters determined numerically (by linear regression).
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