A Comparative Framework for
Preconditioned Lasso Algorithms
— Supplementary Material —

1 Preconditioning Algorithms

In this section we briefly show how to express PBHT and HJ in a framework that runs Lasso on
modified variables Px X and P,

1.1 Huang and Jojic [1] (HJ)

Consider the SVD X = UDV ", where U isn x n, Vis p x p and D is an n x p “diagonal” matrix
with entries d; < ... < d,,'. Define two groups of left and right singular vectors associated with the
q smallest and n — q largest singular values. Let the groups be defined by U, U,,—, and V,,, V,, _
Suppose HJ chooses as its row-basis the n — ¢ largest right singular vectors, V;,_,. Then, from Table
1 of Huang and Jojic [1] we find that

Z = XVy_q = Up_qdiag({d;};>q) M
X=R=X-2V,_, @
= X — Un—qdiag({d; };54)V, ®)

= Uydiag({d:}i<g)V," X

— U X ®)
J=y— 2272 2Ty (6)
— U, ULy )
—U,UTy ®

SoHJ sets Px = P, = U, AU,I for a suitably estimated subspace U 4

1.2 Paul et al. [2] (PBHT)

Suppose PBHT identifies as X, the ¢ columns of X that are most correlated with y (i.e., where
| X1yl /1X;]2 is largest). Consider the SVD X, = UDV' T, where U is n X n, V is ¢ X g and D is
n X g. Paul et al. [2] use V' to find the projection matrix F,. Let the columns of V' be denoted by v/
and those of U by u,. From Section 4.5 and Eq. (13) in Paul el al. [2]°.

q
1 TyT
i Z  Xyog T3 oo o X ©
q
q’'=1
X=X (11)
y= qy UqU Y, (12)

where U, consists of the first ¢ columns of U. Thus, PBHT sets Px = I,,x,, and P, = UAUJ‘— for a
suitably estimated subspace U 4

'For ease of presentation, we let the d; be distinct.
“Note that they switch V with U relative to our notation.



2 Proof of Lemma 1

Lemma 1. Suppose that X;—X s is invertible,

wil <1 Vj € S¢andsgn(Bf)y; >0 Vi€ S. Then

the Lasso has a unique solution (3 which recovers the signed support (i.e., S+(8) = S+ (6*)) if and
only if \j < X\ < Ay, where

Bi + €
Yi

i :
N =1 Au = 1m , 13
T (2[n; > 0] —1) — p; ies (13)

+

[-] denotes the indicator function and | - |1 = max(0, -) denotes the hinge function. On the other
hand, if X ;—X s is not invertible, then the signed support cannot in general be recovered.

Proof. For a particular choice of A, and instances X, 3*, w, Lemmas 2 and 3 of Wainwright give

conditions under which Lasso produces a unique /3 which recovers the signed support. If XJ Xg is
invertible, then by Lemmas 2 and 3

Si(B) =SL(B") <= Vj €S |Z;] <1 and Vie S sgn(B; +A;) =sgn(B;),  (14)

where
. 1
Zj = 1+ 30 15)
= X Xs(X§ Xs)'sgn(55) (16)
_ w
nj =X (Inxn — Xs(Xg Xs)7'Xg) -~ (17)
A &6 — My (18)
Tt 1 T

ei=¢; | —XgXs —Xgw (19)
n n
1 —1

vi=e] <nXsT XS> sgn(f3) (20)

We can invert Lemmas 2 and 3 and derive from them conditions on A so that signed support recovery
can be guaranteed.

Ensure Vj € S¢,|Z;| < 1

For this to hold, we need Vj € S¢,

1
|Zi| = |ng + 3ms| < 1. 2D
Since we assumed that |p;| < 1 Vj € S, we have:
Casela: n; >0
We need for every j € S°¢
1
Hi 5y <1 (22)
1
an <1—py (23)
A> M (24)
L= py



Case 1b: n; <0

We need for every j € S°¢

1
My =+ N > —1 (25)
1
N> Tl (26)
A>T - 27)

Combining, we need

A > A\ = max i

> 0. 28
e -1 -k @

Ensure Vi € S,sgn(3 + A;) = sgn(f;)
Since we assumed sgn(S7)y; > 0 Vi € S, we have in particular that v; # 0. Then

Case 2a: 87 >0

Since sgn(3;)y; > 0, we have y; > 0. Then we need

B+ A, =0 4+€e—My; >0 (29)
AN < B +e (30)
\ < Bz +€ (31)

i

Case 2b: 5 <0

Since sgn(S;)y; > 0, we have v; < 0. We need

B+ A =8 +e— A <0 (32)
Ny > B + € (33)
)< B e (34)
Yi
Hence, overall we need
A< min 2L (35)
icS Yi

Although the previous equation could be used to make a definition for \,, it will be beneficial later

if A, > 0. Because \; > 0, signed support recovery will not be possible whenever min;es(S85 +

€;)/7v: < 0. Thus, we will define

B + e
Vi

Ay = min ; (36)

+

where | - |1 = max(O,-W) is the hinge function. Signed support recovery occurs iff \; < A < \,.
On the other hand, if X ¢ X is not invertible, the columns of X are linearly dependent and so the
signed support cannot be recovered in general. O



3 Proofs of Section 4

To simplify the proofs of Section 4, we will make repeated use of the following lemma.

Lemma 2. Suppose U,V are orthonormal bases for subspaces lying in R™. That is, U is n X g,
withq <nand UTU = Iyxg and Vis n x v, withr < n and VIV = Iy, Suppose the matrix
B has a column space spanned by U. If span(U) C span(V))

VV'B=B (37)
Proof. Because B has a column space spanned by U, we can write B = U R for some matrix R.
Furthermore, because span(U) C span(V')), we may write U = VT, for some r X ¢ matrix T, with

q < r. Indeed we know that 7" has orthonormal columns, since U TU=T"V'vT =TTT =
14x 4. Hence, we can write B = VTR, where T' is some orthonormal matrix. Now

VV'B=VV'VTR=VTR = B. (38)
O



3.1 Proof of Theorem 1

Theorem 1. Suppose that the conditions of Lemma 1 are met for a fixed instance of X, 3*. If
span(Ug) C span(U 4), then after preconditioning using HJ the conditions continue to hold, and
A
NN
where the stochasticity on both sides is due to independent noise vectors w. On the other hand, if
X ;P)—(r Px Xg is not invertible then HJ cannot in general recover the signed support.

(39

Proof. We have Px = P, = UAUX. With this, w = UAUIw. First, consider the case that
span(Ug) C span(U 4). Using Lemmas 1 and 2 we have

fij = X UAUAUAU f Xs(XdUAU JUAU L X5) ' sgn(B5) (40)
= X Xs(Xg Xs) 'sgn(B5) = p; D
1 —1
7= el (RATUUTUAURX ) senl) “2)
1 —1
=el (nXsTXs) sgn(f3) = i (43)
w
M = X[ UAUZ (Lnxn = UAUZXs(XEUAURUAU LX) XJULUL) UaUL —  (44)
=X UaU, ( nxn — Xs (X4 Xs) ™ XST) UAUXg (45)
= X[ UAUZ (Loxn = UsU§ ) UaUL (46)
w
=X (UaUy — USUSTUAUD — (47)
= X[ (Inixn — UsUJ ) UaUf = (48)
—1
6=l (nngAU;UAU;Xs) XTUAURUAUS S 49)
T(1leT - TW _
= (-XsXs) Xs—=e (50)

We immediately see that if the conditions of Lemma 1 hold for the original problem (i.e., XJ X
is invertible, |u;| < 1 Vj € S°and sgn(5;)y; > 0 Vi € S), they continue to hold after precon-
ditioning using HJ (i.e., XJ Xg is invertible, |fi;| < 1 Vj € S¢ and sgn(8;)y; > 0 Vi € S).
Furthermore, we have A\, = )\,. Next, we must show that \; < \;. We will simplify this task as
follows. Note that

)\, = max i = max (max 1y ,mnax 0 > (1))
jese (2[m; > 0] = 1) — jest =1 —Ji; jese 1 —fi;
-1- Hj 1- Hj jese
YA UXi 5
A\ = = max | max 53
LT (2[n; >0] —1) — 1 (J€S° —1—p, jese 1— M) 53)

= max {nj ) i } (54)
L=y =5 ) ege

where the fi; = p; are fixed because X, 3* are fixed. By our derivation in Eq. (48), the effect of
preconditioning on 7; can be viewed as further restricting the subspace in which the noise w lies,

while keeping X; and y; fixed. Specifically, in 77], w is pre-multiplied by (I, x, — UsUg ), while
in 7); it is pre-multiplied by ( nxn —UsUg ) UAUY 4~ Whatever U 4, the latter projection eliminates



at least as large a subspace as the former. Because the X; and fi; = p; are fixed, it follows by
symmetry of the Gaussian that

% = max {’71 i } < max {’7] s } —N 659
1= 1= f jeqe L= L= 15 jese

where the stochasticity is due to the noise w. Rewriting some of the variables, we observe that \; and
A; are both independent of A,, = \,,. Specifically, if span(Ug) C span(U 4) then using Lemma 2

n; = %XJT (Inxn — UsU4 ) w (56)
;= %X]T (Inxn — UsU4 ) UaU jw (57)
€ :% I(HXTXS> XJUsUdw (58)

=g = % N (IXTXS>_1XSTUSUSTUAUAM (59)

Since the variables (I,,xn, — UsUg ) w and UsUd w are jointly Gaussian distributed with zero
covariance, they are independent. Thus, n; and ¢; = ¢€; are independent and because ran-
domness is only due to the noise w, therefore also A; and A, = A,. By the same reasoning,
(Inxn UsUg ) UAUAw and USUS UAUAw are independent. ThlS in turn implies that \; and
Ay = A, are independent. We now combine these results: Recall that we defined 1/)\; = oo and
1/)\l = o00if \y = 0or \; = 0. Because \; < A\; and \; > 0, \; > 0, we have that 1/); < 1/);.
Next, because both 1/);, 1/); are independent of A, = A, > 0, we have

Ai A
<t 60
NN (60)
On the other hand, if X g P)}r Px Xg is not invertible, the conditions of Lemma 1 are not met, and so
signed support recovery is in general not possible. O



3.2 Proof of Theorem 2

Theorem 2. Suppose that the conditions of Lemma 1 are met for a fixed instance of X, 3*. If
span(Ug) C span(U ), then after preconditioning using PBHT the conditions continue to hold,
and

M Ay

ey 61

NN (61)
where the stochasticity on both sides is due to independent noise vectors w. On the other hand, if
span(Uge) = span(U 4), then PBHT cannot recover the signed support.

Proof. Wehave Px = I,,xn, Py = UAU;"—. With this, @ = (UAU;lr —Inxn)XB* —i—UAU;{w. Now
let us consider the case that span(Ug) C span(U_4). Using Lemma 2 we have

fij = X Xs(X§ Xs) sgn(B%) = 1y (62)
V=€ (iLXST Xs> h sgn(63) = i (63)
;= %XJT (Inxn — UsUJ ) (UAU 4 = Lnxn) X B* + UaU qw) (64)
= X[ (Lnxn = UsU$ ) UaUX (65)
g = %ej (ix;xs> - XT (UaUT, = Lnxn) X B* + UnUJw) (66)
~ Ly (ix; XS) X TUAUTw = (67)

Since Px = I, xn, we immediately see that if the conditions of Lemma 1 hold for the original
problem, they continue to hold after preconditioning using PBHT. Furthermore, we see that \,, =
Ay. Next, we must show that \; <X X;. We will approach this task in a similar manner as in
Theorem 1. For completeness we repeat the main steps here. Note that

\; = max {771_7773_} Al = max {771‘7 i } . (68)
=l =p 1= 15 ) jege L= L=p5 ) jese

As before, the effect of preconditioning on 7); can be viewed as further restricting the subspace in
which the noise w lies, while keeping X; and p; fixed. Specifically, in 7);, w is pre-multiplied by
(Inxn — UsU{ ), while in 7; it is pre-multiplied by (I,x,, — UsUg ) UaU ;. Whatever Uy, the
latter projection eliminates at least as large a subspace as the former and so because the X; and
jt; = p; are fixed, it follows that

\; = max {nj, nj} = max {nj, i } =\, (69)
L=y 1 =[5 ) jege =y L=pi ) jege

where the stochasticity is due to the noise w. The remaining part of the theorem again mirrors that
of Theorem 1, which we repeat here for completeness. Rewriting some of the variables we observe
that \; and \; are both independent of A, = \,. Specifically, if span(Ug) C span(U 4) then using
Lemma 2

1
n; = EXJ.T (Inxn — UsU4 ) w (70)
1
;= EXJT (Inxn — UsU4 ) UaU qw (71)
L +(1 1 - T T
€ =—el | -XiXs) XiUsUgw (72)
1 1 !
:Ei:%e;r (nXSTXS> XJUsUSULU jw (73)



Since (Inxn — UsUg ) w and UsUJ w are jointly Gaussian with zero covariance, they are indepen-
dent. Thus, 77] and ¢; = €; are independent and so are \; and A\, = \,. By similar reasoning,
(Inxn — UsUg ) UaU jw and UsUJ U 4U ;w are independent, hence so are A; and A, = A,. We
now combine these results: Because \; < Ay and A > 0, \; > 0, we have that /N = 1/)\1 Next,
because both 1/, 1/); are independent of A, = A, > 0, we have

AU u
— =< =, 74
NN (74
On the other hand, if span(Ug.) = span(U 4)
= X[ Xs(Xg Xs) 'sgn(B5) = p (75)
1 ! i
V=€ (nXsTXS> sgn(Bs) = i (76)
1 *
;= 5){} axn = UsUS) (UAU§ — Lyxn) X B* + UaU jw) (77)
1
- ﬁX]T nxn USUS)w_nJ (78)
1 1 !
& = Ee? (nX;XS) g (UAU) = Lnxpn) X B* + UaU jw) (79)
1 /1 !
= Eej (nXSTXS) X& (UaAUjw — XB¥) (80)
= —e] (X{Xs) XIXB (81)
= —e/ (XJXs) ' XJXsB5 (82)
_ g (83)
Thus the conditions of Lemma 1 continue to hold and we have \; = )\; and
R = mig | T s (84)
i€S Yooy ies Vi +
Recall that in Section 3.2 of the main paper we defined A, /\; £ 0i 1 ;\u_ 5\ = 0. Because ); is
with probability 1 non-negative, this means that with probability 1, A, /A; = 0 an 51gned support
recovery is not possible. O



4 Proofs of Section 5

Lemma 3. Assume that the spectra X g, Y.g are derived by normalizing unconstrained spectra g

and i]gc as
)y
ES = —= cl \/k'TL
|Xs]F
Sge
ZSC = = (p — k)n
1Xse<|r

Then the squared column norms of X are on expectation n.

Proof. We have Vi € S,
B(X] X;) = E(vs,; . 25U USsvg;.)

I8
E(US%. AS 251);147)
1Xsl%

k

/\2 )
— kS B (vd,)

=5 — n
i'=1 ”ZSHF

and Vj € S¢,

E(X] X;) = E(vse j—, 25U TUSsevge j_1.)

5L S
= (p— k)nE (vsc,j—k7~§ 5
[Xse %
—k ~
% 0% i

= (p — k)n Z E (Il}g’“,j—k,j’) = 5

prap

=1

2 USci—k.

(85)

(86)

(87)

(88)

(89)

(90)

oD

92)



4.1 Proof of Theorem 3

Theorem 3. Assume the Lasso problem was generated according to the generative model of Section
5.1 in the main paper with¥i € 0(S),6s,; =1, 6gc; = kandVj € 0(S°), 6ge j = 1 and that k <
Vn—k/\/k(p—k —1). Then the conditions of Lemma 1 hold before and after preconditioning
using JR. Moreover,

— =" — 93
AN o n+prZ—Fk N\ ©3)
Proof. Normalizing $gand Sge to yield ¥ g, X ge¢, as required by the model for X,
S
0§ = —F— = Vi € o(S 94
s, T =n (S) %94)
np—kr . n(p — k) :
Oge; = ————>=— Vi€ o(S Ogej = —————=—Vj € (5. 95
i VEkrkZ+n—k (5) 5 VERZ+n—k jeals) ©)

Because X g has constant spectrum, it is easy to see that XgX s = clpxk, for some ¢ > 0. This
means that X J X is invertible and sgn(3;)7y; > 0. Let’s look at the variables 11;:

il = | X} Xs(Xg Xs) ™ 'sgn(B5)] (96)
= |vse jok, DL U TUSs VY (VsR5UTUZsVY ) tsgn(B85)] (97)
= [vse j—r, B3 Es Vs Vs(S5%s) ™V sgn(B3) (98)
= |vse jk, D Ts(E§8s) 1V sgn(BY)| (99)
= ! [vse -k B5e] (10 D510, Vs sgn(ﬂé)\ (100)
n(p B k)"£ 1 T *
= ||vse j_k, ——— —V 101
[US J—k, \/m] (1.k) \/E S Sgn(/BS) ( )
_ (p — k)K: T *
R ar— [vse k1) Vs Sgn(ﬂs)‘ (102)

Cauch
< YOO e fose il |, Ioen35)le
VERZ +n—k
k(p —k)k
T VERZtn—k
k(p—k)k
T VEkkT+n—k
k(p—k)k
T VERZ+n—k

Because k < \/(n — k)/(k(p — k — 1)),

n—k
\/k’(p—k)li VEP® = k)t (107)
VEkZ+n—k \/kk(p S +n—k

/(p—m]c(n—k) [FEBIE)
Pkl P (108)

:\/n—k+<n—k>(p—k—1> \/<n B k)
p—k—1 —k—

10

(103)
HVS vse g, k>H (104)
IVsl, H[vsc7j,,f,_](1:k)H2 (105)

(106)




and so the conditions of Lemma 1 are met. We can then apply Lemma 1 and simplify the resulting
upper and lower bounds A, , A; on . Plugging in 5 and Y g we see that the data matrix X satisfies

XXT =U[SsVy, Ss-Vah] [SsVe , SseVir]  UT
=U [2s8§ + Bge8e | UT
2UDpD'UT.

From this we see that X = UDV T has left eigenvectors U and singular values

—1/2

Recall that for JR, Px = P, =U (DD") UT. After projecting, we find that

iy = X]TP;PXXS(XEP;PXXS)_ISgH(ﬁg)
= |vse j-1, B.UT PLPYUSsV] (VsS5UTPLPxUSsVY ) san(55)|

_ _ —1
= |vsej k. N8 (DDT) ' SV (Vszg (DDT) 1ESVST) sgn(5%)

_ _ —1
= |vse sk & (DDT) ' 55 (SF(DDT) ' 3s) Ve sen(85)

—1 *
= USC7j—k,-Z—SI—“ES (Egzs) VSTSgn(/BS)’ - MJ

1 -t \
Vi =e; <nX5TP)IPXXS) sgn(fg)

n(p—k)r*\ 1 Lo o *
(n T 2 tn—k)% nXS Xs sen(As)

B n(p — kx> _
B <n+kj/12—|—n—k‘ i

2
I

11

(109)
(110)
(111)

(112)

(113)

(114)
(115)

(116)

(117)

(118)

(119)

(120)

(121)



w
i = X} Px (Inxn — PxXs(Xg Px PxXs) ' X4 Px) — (122)
= vge j_k, SgU' Py

P
(Inxn — PxUSsVy (VsS LU T Py PxUSsVy )" WWeS U T PY) );“’ (123)
—1/2
= vge; k.3 (DDT) 2 UT
_ — -1 _ P
(I,M—U(DDT) P xs (s (ppT) 'ss) w§(DDT) ”2UT>fLw (124)
—1/2 Pxw
= vge 1, B0 (DDT)2UT (L — UsUT) XX (125)
_ P
= vgej_p. N0 (DDT) V2 (UT - [ I’COX’“ ]US> 2“’ (126)
—vse .85 (D7) 2] 0 Pxw (127)
— USe,j—k, ~5e U;—c n
—-1/2 + Pxw
= |vsej k. Yae (DD e —— 128
_US J=k =S ( ) 1 (k+1:n) o n ( )
T T\ —1/2 T™—1/2 W
= vge,; . I toxen— = 12
|vse.4-x. 2% (DDT) ](HM)[ 0 Tuixni | (DDT) P07 = (129)
[ T T\—1/2 ~1 TW
= |vse -k, g (DD) _(Hm)[ D tain) (k1) ]U " (130)
T T\ —1/2] 1 Tw
= lvge ;1. Ng (DDT) | s 1imy Dl 1 U, (131)
T - TWw
= [vse.j—k. 8¢ ] (py1m) Dl romy, (b 1:m U o (132)
1 w
= D Ude— 133
n(p — k)/(kx? +n — k) s Zs goyrm Use (139
1
= : 134
np— k) (kK2 +n—k) " (134)
1 —1
g—e j( XQPXPXXS) xipripe” (135)
n
1 -t w
=e <X§Xs) Xi—=¢ (136)
n n
(137)

Immediately we see that the conditions of Lemma 1 continue to hold after preconditioning using JR.
Note that by the above derivation (2[7; > 0] — 1) — fi; = (2[n; > 0] — 1) — 1, and so

5\[ _ 77] _ 1 Ui (138)
jest 2[n; > 0] —1) —p;  nlp—k)/(ks®>+n—k) jest (2[n; > 0] = 1) —
1
_ 139
n(p—k)/(k/iz—i—n—k)/\l (139)
- X Bfk + € 1 . ﬁik + €;
_ i _ i 140
Au ies Y |y n+(nlp—k)K?/(k? +n—k)) Ges Yoy (140)
_ 1 . (141)

n+ (n(p — k)x?2/(ks? +n —k))

12



The new ratio \,,/)\; of upper and lower bounds then becomes

M nlp—kK)/k®+n—-k) A\
N on+(np—k)r2/(k2+n—k)) N

_ n(p— k) Au
T nkr2+n—k)+nlp—k)rZ N
- p—k A
T k24 n—k)+ (p—k)KZ N
__p=k A
Tn4pr2—k N

13

(142)

(143)

(144)

(145)



4.2 Gaussian Designs with Piecewise Constant Spectra

The generative model presented in Section 5.1 of the paper uses an orthonormal column basis U to
generate X. The question arises whether a more natural Gaussian design X exists that is in a sense
equivalent to the orthonormal construction of Section 5.1. In this section we present a generative
model that uses a Gaussian column “basis” that achieves this. As before, let Vg and Vg be random
orthonormal bases of sizes k X k and p — k x p — k respectively and let ¥ g and ¥ - be rectangular

matrices that are derived from matrices 2 g, 2 g as in Section 5.1 of the paper. Let W™ be anm xn
matrix of independent Gaussians with marginal distribution N'(0, 1). Then we let

1 m
= EW DERAIFANE (146)

We note that all columns of X are mean zero, and their squared norms are on expectation m:

Xm

1
E(X") = BE(Xe;) = TE(W’” [ZsVy , BseVie] e) (147)
n
1 m
= ﬁE(W JE([SsVy ,BseVie] €;) =0 (148)
E(X["'X") = E(e] X" Xe;) (149)
1
= ZE(e] [SsVd,Sse Ve ] W T [SsVy , Sse Ve ] ) (150)
n
m T
= EE(eiT [ZsV , BseVge] [SsVs , ZseVge] €:) (151)
m k 2 2 o oo
I n 2%21 E(fug,m,)a&i, = m 1fz cs (152)
T2 i—1 B(Vge iy i)05e p =m ifi € 5
Moreover, if Vg, V. are fixed, then the rows of X are jointly Gaussian and
1
B (x"TX™) = = [S5V] B V] B (W"TW™) [BsVd eeVl]  (153)
m T
= — [ZsV§ , 85 V| [EsVy,EseVie]. (154)

So if m = n, the covariance matches empirical covariance of X constructed in Section 5.1 with
Vs, Vse fixed. The standard Lasso application considers problems in which the noise vector has
fixed variance: w ~ N'(0,0%1,,,,). In the next section we let the variance grow as o?m/n (i.e., we
use noise vectors w™ ~ N (0, (62m/n) I, xm)) and see how the induced ratio of penalty parameter
bounds behaves as m — oo. Growing the number of observations and noise variance simultaneously
ensures that the problem doesn’t become too easy.

14



4.3 Convergence of bounds ratios

For some fixed Vg, Vge, g, Xg¢c, and §* generate the following two independent Lasso problems.

y=Xp*+w X =U|[ZsVy§ ,Es:Vye] w~N(0,0%I,x,) (155)

m m Q% m m 1 m T T U2m

Y™ = X" +w X :%W [EsVy , Bge V] ™ N - —Lnxm |,
(156)

where U is a randomly chosen n x n orthonormal basis, W™ is a random m x n Gaussian ensemble,
and the noise vectors w and w™ are independent. Now, let A\, /A; be the ratio of penalty parameter
bounds induced by Lemma 1 for the orthonormal construction in Eq. (155) and A}’ /A" the ratio of
penalty parameter bounds for the Gaussian construction in Eq. (156). We will show the following.

Theorem 4. Let Vg, Vse, X5, Xge and 8* be fixed. If the conditions of Lemma 1 hold for X, 5*,
then for m large enough they will hold for X, 3*. Furthermore, as m — 00
)\Zl d Au
Zu 4 Zu 157
o (157)

where the stochasticity on the left is due to W™, w™ and on the right is due to w.

Proof. Let the variables introduced by Lemma 1 for the orthogonal model in Eq. (155) be A,
Al Aus €6y Vi uj and 7;. Let the corresponding variables for the Gaussian model of Eq. (156) be
AT A €, g pyt and . Similarly, let the counterparts to Xs and X; be Xg" and X ™.

Since we assumed that Vg, Ve, Xg, Xge, 8 are fixed, we first show that v/ and ;" converge to the
constants ;, ;. Using the Strong Law of Large Numbers and the Continuous Mapping Theorem,

im EX’”TX"L = lim_ m— [SsVe, See V] W TW™ [SeVd, SeeVah]  (158)
as. 1
= —XTX (159)
n

This means that all inner products of columns of X™ /1/m converge. Then, assuming the conditions
of Lemma 1 hold,

o m 1ot om) i
Jim o7 = lim ef <mXS XS) sgn(3) (160)
1 71
lim p = lim X"’TXS (X2 T X1 sgn(8%) (162)
m—roo 77L—>OO
XT.”’TXm 1 -1
= 1 At —xmTxm * 163
e — (m 5 g sgn(Bs) (163)
a.s. XTXS 1 -1 .
i (nXsTXS) sgn(Bs) = 1 (164)

Thus, if the conditions of Lemma 1 hold for X, 8%, there is an mg so that if 7 > my the conditions
are also met by X, 8*. Assume from now on the conditions are met. By Lemma 1, signed support
recovery requires that

N < AT = i [P (165)
i€es i n
m m n]
A™ > A = ma (166)

jese 2[n > 0] =1) = u

We will show that A7 /A" 4 Au/ A1, where the randomness on the left hand side is due to W™, w™
and the randomness in the right limit is due to the noise w in the €; and 7);. To show this convergence,
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observe that we can (with probability 1) write A, /\; as a continuous function of 8}, ¢€;, 7,7 €
S,m;, i, J € SC, since we have that ; > 0,u; € (—1,+1), and P(max;n; = 0) = 0if 02 >
0. By the Continuous Mapping Theorem, convergence in distribution of \™/ AJ" could then be
guaranteed if we had the following joint convergence in distribution

{{GZ%ES i {6i}i€S

Vi Sies d {Vities
4 . 167
njm jese {77j }jesc (167)

{1} cse | {1}jese

Because p1}* and ;™ converge to constants i, ;, it remains to be shown that

(e o] fopes | e

77] jese L {’rb}jesc

To simplify notation, we will show only the marginal convergence, letting it be understood that the
argument holds jointly. Using the Strong Law of Large Numbers and Slutsky’s Lemma,

lim €" = lim e, ( Xg”TXS> xpr” (169)
m—00 m—00 m
1 -1 w™
< lim e, (XSTXS> Xph— (170)
m— o0 n m
—1 m
d T TyymT W
2 fim — XIx Ve IwmT — 171
Jim el (Rx0s) vt o
mT m mT yvm\— mT w™
Tim g = lim X7 (Imxm—XS (X2 T xmy~lxn )W (172)
1 1 -t w™
= lim X' (Imxm - X (X;”X@”) xm ) — (173)
m—o0 m m m
1 1 -t w™
L lim X" (Imxm — =Xz (XSTXS> X;”) —— (174)
m—o0 m n m
d mT Loms uT (LT - mT | w™”
£ lim X L — —WMSsVe [ ~VsRiDsVy VSESW —
m— 00 mn n m
(175)
1 - m
L Jim X7 <Imxm—wmzs (Z5%s) 12§W’”> v (176)
m—00 m m
1 1 m
2 Yim —= sk T wmT ( s — W§”W§"T) v (177)
m—o0 m m
1 m
2 fim ——vge . N (W’” W’”TW§’LW§”T> i (178)
m— o0 n m
d . 1 T mT I mT | W
= TT}L};I;O T’(}Sc?j,k’.zsc (W - |: 0 WS W (179)
4 T Tw™
_A%T[usc’j,k,.zsc](kﬂm) wa — (180)

Observe that since Vg, Vge, Xg, X ge are fixed, the joint limit distribution of [{e}"}ie S, {775” }ie Sc]

is determined by the limit distribution of the shared random variable W™ "w™ /m. The following
lemma allows us to exploit this

Lemma 4. Let U be a (possibly random) n x n orthonormal matrix and w ~ N(0,0%1,,%r,). Then

w™ 4 w
wmnl— Syl — 181
- — Nk (181)

cannot be zero for all j € S°.

*To see this, note that [vge j_,. 5] (e1m)
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Proof. We show that for an independent z ~ N (0, 021, 5m)
w™ g . Tw™ g . T 2 d ;. T Oz d ., T W
wrT— % lim W™ — £ lim W™ £ lim W™ SUuT— (182
m mes m mes Jmn | meso I2[ov/n NG (182)

By simple application of the Central Limit Theorem to W™ ' z /+/m we see that the marginals of the
third random variable are Gaussian. To clarify the dependency structure between the variables, we
have further modified the statement by explicitly normalizing z on the right. We can do this using
Slutsky’s Lemma, because by the Strong Law of Large Numbers |z|2/+/m “3 0. Now, since the
elements of W™ are independent standard Gaussians, and z has been normalized to unit length, the
limit distribution on the right consists of independent zero-mean Gaussians with variance o2 /n. [

Because Vg, Vge, 25, Xge are fixed, we can use Lemma 4 to conclude that jointly

—1 w
[ {egn}ies } d {eiT (%XgXS) VSEgUTZ}
T T w
{ [U‘Sc’j_kVZSC] (k+1:n) Use n }j
Finally, an application of the Continuous Mapping Theorem to €;", ;" , 17", pj* then establishes that

7 J
)\umd)\u

)\;n—>)\—l.

€S i l: {ei}iES :l (183)

m .
5 J jese Mjsjese

€Se

(184)

O
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