Supplementary Material for Compressive Feature

Learning
Hristo S. Paskov Robert West
Department of Computer Science Department of Computer Science
Stanford University Stanford University
hpaskov@cs.stanford.edu westl@cs.stanford.edu
John C. Mitchell Trevor J. Hastie
Department of Computer Science Department of Statistics
Stanford University Stanford University
mitchell@cs.stanford.edu hastie@stanford.edu

1 Solving with ADMM

‘We wish to minimize

minimize dTw+Zc(s)HDJ(S>wJ(S) [|oo
" s€S ey
subjectto Xw>1, w>0

For the sake of brevity, we take Dj(,) to mean D) (5. With this in mind, the augmented Lagrangian

of (I is

d"w+Y () IDyswis)lleo + 1 (W) + L Xz = 1) +3" (w—2) + g lw—zl3 2)
seES

1.1 Solving for w
The relevant parts of () for w are
p
dTW+ZC(S)HDJ(S)WJ(S)||°° +I(w)+y w+ EHW—ZH% 3)
seS
Notice that this separates out with respect to wy(,) so we can focus on each group separately. We

therefore drop subscripts and use w to refer to w;(5) and D to Dy(,). The problem can be restated as

. p)
minimize d'w+ct+y w+Z||lw—z
i ¥+ 8w =2l "
subjectto w >0, Dw<tl

We have replaced the L..-norm via an epigraph variable transform. Note that we don’t need at > 0
constraint because it is implied by the existing ones. The Lagrangian is give by

Lw,t,a,y) =d'wct+y w+ §||w—zH% —~Tw4al (Dw—11) 5)

We have introduced dual variables « and ~ to enforce the non-negativity and Dw < ¢1 constraints,
respectively. Taking derivatives w.r.t. ¢ yields

%:cfole (6)

If ¢ — a1 # 0 then we can set ¢ such that the above is arbitrarily negative. Therefore, we assume
that ¢ = o’ 1. This leads to the problem

L(w,c,7y) :dTw—l—yTw—l—gHw—zH%—’yTW—i—ozTDw subjectto c=all (7)

Next, the derivative w.r.t. w is

oL

m:d—ky%—p(w—z)—'y—kDa (8)
which implies

w=p '(pz—d—y+y—Da) ©)

Strong duality holds and the KKT conditions imply that y,a > 0 with w’ v = 0 and a; = 0 if D;w; <
[|DW||o. Thus, unless w = 0, 7" a = 0. To check whether w = 0, we plug into (9) and check whether

0=pz—d—y+~v—Da (10)

with ¢ = a’1. Let g = (pz—d —y)+ where (x); = max(0,x) applies element-wise. Since - can add
arbitrarily positive amounts, (I0) is equivalent to

0=¢9g— D« (11)

With the looser restriction ¢ > o 1. Thus, D_lq = « and so

w=0&1"D"lg<c (12)
Next, assume that w # 0. Then to find «, let f = Dg and suppose that f is sorted in decreasing order

and that w, D, «v are also sorted so that indices match up. This is always possible by permuting the
vectors. Then w; is maximal iff

Dyywi = fi — D3¢ > fo = Dyyws (13)

If wi, wy are maximal, then

fi=Diai=fr—Dh(c—a1) > f3 (14)

Solving for a;; we find

_ f17f2+D%2C

i JeT (15)
Dy, + Dy,
And hence
2 fi=fo+Dye _ Dy fi+Di o+ D D3ye
fi—=Di1—+% 5 = 5 5 > f3 (16)
Dy +Ds, Dy, +Ds,
Continuing on, suppose that wy, wy, w3 are maximal so that
fi—Dijon = fr—Dhan = f3—Dis(c—a1—) > fu (17

Solving that for a; we find

| — fr+D3han
o = 12 Dy 2 (18)
Dy,

And then for ap

oy — D%l(fz2—f32)_D%(flz_f2)2+Dj1D%3c (19)
D1, D5, + Dy, D33+ D3,D53

Thus, the maximal elements are given by

D2 fi+Dytfr+ D3l fs—c
fr— Dy = A1 i 2 £ 332 20)
Dy +Dyy +Dy3

It can be shown by induction that there are k maximal elements only if

k 1
2:1 Dii gi—c
i=
. > Dy 1 k+19k+1 (21)
-2
D;;
i=1
k 1
X:ID;] qj—c
In order to recover w, we set w; = g; if D;;w; is not maximal, and if it is, we set w; = DE] = z
> D}
J7

Next, we show that it is possible to quickly find k in linear time (i.e. without sorting). Define

k-
2Dii Jfi—e
i=

m(k) = and suppose that there are k true maximal elements so that

—2
Z Dii

i=1

m(k) > fis1 (22)

We show that m(t) > fi+1, whenz > k. Using the fact that m(k) > fi11,

k k
m(k) > fi1 < > Dp’fi—c> <ZD;2> fis (23)
i=1

i= i=1

k t k t
&> Di’fi—c+ > Di’fi> (ZDf) fir1+ < > D;2> fist (24)
i=1 i=1

i=k+1 i=k+1

t t
D Di’fi—e> (ZD#) feer & m(t) > fisn (25)
i=1 i=1

Thus m(t) < fiy1 fort < kand m(t) > fiy) fort > k.

We can use this as a search criteria to develop an algorithm akin to the linear time median finding
algorithm. This allows us to find & in linear time without requiring that f be sorted.

1.2 Solving for z

For 7 the relevant parts are

s T, P 2
minimize —y Z+ <|((w—2z2
s 2+ 2w =2/} o6
subjectto Xz >1
This is easiest to solve by taking the dual. The Lagrangian is given by
L(z,0) = —"z+ Ew—z[}+a” (1-X2) @7)
Solving for z we find
oL
— =—y—pwtpz—XTa=0 (28)
0z
=p '+ pw+XxTa) (29)

Strong duality obtains, so plugging (29) into the Lagrangian yields the dual optimization problem

1
minigénize —(pl =X(y+pw) o+ EaTHa 30)

subjectto a >0

where H = XX7T.

2 Matrix Entries

This section explores the structure of H = XX”. We assume that N documents are compressed
jointly, each of size n;, and that pointers respect document boundaries. We show that H is a (k— 1)-
banded matrix and that it is block diagonal with N blocks, each of size n; x n; and corresponding to
document i. This structure occurs when we assume a specific ordering for the set of potential pointers
‘P. In particular, pointers are ordered lexicographically according to the document they pertain to,
then the length of their substring, and finally the location in which they insert their substring.

Recall that column j of X corresponds to pointer p; € P and that this column only has 1°s at loca-

tions corresponding to words that p; can reconstruct. Let m; = Zle n; —t + 1 be the total number of
pointers pertaining to document i. Since pointers respect document boundaries, our ordering implies
that X is a block diagonal matrix in which columns 1,...,m can only have 1’s in rows 1,...,ny;
columns m; +1,...,m; +my can only have 1’s in rows n; + 1,...,n; +n2; and so on. This immedi-
ately implies that H is also a block diagonal matrix comprised of N blocks, each of size n; x n; with
the i"* block corresponding to document i.

Next, to show that H is (k — 1)-banded, notice that each column of X has a contiguous sequence of
at most k ones and is 0 everywhere else. The outer product XX7 = >"" X,XT where X; is the i
column of X is therefore formed by adding together a series of rank one matrices, each of which is
(k— 1)-banded. This implies that H must itself be (k— 1)-banded.

	Solving with ADMM
	Solving for w
	Solving for z

	Matrix Entries

