
A Appendix: Proofs

Proof of Lemma 2.The discretized set of possible weights forp′(x) is w′ ∈
{

0, M
rℓ
, · · · , M

r

}

.
Rescaling by a factor ofr2b(ℓ−1)/M , this is equivalent to a rescaled set of weights

w′′ ∈
{

0, (2b − 1)ℓ−1, 2b(2b − 1)ℓ−2, · · · , 2(ℓ−2)b(2b − 1), 2(ℓ−1)b
}

For anyi = 0 · · · , ℓ − 1, let x ∈ Bi. Then by definition there are precisely(2b − 1)i2(ℓ−1−i)b

valid assignments of(y11 , y
2
1 , · · · , yb1, y12 , · · · , yb2, · · · , y1ℓ−1 · · · , ybℓ−1) such that(x, y) ∈ S(w, ℓ, b).

Thus,x is sampled with probability proportional tow′′(x) as desired. Now supposex ∈ Bℓ. Then
w(x) ≤ M

rℓ
, sox is sampled with probability zero by definition ofS(w, ℓ, b) simply because there

is no valid assignment to they variables such that(x, y) ∈ S(w, ℓ, b).

Proof of Lemma 3.Let T ← 24 ⌈ln (n′/δ)⌉ as in Algorithm 1. Fort ∈ {1, . . . , T}, let St
i =

|{(x, y) ∈ S : hiA,c(x, y) = 0}| be the number of elements ofS that satisfyhiA,c(x, y) = 0, i.e.,
“survive” after addingi random parity constraints. The output of COMPUTEK is nothing but

k = min
{

min
{

i | Median(S1
i , · · · , ST

i ) < P
}

, n′
}

where the default valuen′ is taken if the inner “min” is over an empty set. It follows from pairwise
independence of the chosen hash functions that:

µi , E[St
i ] =

Z

2i
, σ2

i , Var[St
i ] =

Z

2i

(

1− 1

2i

)

For i ≤ k∗P , Chebychev inequality yields:

P[St
i < P ] ≤ P[|St

i − µi| > (µi − P )] ≤
σ2
i

(µi − P )2
≤ Z/2i

(Z/2i − P )2
The RHS is an increasing function ofi, so for i ≤ k∗P − γ, which impliesZ/2i ≤ P2γ , we have
P[St

i < P ] ≤ 2γ/((2γ − 1)2P ) , 1− q. ForP ≥ 2γ+2/(2γ − 1)2, we thus haveP[St
i < P ] ≤ 1/4

andq ≥ 3/4. In other words, more than half theSt
i are expected to be at least as large asP . Using

Chernoff inequality,

P
[

Median(S1
i , · · · , ST

i ) ≥ P
]

= 1−P
[

|{t | St
i < P}| < T/2

]

≥ 1− exp

(

− 1

2q
T

(

q − 1

2

)2
)

.

Similarly, for i ≥ k∗P + γ, we haveµi < P and from Chebychev Inequality

P[St
i ≥ P ] ≤ P[|St

i − µi| ≥ (P − µi)] ≤
σ2
i

(µi − P )2
≤ Z/2i

(Z/2i − P )2 ≤ 2γ/((2γ − 1)2P ) ≤ 1

4
.

Using Chernoff inequality fori ≥ k∗P + γ,

P
[

Median(S1
i , · · · , ST

i ) < P
]

≥ 1− exp

(

− 1

2q
T

(

q − 1

2

)2
)

.

Combining these two observations, we get that

P
[

k∗P − γ ≤ min
{

i | Median(S1
i , · · · , ST

i ) < P
}

≤ ⌈k∗P + γ⌉
]

≥

P





⌊k∗

P
−γ⌋
⋂

i=1

(

Median(S1
i , · · · , ST

i ) ≥ P
)

⋂

(

Median(S1
⌈k∗

P
+γ⌉, · · · , ST

⌈k∗

P
+γ⌉) < P

)



 ≥

1− n′ exp
(

−4

6
T

(

3

4
− 1

2

)2
)

= 1− n′ exp (−βT ) ≥ 1− δ

for T ≥ 1
β
ln (n′/δ) whereβ = 1

24 . It holds trivially that

k∗P = logZ − logP ≤ n′ − logP

so from⌈k∗P + γ⌉ ≤ 1 + k∗P + γ we also get

P [k∗P − γ ≤ k ≤ 1 + k∗P + γ] ≥ 1− δ
This finishes the proof.
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Proof of Lemma 4.It can be verified thatγ = log
(

(P + 2
√
P + 1 + 2)/P

)

is the unique positive
solution toP = 2γ+2/(2γ − 1)2. Therefore,γ andP satisfy the conditions of Lemma 3. Letk be
the output of procedure COMPUTEK(n′, δ, P,S). Then from Lemma 3, we have thatP[k∗P − γ ≤
k ≤ k∗P + 1 + γ] ≥ 1− δ. All probabilities below are implicitly conditioned on this event. Let

Si = |{(x, y) ∈ S(w, ℓ, b), hiA,c(x, y) = 0}| = |S(w, ℓ, b)i| = |Si|
be the number of solutions suriving after addingi random parity constraints. It follows from pairwise
independence of the hash functions (Definition 3) that

µi , E[Si] =
Z

2i
, σ2

i , Var[Si] =
Z

2i

(

1− 1

2i

)

Let α ≥ γ andi = k + α. Then

µk+α =
Z

2k+α
≤ P

2α−γ

that is, on average we are left with less thanP elements after addingi random parity constraints.
Let σ = (x, y) ∈ S(w, ℓ, b) be an element of the set we want to sample from. The probability ps(σ)
thatσ is output is

ps(σ) , P
[

Si < P, σ ∈ S(w, ℓ, b)i
] 1

P − 1

= P
[

Si < P | σ ∈ S(w, ℓ, b)i
]

P
[

σ ∈ S(w, ℓ, b)i
] 1

P − 1

where for anyσ, P[σ ∈ S(w, ℓ, b)i] = 2−i. Thus we have

ps(σ) = P[Si < P | σ ∈ S(w, ℓ, b)i] 2−i

P − 1
(3)

Now the expected value of the size of the set (and its variance) conditioned onσ ∈ S(w, ℓ, b)i are
independent ofσ because of three-wise independence [5]. So we have

E[Si | σ ∈ S(w, ℓ, b)i] = 1 +
(Z − 1)

2i
= µi(σ)

Var[Si | σ ∈ S(w, ℓ, b)i] =
(Z − 1)

2i

(

1− 1

2i

)

< E[Si | σ ∈ S(w, ℓ, b)i]

We first note that(Z − 1)/2i < Z/2i = Z/2k+α ≤ Z/2k
∗

P
−γ+α = P2γ−α. Using Chebychev’s

inequality

P[Si ≥ P | σ ∈ S(w, ℓ, b)i] ≤ P[|Si − µi(σ)| ≥ (P − µi(σ)) | σ ∈ S(w, ℓ, b)i]

≤
(Z−1)

2i

(

1− 1
2i

)

(P − (1 + (Z−1)
2i ))2

≤ P2γ−α
(

1− 1
2i

)

(P − 1− P2γ−α)2
≤ 2γ−α

(1− 1
P
− 2γ−α)2

, 1− c(α, P )

Plugging into (3) we get

c(α, P )
2−i

P − 1
=

(

1− 2γ−α

(1− 1
P
− 2γ−α)2

)

2−i

P − 1
≤ ps(σ) ≤

2−i

P − 1
(4)

wherec(α, P ) → 1 asα → ∞. This shows that the sampling probabilitiesps(σ) andps(σ′) of σ
andσ′, respectively, must be within a constant factorc(α, P ) of each other.

Fromk ≤ k∗P + 1 + γ it follows that

ps(σ) ≥ c(α, P )
2−(1+γ+α)

Z

P

P − 1

This shows that the probability that the algorithm does not output⊥ is at least

P[output 6= ⊥] = Q =
∑

σ∈S(w,ℓ,b)

ps(σ) ≥ c(α, P )2−(1+γ+α) P

P − 1
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The probabilityp′s(σ) thatσ is sampled given that the algorithm does not output⊥ is

P
[

Si < P, σ ∈ S(w, ℓ, b)i,output 6= ⊥
]

Q
=

P
[

Si < P, σ ∈ S(w, ℓ, b)i
]

Q
=
ps(σ)

Q
= p′s(σ)

Plugging in (4)

c(α, P )
2−i

P − 1

1

Q
≤ p′s(σ) ≤

2−i

P − 1

1

Q

From
∑

σ p
′
s(σ) = 1 we get

c(α, P )
2−i

P − 1

1

Q
Z ≤ 1 ≤ 2−i

P − 1

1

Q
Z

which implies

c(α, P )
1

Z
≤ c(α, P ) 2−i

P − 1

1

Q
≤ p′s(σ) ≤

2−i

P − 1

1

Q
≤ 1

c(α, P )

1

Z

This finishes the proof.

Proof of Corollary 2. Suppose we want to compute an expectation ofφ : {0, 1}n → R

Ep[φ] =
∑

x∈{0,1}n

p(x)φ(x) =
∑

x∈{0,1}n\Bℓ

p(x)φ(x) +
∑

x∈Bℓ

p(x)φ(x)

∑

x∈{0,1}n\Bℓ

p(x)φ(x)− ǫηφ ≤ Ep[φ] ≤
∑

x∈{0,1}n\Bℓ

p(x)φ(x) + ǫηφ

From Theorem 1
∑

x∈{0,1}n\Bℓ

1

ρκ
p(x)φ(x) ≤ Ep′

s
[φ] =

∑

x∈{0,1}n\Bℓ

p′s(x)φ(x) ≤
∑

x∈{0,1}n\Bℓ

ρκp(x)φ(x)

It follows that
1

ρκ
Ep′

s
[φ]− ǫηφ ≤ Ep[φ] ≤ ρκEp′

s
[φ] + ǫηφ

as desired.
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