A Appendix: Proofs
Proof of Lemm&l2The discretized set of possible weights fgfz) is w’ € {0,2%,... X4}
Rescaling by a factor of2°(-1) /M, this is equivalent to a rescaled set of weights

W' e {0’ (2b B 1)671’ 2b(2b _ 1)5727 o ’2(#2)17(21) ~1), 2(471)1,}

Foranyi = 0---,¢ — 1, letz € B;. Then by definition there are precisegl§® — 1)?2(¢~1-9b
valid assignments dfy}, v, ,y%, 8, ,v5, - syp_y -+, yb ) suchtha(z,y) € S(w, £, b).
Thus,z is sampled with probability proportional 0" (x) as desired. Now suppose< 5,. Then
w(z) < % soz is sampled with probability zero by definition 8w, ¢, b) simply because there
is no valid assignment to thevariables such that:, y) € S(w, ¢, b). O

Proof of Lemm&BLet T «+— 24 [In(n’/d)] as in Algorithm[l. Fort € {1,...,T}, let S} =
{(z,y) € S : by (x,y) = 0}| be the number of elements &fthat satisfyh!y .(z,y) = 0, i.e.,
“survive” after adding random parity constraints. The output ob&@pPUTEK is nothing but

k = min {min {i | Median(S;,--- ,S]) < P}, n'}
where the default valug’ is taken if the inner “min” is over an empty set. It follows fingpairwise
independence of the chosen hash functions that:

Z Z 1
= [ [—— 24 =2 (1_- =
w; = E[S]] 50 i Var[S;] 5 <1 2i)
Fori < k}, Chebychev inequality yields:
o? Z /2t

t < gy ; — < L

P[S’L<P}—PHS'L :ul|>(p’l P)]— (Mi_P)Q — (Z/27_P)2

The RHS is an increasing function ofso fori < k% — ~, which impliesZ/2¢ < P27, we have

P[S! < P} <27/((2Y —1)2P) £1—q. ForP > 27+2 /(27 — 1)%, we thus hav@[S! < P] < 1/4

andq > 3/4. In other words, more than half ti# are expected to be at least as largé’asJsing
Chernoff inequality,

1

P [Median(S}, - ,57) > Pl =1-P[|{t|SI < P}| < T/2] > 1—exp (21qT <q2)2>.

Similarly, fori > k% + ~, we haveu; < P and from Chebychev Inequality
o? < Z)2

]P)[Sf > P] < ]P’HSf _/~Li| > (P_/iiﬂ < (Ni _lp)z = (Z/Qi _p)

5 <27/((27 —1)°P) <

Using Chernoff inequality fot > k3, + ~,

2
P [Median(S},---,57) < P] > 1 —exp (—;T (q— ;) ) .
q

Combining these two observations, we get that
P [k} —~ < min {i | Median(S},--- ,S]) < P} < [kp +7]]

v

L5 —)
Pl () (Mediarts!, - ST) > P)() (Median(S} 7.+ STy i) <P)] >

i=1
, 4_ (3 1)° ,
1—n'exp | —=T 173 =1-n'exp(-BT)>1-9§

for ' > 4 1In (n'/5) where§ = 5;. It holds trivially that
k} =logZ —log P <n' —log P
so from[k} +v] < 1+ k} + v we also get
Plkp —v<k<l+kp+9]>1-9§
This finishes the proof. O
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Proof of Lemm&W4 It can be verified that = log ((P + 2v/P + 1 + 2)/P) is the unique positive
solution toP = 27+2 /(27 — 1)2. Therefore;y and P satisfy the conditions of Lemnia 3. Létbe
the output of procedure @uPUTEK (n/, 4, P, S). Then from Lemmal3, we have thatk;, — v <
k <kp—+1++]>1-4. All probabilities below are implicitly conditioned on thevent. Let

S = I{(x,y) € 8(wa€’ b)> fq)c(a:,y) = 0}| = |8(w>€v b)zl = |Sl|

be the number of solutions suriving after addimgndom parity constraints. It follows from pairwise
independence of the hash functions (Definifibn 3) that

Z Z 1
Leta > vy andi = k+ «. Then
7 < P
Hrkta = 9k+a — 9a—vy
that is, on average we are left with less tharelements after addingrandom parity constraints.
Leto = (z,y) € S(w,£,b) be an element of the set we want to sample from. The probapilit)
thato is output is

ps(0) &P [Si < Poc S(w,&b)i] %

=P[5 <P|oeSwlb)]PloeSwtb)] 5—
where for anyr, Plo € S(w, £, b)"] = 2. Thus we have
271'

ps(0) =P[S; < P| o € S(w,¢, b)i]ﬁ 3)

Now the expected value of the size of the set (and its varjacmeditioned orv € S(w, ¢, b)* are
independent of because of three-wise independence [5]. So we have

(Z; 2. = pi(o)

E[S; | o € S(w, £,b)] =1+

Var[S; | o € S(w, £,b)"] = (22: D (1 - 211) <E[S; | 0 € S(w, £,b)]

We first note that Z — 1)/2" < Z/2' = Z/2k+> < Z/2kr—7+e = p27—a  Using Chebychev’s
inequality

P[S; > P | o € S(w,£,b)'] <P[S; — pi(0)| = (P — pi(0)) | o € S(w, £, b)']
ZU0-4) _ Pre(-g) _ we

21

TP+ Eye2 T (P-1-P2)2 7 (1L —2v-a)2

21

£1—c(a, P)

Plugging into[(B) we get

qapy) 2 (T 27 o) < 2 )
P T (1—L—2ap2)P—1 -9 =p 7

wherec(a, P) — 1 asa — oo. This shows that the sampling probabilitiegc) andps(c’) of o
ando’, respectively, must be within a constant factgr, P) of each other.

Fromk <k} + 1 + ~ it follows that

9—(+v+a) p
ps(o) > cla, P)———— ——

Z P-1
This shows that the probability that the algorithm does nipot L is at least
P
— 0 = > —(At+yta) =
Ploutput# L] =Q =Y ps(0) > c(a, P)2 51

oceS(w,l,b)
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The probabilityp’, (o) thato is sampled given that the algorithm does not outpuis
P[S; < P,o € S(w,,b)",output# L]  P[S; < P,o € S(w,{,b)"]  p,(0)

/
= = U
- 5 ) pi(o)
Plugging in [4)
272 1 271 1
<y < —
c(a,P)P_lQ < pslo) < P-1Q
From}_ pi(c) =1 we get
2—1 2_1 1
—7<1< —
c(a,P)PilQZ—l—P—lQZ
which implies
Z < = <p(o) < 0= Z
APy <da P g <r) S p g = (ap) 7

This finishes the proof.

Proof of Corollary2. Suppose we want to compute an expectatios of0, 1} — R

Efgl= Y p@)glx)= Y pa)d@)+ Y pla)d(x)

ze{0,1}n 2€{0,1}7\ B, €8,
> p@d(z) —eny <Bylel < Y pla)d(x) + eng
wE{O,l}"\Bg wE{O,l}"\Bg
From Theorem]l
1
Y. op@e@) <Eyll= Y. A < D prp(e)d()
vefo,3m\B, P 2€{0,1}7\ B, 2€{0,1}7\ B,

It follows that

piﬁEp; (6] — ens < Epld] < prEy, [6] + ens

as desired.
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