
Supplementary Material

Proof of Lemma 2. We subtract (1) from (4) to get

x̂i,t+1 − xt+1 = a

� �

j∈Ni

pij x̂j,t − xt + α(yi,t − x̂i,t)

�
− rt

= a

� �

j∈Ni

pij(x̂j,t − xt) + α(yi,t − x̂i,t)

�
− rt,

where we used Assumption 1 in the latter step. Replacing yi,t from (2) in above, and simplifying
using definition of ξ̂i,t, yields

ξ̂i,t+1 = a

� �

j∈Ni

pij ξ̂j,t + α(yi,t − x̂i,t)

�
− rt

= a

� �

j∈Ni

pij ξ̂j,t − αξ̂i,t

�
+ (aα)wi,t − rt.

Using definition (6) to write the above in the matrix form completes the proof for ξ̂t. The proof for
ξ̃t follows precisely in the same fashion.

Proof of Proposition 3. We start by the fact that the innovation and observation noise are zero mean,
so (7) implies E[ξ̂t+1] = QE[ξ̂t], and E[ξ̃t+1] = QE[ξ̃t]. Therefore, for mean stability of the linear
equations, the spectral radius of Q must be less than unity. Considering the expression for Q from
(8), for a fixed α we must have

|a| <
1

ρ(P − αIN )
=

1

max{1− α, |α− λN (P )|}
. (26)

To maximize the right hand side over α, we need to solve the min-max problem

min
α

�
max{1− α, |α− λN (P )|}

�
.

Noting that 1− α and α− λN (P ) are straight lines with negative and positive slopes, respectively,
the minimum occurs at the intersection of the two lines. Evaluating the right hand side of (26) at the
intersection point α∗ = 1+λN (P )

2 , completes the proof.

Proof of Theorem 5. We present the proof for ˜MSD(P,α) by observing that (7)

E[ξ̃t+1ξ̃
T
t+1] = QE[ξ̃tξ̃T

t ]Q
T + E[s̃ts̃T

t ],

since the innovation and observation noise are zero mean and uncorrelated. Therefore, letting S̃ =
E[s̃ts̃T

t ], since ρ(Q) < 1 by hypothesis, the steady state satisfies a Lyapunov equation as below

Σ̃ = QΣ̃QT + S̃.

Let Q = Q
T = UΛU T represent the Eigen decomposition of Q. Let also ui denote the i-th eigenvec-

tor of Q corresponding to eigenvalue λi. Under stability of Q the solution of the Lyapunov equation
is as follows

Σ̃ =
∞�

τ=0

Q
τ
S̃Q

τ

=
∞�

τ=0

N�

i=1

N�

j=1

λ
τ
i uiu

T
i S̃λ

τ
juju

T
j

=
N�

i=1

N�

j=1

uiu
T
i S̃uju

T
j

∞�

τ=0

λ
τ
i λ

τ
j

=
N�

i=1

N�

j=1

uiu
T
i S̃uju

T
j

1− λiλj
.
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Therefore, the ˜MSD defined in 4, can be computed as

˜MSD =
1

N
Tr(

N�

i=1

N�

j=1

uiu
T
i S̃uju

T
j

1− λiλj
) =

1

N

N�

i=1

N�

j=1

(uT
jui)(uT

i S̃uj)

1− λiλj
=

1

N

N�

i=1

u
T
i S̃ui

1− λ
2
i

,

where we used the fact that uT
jui = 0, for i �= j, and u

T
iui = 1, for any i ∈ V . Taking into account

that Q = a(P − αIN ) and S̃ = σ
2
r(1N1T

N ) + (a2α2
σ
2
w)P

2, we derive

˜MSD =
1

N

N�

i=1

u
T
i (σ

2
r(1N1T

N ) + (a2α2
σ
2
w)P

2)ui

1− λ
2
i

=
1

N

N�

i=1

(uT
i1N )2σ2

r

1− λ
2
i

+
1

N

N�

i=1

a
2
α
2
σ
2
wλ

2
i (P )

1− λ
2
i

=
σ
2
r

1− a2(1− α)2
+

1

N

N�

i=1

a
2
α
2
σ
2
wλ

2
i (P )

1− a2(λi(P )− α)2
,

where the last step is due to the facts that λi = a(λi(P )−α) and 1N/
√
N is one of the eigenvectors

of Q with corresponding eigenvalue a(1−α), so it is orthogonal to other eigenvectors, i.e., uT
i1N =

0, for ui �= 1N/
√
N . The proof for ˆMSD follows in the same fashion.

Proof of Theorem 8. The closed form solution of the error process (7) is,

ξt+1 = Q
t+1

ξ0 +
t�

τ=0

Q
t−τ

sτ ,

which implies

ξt+1ξ
T
t+1 = Q

t+1
ξ0ξ

T
0Q

t+1 +Q
t+1

ξ0

� t�

τ=0

Q
t−τ

sτ

�T

+

� t�

τ=0

Q
t−τ

sτ

�
ξ
T
0Q

t+1

+

� t�

τ=0

Q
t−τ

sτ

�� t�

τ=0

Q
t−τ

sτ

�T

, (27)

since Q is symmetric. One can see that

�
1

T

T�

t=1

Q
t
ξ0ξ

T
0Q

t
� ≤

1

T

�
�ξ0�

2

1− ρ2(Q)

�
,

and

�
1

T

T−1�

t=0

Q
t+1

ξ0

� t�

τ=0

Q
t−τ

sτ

�T

� ≤
�ξ0�s

T

T−1�

t=0

ρ(Q)t+1
t�

τ=0

ρ(Q)t−τ
≤

1

T

�
s�ξ0��

1− ρ(Q)
�2

�
.

On the other hand, as we see in the proof of Theorem 5, letting S = E[sτsT
τ ], we have Σ =�∞

τ=0 Q
τ
SQ

τ . Based on definition (18), equation (27), and the bounds above, we derive

R(T ) ≤
1

T

�
�ξ0�

2

1− ρ2(Q)

�
+

1

T

�
2s�ξ0��

1− ρ(Q)
�2

�

+
1

T

����
T−1�

t=0

� t�

τ=0

Q
t−τ

sτ

�� t�

τ=0

Q
t−τ

sτ

�T

−

t�

τ=0

Q
τ
SQ

τ

����+ �
1

T

T−1�

t=0

∞�

τ=t+1

Q
τ
SQ

τ
�.

(28)

Let

H(s0, ..., sT−1) =
T−1�

t=0

� t�

τ=0

Q
t−τ

sτ

�� t�

τ=0

Q
t−τ

sτ

�T

,
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and observe that E[H(s0, ..., sT−1)] =
�T−1

t=0

�t
τ=0 Q

τ
SQ

τ . It can be verified that for any 0 ≤

t < T ,

�H(s0, ..., st..., sT−1)−H(s0, ..., s
�
t, ..., sT−1)� ≤

4s2
�
1− ρ(Q)

�2 .

Thus, letting V ar = 16Ts4�
1−ρ(Q)

�4 , and appealing to Lemma 7, we get

P
�����

T−1�

t=0

� t�

τ=0

Q
t−τ

sτ

�� t�

τ=0

Q
t−τ

sτ

�T

−

t�

τ=0

Q
τ
SQ

τ

���� ≥ c

�
≤ Ne

−c2/8Var
.

Setting the probability above equal to δ, this implies that with probability at least 1− δ, we have

1

T

����
T−1�

t=0

� t�

τ=0

Q
t−τ

sτ

�� t�

τ=0

Q
t−τ

sτ

�T

−

t�

τ=0

Q
τ
SQ

τ

���� ≤
1

√
T

8s2
�
2 log N

δ

(1− ρ(Q))2
.

Moreover, we evidently have

�
1

T

T−1�

t=0

∞�

τ=t+1

Q
τ
SQ

τ
� ≤

1

T

�
s
2

�
1− ρ2(Q)

�2

�
.

Plugging the two bounds above in (28) completes the proof.

Proof of Proposition 9. Considering the expression for MSD in Theorem 5, we have

˜MSD(P,α)− ˜MSD(P−�,α) = W̃MSD(P,α)− W̃MSD(P−�,α)

∝

N�

i=1

�
λi(P )− λi(P−�)

��
(1− α

2
a
2)(λi(P−�) + λi(P )) + 2a2αλi(P )λi(P−�)

�
�
1− a2(λi(P )− α)2

��
1− a2(λi(P−�)− α)2

� .

Based on definitions (20) and (21), it follows from Weyl’s eigenvalue inequality that λk(P ) −
λk(P−�) ≤ λ1

�
�∆P (i, j)

�
= 0, for any k ∈ V . Combined with the assumptions P ≥ 0

and |aα| < 1, this implies that the numerator of the expression above is always non-positive.
The denominator is always positive due to stability of the error process ξ̃t in (7), and hence,
˜MSD(P,α) ≤ ˜MSD(P−�,α).
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