Supplementary Material
Proof of Lemma 2. We subtract (1) from (4) to get

i1 — Tyg1 = a( E DijZit — T + a(yir — fi,t)) — Ty
JEN;

= a( Z Pij (&4 — o) + oy s — ffzyt)) — T,
JEN;
where we used Assumption 1 in the latter step. Replacing y; + from (2) in above, and simplifying
using definition of &; ;, yields

éi,tJrl = a( Z pijéj,t + a(yi,t - C%zt)) — Tt
JEN;
= a( Z pijéj,t - Oééi,t) + (aa)wi,t — Tt
JEN;

Using definition (6) to write the above in the matrix form completes the proof for ft. The proof for
&, follows precisely in the same fashion. O

Proof of Proposition 3. We start by the fact that the innovation and observation noise are zero mean,
50 (7) implies E[¢, 1] = QE[£,], and E[¢,11] = QE[£,]. Therefore, for mean stability of the linear
equations, the spectral radius of () must be less than unity. Considering the expression for () from
(8), for a fixed & we must have

1 1
p(P—aly) max{l —a,|a— An(P)|}
To maximize the right hand side over «, we need to solve the min-max problem

min { max{1 — a, |o — )\N(P)}}.

[e3

la| < (26)

Noting that 1 — « and o — A (P) are straight lines with negative and positive slopes, respectively,
the minimum occurs at the intersection of the two lines. Evaluating the right hand side of (26) at the

intersection point o* = %N(P), completes the proof. O
Proof of Theorem 5. We present the proof for MSD(P, a) by observing that (7)
El&+1&1] = QEIGE]QT + E[3,57),

since the innovation and observation noise are zero mean and uncorrelated. Therefore, letting S =
E[5:57], since p(Q) < 1 by hypothesis, the steady state satisfies a Lyapunov equation as below

Y =Q2Q"+ 5.
Let @ = QT = UAUT represent the Eigen decomposition of @). Let also u; denote the i-th eigenvec-

tor of () corresponding to eigenvalue \;. Under stability of @) the solution of the Lyapunov equation
is as follows
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Therefore, the MSD defined in 4, can be computed as

wgul Suju (ufui)(u] TSu;) TSu;
MSD_—Trzzl_)\f\J NZZ 1_,\,\j _NZ;L—;’

=1 j=1 1=15=1

where we used the fact that uju; = 0, fori # j, and uju; = 1, for any 7 € V. Taking into account
that Q = a(P — aly) and S = 02(151Y,) + (a?a?02) P2, we derive

i ul (e2(In1Y) + (602 ) P2)u;
1—)2

1 i( win)o? | 1§~ a0’ N(P)
~ 1-)\ N 1— )2

i=1

_ or Z 20120)\22(13)
S 1-a%(1-a)? TN 1—(12 P) —a)?’

where the last step is due to the facts that \; = a(\;(P) —«a) and 17 /v/N is one of the eigenvectors
of @ with corresponding eigenvalue a(1 — ), so it is orthogonal to other eigenvectors, i.e., u] 1y =

0, for u; # 1 /+/N. The proof for MSD follows in the same fashion. O

Proof of Theorem 8. The closed form solution of the error process (7) is,
t
Er1= Q6+ Q" sr,
7=0
which implies

t T t
Gl = QGG + Qe ( 3 QHST) + (Z Qt_Tsr)féQt“
=0

=0

t i T
+ (ZQ*%T) (ZQHsT) , 27)

7=0 7=0

since () is symmetric. One can see that

I ZQ% qa'l < 1( ”532'@)),

and

L t Hfons 1/ sl
||T2Qt+1§O(ZQtT > | < Z t+1zp - < L ((1>
t=0 =0

t=0 - P(Q))2

On the other hand, as we see in the proof of Theorem 3, letting S = E[s,sl], we have ¥ =
Zi‘;o Q7 SQ7. Based on definition (18), equation (27), and the bounds above, we derive

R 1 G W 1
R(T) < T(l—Pz(Q)) + T((l_p(Q))2>

s (i@t—TsT)(ith—Tsr)T ZQTSQT

+ =
t=0 =0 =0

T— [ee)
+ = Z > QTsQ.
=0 7=t+1

(28)
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and observe that E[H (s, ..., s7-1)] = tT;Ol S _,Q7SQT. Tt can be verified that for any 0 <

t<T,
4s*
||H(80, ceey Steeny ST—I) - H(So, ceey S;, ceey ST_1)|| S - 2

(1-p(Q))

_16Ts" __ and appealing to Lemma 7, we get
(1-p(@)

Ti (i Qt‘7s7> ( i Q“E)T — gQTSQT

t=0 >7=0 7=0

Thus, letting Var =

i

Setting the probability above equal to 4, this implies that with probability at least 1 — J, we have

T—1 , t ¢ Tt 8s%y/2log &
Qth ‘r) < Qtf'r T) o Q’T‘SQT S i
S (o) (Xew) -2 :

t=0 \7=0 =0 VT (1=p(@)?°

Z C} S Ne—CZ/SVaI”.
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T

Moreover, we evidently have
T—-1 oo
1 1 52
— TSQT| < = ———M ).
LY Y @se ||_T((1_ 3
t=0 T=t+1
Plugging the two bounds above in (28) completes the proof. O
Proof of Proposition 9. Considering the expression for MSD in Theorem 5, we have
MSD(P, Oé) - MSD(P,E, a) = WIVISD(P, Ol) - WIL[SD(Pfe; Oé)
o XN: (/\1(P) — )\i(P—e)) ((1 - 0&2a2)(/\i(P_€) + )\l(P)) + 2a2a)\i(P)/\i(P_€))
(1—a?(Ni(P) — @)?) (1 — a®(Ni(P-e) — a)?)

i=1

Based on definitions (20) and (21), it follows from Weyl’s eigenvalue inequality that A\, (P) —
Me(P=e) < M (eAP(i,j)) = 0, for any k € V. Combined with the assumptions P > 0
and |aa] < 1, this implies that the numerator of the expression above is always non-positive.
The denominator is always positive due to stability of the error process ét in (7), and hence,
MSD(P, o) < MSD(P_, ). O
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