
In this Addendum, A) we compare our approach to that of [1] from both a theoretical and practical
standpoint; B) we show that the performance of Algorithm 1 is robust to variations and choice of
parameters; C) we provide a self-contained proof of (a generalization of) Theorem 1; and D) we
include a Matlab implementation of Algorithm 1, which is also available from our websites.

A Comparison with [1]

The estimators of [1] differ from the one presented here in several respects. First, they require,
as input, an upper bound, n, on the true support size of the distribution from which the sample
was drawn. Second, rather than adopting the two-stage approach of our estimator, which tries to
find the plausible histogram of minimal support size, their approach uses a single linear program,
which simply tries to find a plausible histogram. Specifically, their linear program lacks an objective
function, and only defines a feasible polytope that consists of all histograms h� whose expected
fingerprint is sufficiently close to the observed fingerprint (specifically, |Eh� [Fi] − Fi| ≤ n.51).
The third difference, which significantly complicates the proof of Theorem 1, is how we quantify
“close to the observed fingerprint”. Our algorithm measures the distance between the expected
fingerprint of a histogram, and the observed fingerprint, by weighting the discrepancy in the ith
entry by 1√

Fi+1
. This makes intuitive sense, as the variance in the ith fingerprint entry is roughly

equal to its expectation (as in a Poisson distribution), and Fi is a proxy for the expected value of the
ith fingerprint entry: in short, the objective value of our linear program tries to find a distribution to
fit the data so as to minimize the “total error, measured in units of standard deviations”. The linear
program of [1] simply requires that |Eh� [Fi] − Fi| ≤ n.51, irrespective of value of Fi. One of the
significant technical hurdles of our proof of Theorem 1 can be roughly viewed as showing that the
results of [1] still hold if n.51 were instead replaced by n.01

√
Fi + 1.

In Figure 4 we give empirical evidence for the importance of our two-stage approach—in particular,
minimizing the support size while ensuring that the returned histogram still has the property that its
expected fingerprints are close to the observed ones.

B Robustness to modifying parameters

In this section we give strong empirical evidence for the robustness of our approach. Specifically, we
show that the performance of our estimator remains essentially unchanged over large ranges of the
two parameters of our estimator: the choice of mesh points of the interval (0, 1] which correspond to
the variables of the linear programs, and the parameter α of the second linear program that dictates
the additional allowable discrepancy between the expected fingerprints of the returned histogram
and the observed fingerprints.

Additionally, we also consider the variant of the second linear program which is based on a slightly
different interpretation of Occam’s Razor: instead of minimizing the support size of the returned
histogram, we now minimize the entropy of the returned histogram. Note that this is still a linear
objective function, and hence can still be solved by a linear program. Formally, recall that the
linear programs have variables h�

1, . . . , h
�
�

corresponding to the histogram values at corresponding
fixed grid points x1, . . . , x�. Rather than having the second linear program minimize

��

j=1 h
�
j
, we

consider replacing the objective function by

Minimize:
��

j=1

h�
j · log

1

xj

.

Note that the quantity
��

j=1 h
�
j
· log 1

xj
is precisely the entropy corresponding to the histogram

defined by h(xi) = h�
i

and h(x) = 0 for all x �∈ {x1, . . . , x�}. Additionally, this expression is still
a linear function (of the variables h�

j
) and hence we still have a linear program.

Figure 5 depicts the performance of our estimator with five different sets of parameters, as well
as the performance of the estimator with the entropy minimization objective, as described in the
previous paragraph.
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Figure 4: Comparison between our main algorithm using two linear programs, versus running only the first
linear program. Plots depict the square root of the mean squared error (RMSE) of each entropy estimator over
100 trials, plotted as a function of the sample size (note the logarithmic scaling of the x-axis). The samples
are drawn from a uniform distribution Unif [n] (top row), a Zipf distribution Zipf [n] (middle row), and a
geometric distribution Geom[n] (bottom row), for n = 1000 (left column), n = 10, 000 (middle column), and
n = 100, 000 (right column). Note that the estimator obtained by removing the second linear program (the
program that minimizes the support size for “plausible” histograms) performs significantly less consistently
than the proposed two-program estimator, and has performance quirks that depend on the distribution family.
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Figure 5: Plots depicting the square root of the mean squared error (RMSE) of each entropy estimator over
100 trials, plotted as a function of the sample size. The samples are drawn from a uniform distribution Unif [n]
(top row), a Zipf distribution Zipf [n] (middle row), and a geometric distribution Geom[n] (bottom row), for
n = 1000 (left column), n = 10, 000 (middle column), and n = 100, 000 (right column). The unseen
estimator with parameters α, c corresponds to setting the error parameter α of Algorithm 1 and the mesh
corresponding to the linear program variables to be a geometrically spaced grid with geometric ratio c; namely,
X = { 1

k2 ,
c
k2 ,

c2

k2 ,
c3

k2 , . . . , }, where k is the sample size. Note that the performance of the different variants
of the unseen estimator perform nearly identically. In particular, the performance is essentially unchanged if
one makes the granularity of the grid spacing of the mesh of probabilities used in the linear programs more
fine, or slightly more coarse. The performance is also essentially identical if one changes the objective function
of Linear Program 2 to minimize the entropy of the returned histogram (“Unseen-MinEntropy” in the above
plot), rather than minimizing the support size. The performance varies slightly when the error parameter α is
changed, though is reasonably robust to increasing or decreasing α by factors of up to 2.
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C Proof of main theorem

We now give a self-contained proof of Theorem 1. In fact, we will prove a more general theorem
that guarantees that Algorithm 1 will, with very high probability, return a histogram which is “close”
to the histogram of the true distribution from which the sample was drawn. In particular, for any
sufficiently “nice” statistical property of the distribution (such as entropy) that is a function of only
the histogram of a distribution, the property value of the histogram returned by our algorithm will
be an accurate approximation of the property value of the true distribution from which the sample
was drawn.

In order to formally state this more general theorem, we now define what it means for two histograms
to be “close”.
Definition 6. For two distributions p1, p2 with respective histograms h1, h2, we define the relative
earthmover distance between them, R(p1, p2) := R(h1, h2), as the minimum over all schemes of
moving the probability mass of the first histogram to yield the second histogram, of the cost of
moving that mass, where the per-unit mass cost of moving mass from probability x to y is | log(x/y)|.
Formally, for x, y ∈ (0, 1], the cost of moving x · h(x) units of mass from probability x to y is
x · h(x)| log x

y
|.

One can also define the relative earthmover distance via the following dual formulation (given by
the Kantorovich-Rubinstein theorem, though it can be intuitively seen as exactly what one would
expect from linear programming duality):

R(h1, h2) = sup
f∈R

�

x:h1(x)+h2(x) �=0

f(x) · x (h1(x)− h2(x)) ,

where R is the set of differentiable functions f : (0, 1] → R, s.t. | d

dx
f(x)| ≤ 1

x
.

We provide a clarifying example of the above definition:
Example 7. Let p1 = Unif [m], p2 = Unif [�] be the uniform distributions over m and � distinct
elements, respectively. R(p1, p2) = | logm − log �|, since we must take all the probability mass at
probability x = 1/m in the histogram corresponding to p1, and move it to probability y = 1/�, at a
per-unit mass cost of | log m

�
| = | logm− log �|.

Throughout, we will restrict our attention to properties that satisfy a weak notion of continuity,
defined via the relative earthmover distance.
Definition 8. A symmetric distribution property π is (�, δ)-continuous if for all distributions p1, p2
with respective histograms h1, h2 satisfying R(h1, h2) ≤ δ it follows that |π(p1)− π(p2)| ≤ �.

We note that both entropy and support size are easily seen to be continuous with respect to the
relative earthmover distance.
Fact 9. For a distribution p of support size at most n, and δ > 0

• The entropy, H(p) := −
�

i
p(i) · log p(i) is (δ, δ)-continuous, with respect to the relative

earthmover distance.

• The support size S(p) := |{i : p(i) > 0}| is (nδ, δ)-continuous, with respect to the relative
earthmover distance, over the set of distributions which have no probabilities in the interval
(0, 1

n
).

C.1 Formal description of algorithm

We now formally state the algorithm to which our theorem applies. The linear program employed
by this algorithm is identical to Linear Program 2 (up to renaming variables). The one difference
between this algorithm, and Algorithm 1 is the manner in which the fingerprint is partitioned into
the “easy” regime for which the empirical estimate is applied, and the “hard” regime for which the
linear programming approach is applied. Here, for simplicity, we analyze the partitioning scheme
that simply chooses a fixed cutoff, and applies the naive empirical estimator to any fingerprint entry
Fi for i above the cutoff, and applies the linear programming approach to the smaller fingerprint
indices.
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For clarity of exposition, we state the algorithm in terms of three positive constants, B, C, and D,
which can be defined arbitrarily provided the following inequalities hold:

0.1 > B > C > B(1
2
+D) >

B
2
> D > 0.

Linear Program 3.

Given a k-sample fingerprint F :

• Define the set X := { 1
k2 ,

2
k2 ,

3
k2 , . . . ,

kB+kC

k }.
• For each x ∈ X, define the associated LP variable vx.

The linear program is defined as follows:

Minimize
�

x∈X

vx, (minimize support size)

Subject to:

•
�kB

i=1
1√

Fi+1

��Fi −
�

x∈X poi(kx, i)vx
�� ≤ k2B (expected fingerprints of vx are close to F )

•
�

x∈X x · vx +
�k

i=kB+2kC
i
kFi = 1 (total prob. mass = 1)

• ∀x ∈ X, vx ≥ 0 (histogram entries are non-negative)

Algorithm 2. ESTIMATE UNSEEN

Input: k-sample fingerprint F .
Output: Generalized histogram gLP .

• Let v = (vx1 , vx2 , . . .) be the solution to Linear Program 3, on input F .
• Let gLP be the generalized histogram formed by setting gLP (xi) = vxi for all i, and then for

each integer j ≥ kB + 2kC , incrementing gLP (
j
k ) by Fj .

The following theorem characterizes the performance of the above algorithm. Theorem 1 follows
immediately from the following theorem, together with Fact 9 which shows that if two histograms
are close in relative earthmover distance, then their entropies are comparably close.
Theorem 2. For any c > 0, for sufficiently large n, given a sample of size k = c n

logn
consisting

of independent draws from a distribution p ∈ Dn, with probability at least 1 − e−n
Ω(1)

over the
randomness in the selection of the sample, Algorithm 2 returns a generalized histogram gLP such
that

R(p, gLP ) ≤ O

�
1√
c

�
.

C.2 Proof approach

The proof of Theorem 2 decomposes into three main parts. The first part of the proof argues that
with high probability (over the randomness in the independent draws of the sample) the sample will
be a “faithful” sample from the distribution—no domain element occurs too much more frequently
than one would expect, and the fingerprint entries are reasonably close to their expected values. This
part of the proof, while slightly tedious, follows relatively easily from a series of Chernoff bounds.
Having thus compartmentalized the probabilistic component of our theorem, we will then argue that
Algorithm 2 will be successful whenever it receives a “faithful” sample as input.

The second component of the proof argues that (provided the sample in question is “faithful”), the
histogram of the true distribution, rounded so as to be supported at values in the set X of probabilities
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corresponding to the linear program variables, is a feasible point of Linear Program 3. (And has ob-
jective function value roughly equal to the true support size, since the rounding will not significantly
alter the support size.)

The final component of the proof will then argue that, given any two feasible points of Linear
Program 3 that both have reasonably small objective function value, they must be close in relative
earthmover distance. Since we have already established that the histogram of the true distribution
(appropriately rounded) will be feasible, and will have small objective function value, it will follow
that the solution output by the linear program (which can only have smaller objective function value),
must be close to the histogram of the true distribution. This component of the proof closely follows
that of [1], and crucially leverages a similar “Chebyshev Bump” construction, though we provide a
slightly simplified proof of the key lemmas here for completeness.

C.3 A feasible point

The following condition defines what it means for a sample from a distribution to be “faithful”:
Definition 10. A sample of size k with fingerprint F , drawn from a distribution p with histogram h,
is said to be faithful if the following conditions hold:

• For all i, ������
Fi −

�

x:h(x) �=0

h(x) · poi(kx, i)

������
≤ max

�
F

1
2+D
i

, kB( 1
2+D)

�
.

• For all domain elements i, letting p(i) denote the true probability of i, the number of times
i occurs in the sample from p differs from its expectation of k · p(i) by at most

max
�
(k · p(i))

1
2+D , kB( 1

2+D)
�
.

The following lemma follows easily from basic tail bounds on Poisson random variables, and Cher-
noff bounds.
Lemma 11. There is a constant γ > 0 such that for sufficiently large k, a sample of size k consisting
of independent draws from a fixed distribution is “faithful” with probability at least 1− e−k

γ
.

Proof. We first analyze the case of a Poi(k)-sized sample drawn from a distribution with histogram
h. Thus

E[Fi] =
�

x:h(x) �=0

h(x)poi(kx, i).

Additionally, the number of times each domain element occurs is independent of the number of
times the other domain elements occur, and thus each fingerprint entry Fi is the sum of independent
random 0/1 variables, representing whether each domain element occurred exactly i times in the
sample (i.e. contributing 1 towards Fi). By independence, Chernoff bounds apply.

We split the analysis into two cases, according to whether E[Fi] ≥ kB. If E[Fi] < kB, we have
that Pr

�
|Fi − E[Fi]| ≥ kB( 1

2+D)
�

is monotonically increasing as a function of E[Fi], and hence

for any E[Fi] < kB, this probability is bounded by considering the case that E[Fi] = kB; in this
case, Chernoff bounds yield:

Pr
�
|Fi − E[Fi]| ≥ E[Fi]

1
2+D

�
≤ 2e

�
1

E[Fi]
1/2−D

�2
E[Fi]

3 = 2e
E[Fi]

2D
3 = 2ek

2BC
/3.

In the case that E[Fi] ≥ kB, we have that Pr
�
|Fi − E[Fi]| ≥ E[Fi]

1
2+D

�
is monotonically decreas-

ing as a function of E[Fi], and hence this quantity is also bounded by the above Chernoff bound in
the case that E[Fi] = kB. A union bound over the first k fingerprints shows that the probability
that given a sample (consisting of Poi(k) draws), the probability that any of the fingerprint entries
violate the first condition of faithful is at most k · 2e− k2BD

3 ≤ e−k
Ω(1)

.
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For the second condition of “faithful”, by basic tail bounds for the Poisson distribution, Pr[|Poi(x)−
x| > x

1
2+D] ≤ e−x

Ω(1)
), hence for x = k ·p(i) ≥ kB, the probability that the number of occurrences

of domain element i differs from its expectation of k · p(i) by at least (k · p(i)) 1
2+D is bounded by

e−k
Ω(1)

. In the case that x = k · p(i) < kB,

Pr[|Poi(x)− x| > kB( 1
2+D)] ≤ Pr[|Poi(kB)− kB| > kB( 1

2+D)] ≤ e−k
Ω(1)

.

Thus we have shown that provided we are considering a sample of size Poi(k), the probability that
the conditions hold is at least 1−e−k

Ω(1)
. To conclude, note that Pr[Poi(k) = k] > 1

3
√
k
, and hence

the probability that the conditions do not hold for a sample of size exactly k (namely, the probability
that they do not hold for a sample of size Poi(k), conditioned on the sample size being exactly k),
is at most a factor of 3

√
k larger, and hence this probability of failure is still e−k

Ω(1)
, as desired.

The following lemma guarantees that, provided the sample is “faithful”, the corresponding instance
of Linear Program 3 admits a feasible point with small objective function value. Furthermore, there
exists at least one such near-optimal point which, when regarded as a histogram, is extremely close
to the histogram of the true distribution from which the sample was drawn.

Lemma 12. For sufficiently large k, and n < k1+B/2: given a distribution of support size at
most n with histogram h, and a “faithful” sample of size k with fingerprint F , Linear Program 3
corresponding to F has a feasible point v� with objective value at most 2n, such that v� is close to
the true histogram h in the following sense:

R(h, hv�) ≤ O(kC−B + kB(−1/2+D) log k) = O(
1

kΩ(1)
),

where hv� is the generalized histogram that would be returned by Algorithm 2 if v� were used in
place of the solution to the linear program, v; namely hv� is obtained from v� by appending the
distribution of the empirical fingerprint entries Fi for i ≥ kB + 2kC .

Recall that the linear program aims to find distributions that “could reasonably have generated” the
observed fingerprint F . Following this intuition, we will show that, provided the sample is faithful,
the true distribution, h, minimally modified, will in fact be such a feasible point v�.

Roughly, v� will be defined by taking the portion of h with probabilities at most k
B+k

C

k
and rounding

the support of h to the closest multiple of 1/k2, so as to be supported at points in the set X =
{1/k2, 2/k2, . . .}. We will then need to adjust the total probability mass accounted for in v� so
as to ensure that the second constraint of the linear program is satisfied, namely the total (implicit)
probability mass is 1; this adjusting of mass must be accomplished while ensuring that the fingerprint
expectations do not change significantly, so as to ensure that the first constraint of the linear program
is satisfied.

The objective function value of v� will easily be bounded by 2n, since we are assuming that the
support size of the distribution corresponding to the true histogram, h, is bounded by n, and the
rounding will at most double this value. To argue that v� is a feasible point of the linear program,
we note that the mesh X is sufficiently fine so as to guarantee that the rounding of the support of
a histogram to probabilities that are integer multiples of 1/k2 does not greatly change the expected
fingerprints, and hence the expected fingerprint entries associated with v� will be close to those of
h. Our definition of “faithful” guarantees that all fingerprint entries are close to their expectations,
and hence the first condition of the linear program will be satisfied. (Intuitively, the reader should
be convinced that there is some suitably fine mesh for which rounding issues are benign; there is
nothing special about 1/k2 except that it simplifies some of the proof.)

To bound the relative earthmover distance between the true histogram h and the histogram hv�

associated to v�, we first note that the portion of hv� corresponding to probabilities below k
B+k

C

k

will be extremely similar to h, because it was created from h. For probabilities above k
B+2kC

k
,

hv� and h will be similar because these “frequently-occurring” elements will appear close to their
expected number of times, by the second condition of “faithful” and hence the relative earthmover
distance between the empirical histogram and the true histogram in this frequently-occurring region
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will also be small. Finally, the only remaining region is the relatively narrow intermediate region
of probabilities, which is narrow enough so that probability mass can be moved arbitrarily within
this intermediate region while incurring minimal relative earthmover cost. The formal proof of
Lemma 12 containing the details of this argument is given below.

Proof of Lemma 12. We explicitly define v� as a function of the true histogram h and fingerprint of
the sample, F , as follows:

1. Define h� such that h�(x) = h(x) for all x ≤ k
B+k

C

k
, and h�(x) = 0 for all x > k

B+k
C

k
.

2. Initialize v� to be 0, and for each x ≥ 1/k2 s.t. h�(x) �= 0 increment v�x̄ by h�(x), where
x̄ = max(z ∈ X : z ≤ x) is x rounded down to the closest point in the set X =
{1/k2, 2/k2, . . .}.

3. Let m :=
�

x∈X
xv�x +mF , where mF :=

�
i≥kB+2kC

i

k
Fi. If m < 1, increment v�y by

(1−m)/y, where y = k
B+k

C

k
. Otherwise, if m ≥ 1, for all x ∈ X scale v�x by a factor of

s = 1−mF
m−mF

, after which the total probability mass mF +
�

x∈X
xv�x will be 1.

We first note that the above procedure is well-defined, since mF ≤ 1, and hence, when m > 1 and
the scaling factor s is applied, s will be positive.

We now argue that v� is a feasible point of the linear program. Note that by construction, the second
and third conditions of the linear program are trivially satisfied. We now consider the first condition
of the linear program. Note that since C > 1

2B, we have
�

i≤kB poi(kB + kC , i) = o(1/k), so the
fact that we are truncating h at probability k

B+k
C

k
in the first step in our construction of v�, has little

effect on the first kB “expected fingerprints”: specifically, for i ≤ kB,
�

x:h(x) �=0

(h�(x)− h(x)) poi(kx, i) = o(1).

Together with the first condition of the definition of faithful, by the triangle inequality, for each i,

1√
Fi + 1

������
Fi −

�

x:h�(x) �=0

h�(x)poi(kx, i)

������
≤ max

�
FD

i , kB( 1
2+D)

�
+ o(1).

We now bound the analyze how the discretization contributes to the first constraint of the linear
program. To this end, note that

�� d

d x
poi(kx, i)

�� ≤ k, and since we are discretizing to multiples of
1/k2, the discretization alters the contribution of each domain element to each “expected finger-
print” by at most k/k2 = 1/k (including those domain elements with probability < 1/k2 which
are effectively rounded to 0). Thus, since the support size is bounded by n, the discretization al-
ters each “expected fingerprint” by at most n/k, and thus contributes at most kB n

k
to the quantity

�k
B

i=1
1√

Fi+1

��Fi −
�

x∈X
poi(kx, i)v�x

�� .

To conclude our analysis of the first condition of the linear program for v�, we consider the effect of
the final adjustment of probability mass in the construction of v�. In the case that m ≤ 1, where m is
the amount of mass in v� before the final adjustment (as defined in the final step in the construction
of v�), mass is added to v�y , where y = k

B+k
C

k
, and thus since

�
i≤kB poi(ky, i) = o(1/k), this

added mass—no matter how much—alters each
�

x∈X
v�xpoi(kx, i) by at most o(1).

The case where m > 1, and we must scale down the low-frequency portion of the distribution by
the quantity s < 1, involves a more delicate analysis. We first bound s in such a way that we
can leverage the definition of “faithful”. Recall that by definition at the start of the third step of
the construction of v�, we have s = 1−mF

m−mF
=

�
i<kB+2kC

i
kFi�

x∈X xv�
x

. We lowerbound this expression
via an upperbound on the denominator, noting that

�
x∈X

xv�x is at most the total probability mass
below frequency k

B+k
C

k
in the true histogram h, which by Poisson tail bounds is at most o(1/k)

less than the total mass implied by expected fingerprints up to kB + 2kC . Namely, letting E[Fi] =
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�
x:h(x) �=0 h(x) · poi(kx, i) be the expected fingerprints of sampling from the true distribution, we

have s ≥
�

i<kB+2kC
i
kFi�

i<kB+2kC
i
k E[Fi]

− o(1/k).

We bound this expression using the definition of “faithful”: for each i, we have E[Fi] ≤ Fi +

max
�
F

1
2+D
i

, kB( 1
2+D)

�
≤ Fi + F

1
2+D
i

+ kB( 1
2+D). To bound s, we must bound the sum of these

terms, each scaled by i

k
. Because x

1
2+D is a concave function, and letting z :=

�
i<kB+2kC

i

k
=

O(k
2B

k
), Jensen’s inequality gives that

�
i<kB+2kC

i

k
F

1
2+D
i

≤ z
�
1
z

�
i<kB+2kC

i

k
Fi

� 1
2+D. Thus,

defining the mass implied by the low-frequency fingerprints to be mS :=
�

i<kB+2kC
i

k
Fi, we

bound one over the expression in our bound for s as
�

i<kB+2kC
i
k E[Fi]�

i<kB+2kC
i
kFi

≤ 1 +
�

z

mS

� 1
2−D

+

kB( 1
2+D) z

mS
. Thus s is at least 1 over this last expression, minus o(1/k), which we bound

via the inequality 1
1+x

≥ 1 − x (for positive x) as: s ≥ 1 − O(k(2B−1)( 1
2−D))m

−( 1
2−D)

S
−

O(k2B+B( 1
2+D)−1)/mS .

Recall that v� is scaled by s at the end of the third step of its construction, and thus to analyze
the contribution of this scaling to the first constraint of the linear program, we bound the total
quantity which will be scaled in the first constraint function,

�k
B

i=1
1√

Fi+1

�
x∈X

poi(kx, i)v�x at
the beginning of step 3. We make use of the bounds on the first constraint derived above, for each i:

1√
Fi + 1

������
Fi −

�

x:h�(x) �=0

poi(kx, i)v�x

������
≤ max

�
FD

i , kB( 1
2+D)

�
+

n

k
+ o(1),

which can be rearranged to

1√
Fi + 1

�

x:h�(x) �=0

poi(kx, i)v�x ≤ Fi√
Fi + 1

+max
�
FD

i , kB( 1
2+D)

�
+

n

k
+ o(1)

≤
�

Fi +O(kB( 1
2+D)).

The Cauchy–Schwarz inequality yields that
�

i≤kB
√
Fi ≤

��
i≤kB

i

k
Fi

��
i≤kB

k

i
, which is

bounded by
√
mSO(

√
k log k).

Thus scaling by s in step 3 modifies the first constraint of the linear program by at most the product
of s− 1 and 1√

Fi+1

�
x:h�(x) �=0 poi(kx, i)v

�
x, which we have thus bounded as

min
�
1, O(k(2B−1)( 1

2−D))m
−( 1

2−D)
S

+O(k2B+B( 1
2+D)−1)/mS

��√
mSO(

�
k log k) +O(kB( 3

2+D))
�
.

When mS < k3B−1, we bound the left parenthetical expression by 1 and the right expression is
bounded by O(

�
k3B log k + kB( 3

2+D)) = O(kB( 3
2+D)).

Otherwise, when mS ∈ [k3B−1, 1], we bound the product of the first parentheti-
cal with the rightmost term O(kB( 3

2+D)) by simply O(kB( 3
2+D)). We bound the re-

maining two cross-terms as O(k(2B−1)( 1
2−D))m

−( 1
2−D)

S

√
mSO(

√
k log k) ≤ O(kB+D) and

O(k2B+B( 1
2+D)−1)/mS

√
mSO(

√
k log k) ≤ O(kB(1+D)). Thus the total contribution of the scal-

ing by s to the first constraint is O(kB( 3
2+D)).

Thus for large enough k, the first constraint will always be less than k2B

We now turn to analyzing the relative earthmover distance R(h, hv�). Consider applying the fol-
lowing earthmoving scheme to hv� to yield a new generalized histogram g. The following scheme
applies in the case that no probability mass was scaled down from v� in the final step of its construc-
tion; in the case that v� was scaled down, we consider applying the same earthmoving scheme, with
the modification that one never moves more than xhv�(x) mass from location x.
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• For each x ≤ k
B+k

C

k
, move x̄h(x) units of probability from location x̄ to x, where as

above, x̄ = max(z ∈ X : z ≤ x) is x rounded down to the closest point in set X =
{1/k2, 2/k2, . . .}.

• For each domain element i that occurs j ≥ kB + 2kC times, move j

k
units of probability

mass from location j

k
to location p(i), where p(i) is the true probability of domain element

i.

By our construction of hv� , it follows that the above earthmoving scheme is a valid scheme to apply
to hv� , in the sense that it never tries to move more mass from a point than was at that point. And g is
the generalized histogram resulting from applying this scheme to hv� . We first show that R(hv� , g)
is small, since probability mass is only moved relatively small distances. We will then argue that
R(g, h) is small: roughly, this follows from first noting that g and h will be very similar below
probability value k

B+k
C

k
, and from the second condition of “faithful” g and h will also be quite

similar above probability k
B+4kB

k
. Thus the bulk of the disparity between g and h is in the very

narrow intermediate region, within which mass may be moved at the small per-unit-mass cost of
log k

B+O(kC)
kB ≤ O(kC−B).

We first seek to bound R(hv� , g). To bound the cost of the first component of the scheme, con-
sider some x ≥ k

1/2

k2 . The per-unit-mass cost of applying the scheme at location x is bounded by
log x

x−1/k2 < 2k−1/2. From the bound on the support size of h and the construction of hv� , the total

probability mass in hv� at probabilities x ≤ k
1/2

k2 is at most n

k3/2 < kB/2−1/2, and hence this mass
can be moved anywhere at cost kB/2−1/2 log(k2). To bound the second component of the scheme,
by the second condition of “faithful” for each of these frequently-occurring domain elements that
occur j ≥ kB + 2kC times with true probability p(i), we have that |k · p(i) − j| ≤ (k · p(i)) 1

2+D,

and hence the per-unit-mass cost of this portion of the scheme is bounded by log k
B−k

B( 1
2+D)

kB ≤
O(kB(− 1

2+D)), which dominates the cost of the first portion of the scheme. Hence

R(hv� , g) ≤ O(kB(− 1
2+D)).

We now consider R(h, g). To this end, we will show that
�

x �∈[kB−1,
kB+4kC

k ]

x|h(x)− g(x)| ≤ O(kB(−1/2+D)).

First, consider the case that there was no scaling down of v� in the final step of the construction.
For x ≤ kB−1, we have g(x) = x̄

x
h(x), and hence for x > k

1/2

k2 , |h(x) − g(x)| ≤ h(x)k−1/2. On
the other hand,

�
x≤ k1/2

k2

xh(x) ≤ k−1/2+B/2, since the support size of h is at most n ≤ k1+B/2.

Including the possible removal of at most k−1/2+D units of mass during the scaling in the final step
of constructing v�, we have that

�

x≤kB−1

x|h(x)− g(x)| ≤ O(k−1/2+B/2).

We now consider the “high probability” regime. From the second condition of “faithful”, for each
domain element i whose true probability is p(i) ≥ k

B+4kC

k
, the number of times i occurs in the

faithful sample will differ from its expectation k · p(i) by at most (k · p(i)) 1
2+D. Hence from our

condition that C > B( 12 + D) this element will occur at least kB + 2kC times, in which case it
will contribute to the portion of hv� corresponding to the empirical distribution. Thus for each such
domain element, the contribution to the discrepancy |h(x)−g(x)| is at most (k ·p(i))−1/2+D. Hence�

x≥kB−1+4kC−1 x|h(x)− g(x)| ≤ kB(−1/2+D), yielding the claim that
�

x �∈[kB−1,
kB+4kC

k ]

x|h(x)− g(x)| ≤ O(kB(−1/2+D)).
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To conclude, note that all the probability mass in g and h at probabilities below 1/k2 can be moved
to location 1/k2 incurring a relative earthmover cost bounded by maxx≤1/k2 nx| log xk2| ≤ n

k2 ≤
k
B/2

k
. After such a move, the remaining discrepancy between g(x) and h(x) for x �∈ [k

B

k
, k

B+4kC

k
]

can be moved to probability kB/k at a per-unit-mass cost of at most log k2, and hence a total cost
of at most O(kB(−1/2+D) log k2). After this move, the only region for which g(x) and h(x) differ
is the narrow region with x ∈ [k

B

k
, k

B+4kC

k
], within which mass may be moved arbitrarily at a total

cost of log(1 + 4kC−B) ≤ O(kC−B). Hence we have

R(h, hv�) ≤ R(h, g) +R(g, hv�) ≤ O(kC−B + kB(−1/2+D) log k).

C.4 Similar expected fingerprints imply similar histograms

In this section we argue that if two histograms h1, h2 corresponding to distributions with support size
at most O(n) have the property that their expected fingerprints derived from Poi(k)-sized samples
are very similar, then R(h1, h2) must be small. This will guarantee that any two feasible points of
Linear Program 3 that both have small objective function values correspond to histograms that are
close in relative earthmover distance. The previous section established the existence of a feasible
point with small objective function value that is close to the true histogram, hence by the triangle
inequality, all such feasible points must be close to the true histogram; in particular, the optimal
point—the solution to the linear program—will correspond to a histogram that is close to the true
histogram of the distribution from which the sample was drawn, completing our proof of Theorem 2.

We define a class of earthmoving schemes, which will allow us to directly relate the relative earth-
mover cost of two distributions to the discrepancy in their respective fingerprint expectations. The
main technical tool is a Chebyshev polynomial construction, though for clarity, we first describe a
simpler scheme that provides some intuition for the Chebyshev construction. We begin by describ-
ing the form of our earthmoving schemes; since we hope to relate the cost of such schemes to the
discrepancy in expected fingerprints of Poi(k)-sized samples, we will require that the schemes be
formulated in terms of the Poisson functions poi(kx, i).

Definition 13. For a given k, a β-bump earthmoving scheme is defined by a sequence of positive
real numbers {ci}, the bump centers, and a sequence of functions {fi} : (0, 1] → R such that�∞

i=0 fi(x) = 1 for each x, and each function fi may be expressed as a linear combination of
Poisson functions, fi(x) =

�∞
j=0 aijpoi(kx, j), such that

�∞
j=0 |aij | ≤ β.

Given a generalized histogram h, the scheme works as follows: for each x such that h(x) �= 0,
and each integer i ≥ 0, move xh(x) · fi(x) units of probability mass from x to ci. We denote the
histogram resulting from this scheme by (c, f)(h).

Definition 14. A bump earthmoving scheme (c, f) is [�, n]-good if for any generalized histogram h
of support size

�
x
h(x) ≤ n, the relative earthmover distance between h and (c, f)(h) is at most �.

The crux of the proof of correctness of our estimator is the explicit construction of a surprisingly
good earthmoving scheme. We will show that for any k and n = δk log k for some δ ∈ [1/ log k, 1],
there exists an [O(

√
δ), n]-good O(k0.3)-bump earthmoving scheme. In fact, we will construct a

single scheme for all δ. We begin by defining a simple scheme that illustrates the key properties of
a bump earthmoving scheme, and its analysis.

Perhaps the most natural bump earthmoving scheme is where the bump functions fi(x) = poi(kx, i)
and the bump centers ci = i

k
. For i = 0, we may, for example, set c0 = 1

2k so as to avoid a
logarithm of 0 when evaluating relative earthmover distance. This is a valid earthmoving scheme
since

�∞
i=0 fi(x) = 1 for any x.

The motivation for this construction is the fact that, for any i, the amount of probability mass that
ends up at ci in (c, f)(h) is exactly i+1

k
times the expectation of the i+ 1st fingerprint in a Poi(k)-
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sample from h:

((c, f)(h)) (ci) =
�

x:h(x) �=0

h(x)x · fi(x) =
�

x:h(x) �=0

h(x)x · poi(kx, i)

=
�

x:h(x) �=0

h(x) · poi(kx, i+ 1)
i+ 1

k

=
i+ 1

k

�

x:h(x) �=0

h(x) · poi(kx, i+ 1).

Consider applying this earthmoving scheme to two histograms h, g with nearly identical finger-
print expectations. Letting h� = (c, f)(h) and g� = (c, f)(g), by definition both h� and g� are
supported at the bump centers ci, and by the above equation, for each i, |h�(ci) − g�(ci)| =
i+1
k
|
�

x
(h(x) − g(x))poi(kx, i + 1)|, where this expression is exactly i+1

k
times the difference

between the i + 1st fingerprint expectations of h and g. In particular, if h and g have nearly iden-
tical fingerprint expectations, then h� and g� will be very similar. Analogs of this relation between
R ((c, f)(g), (c, f)(h)) and the discrepancy between the expected fingerprint entries correspond-
ing to g and h will hold for any bump earthmoving scheme, (c, f). Sufficiently “good” earthmoving
schemes (guaranteeing that R(h, h�) and R(g, g�) are small) thus provides a powerful way of bound-
ing the relative earthmover distance between two distributions in terms of the discrepancy in their
fingerprint expectations.

The problem with the “Poisson bump” earthmoving scheme described in the previous paragraph
is that it not very “good”: it incurs a very large relative earthmover cost, particularly for small
probabilities. This is due to the fact that most of the mass that starts at a probability below 1

k

will end up in the zeroth bump, no matter if it has probability nearly 1
k

, or the rather lower 1
n

.
Phrased differently, the problem with this scheme is that the first few “bumps” are extremely fat.
The situation gets significantly better for higher Poisson functions: most of the mass of Poi(i) lies
within relative distance O( 1√

i
) of i, and hence the scheme is relatively cheap for larger probabilities

x � 1
k
. We will therefore construct a scheme that uses regular Poisson functions poi(kx, i) for

i ≥ O(log k), but takes great care to construct “skinnier” bumps below this region.

The main tool of this construction of skinnier bumps is the Chebyshev polynomials. For each in-
teger i ≥ 0, the ith Chebyshev polynomial, denoted Ti(x), is the polynomial of degree i such
that Ti(cos(y)) = cos(i · y). Thus, up to a change of variables, any linear combination of cosine
functions up to frequency s may be re-expressed as the same linear combination of the Chebyshev
polynomials of orders 0 through s. Given this, constructing a “good” earth-moving scheme is an
exercise in trigonometric constructions.

Before formally defining our bump earthmoving scheme, we give a rough sketch of the key features.
We define the scheme with respect to a parameter s = O(log k). For i > s, we use the fat Poisson
bumps: that is, we define the bump centers ci = i

k
and functions fi = poi(kx, i). For i ≤ s, we will

use skinnier “Chebyshev bumps”; these bumps will have roughly quadratically spaced bump centers
ci ≈ i

2

k log k
, with the width of the ith bump roughly i

k log k
(as compared to the larger width of

√
i

k
of

the ith Poisson bump). At a high level, the logarithmic factor improvement in our O( n

logn
) bound

on the sample size necessary to achieve accurate estimation arises because the first few Chebyshev
bumps have width O( 1

k log k
), in contrast to the first Poisson bump, poi(kx, 1), which has width

O( 1
k
).

Definition 15. The Chebyshev bumps are defined in terms of k as follows. Let s = 0.2 log k. Define
g1(y) =

�s−1
j=−s

cos(jy). Define

g2(y) =
1

16s

�
g1(y −

3π

2s
) + 3g1(y −

π

2s
) + 3g1(y +

π

2s
) + g1(y +

3π

2s
)

�
,

and, for i ∈ {1, . . . , s − 1} define gi3(y) := g2(y − iπ

s
) + g2(y + iπ

s
), and g03 = g2(y), and gs3 =

g2(y+π). Let ti(x) be the linear combination of Chebyshev polynomials so that ti(cos(y)) = gi3(y).
We thus define s + 1 functions, the “skinny bumps”, to be Bi(x) = ti(1 − xk

2s )
�s−1

j=0 poi(xk, j),
for i ∈ {0, . . . , s}. That is, Bi(x) is related to gi3(y) by the coordinate transformation x = 2s

k
(1−

cos(y)), and scaling by
�s−1

j=0 poi(xk, j).
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The Chebyshev bumps of Definition 15 are “third order”; if, instead, we had con-
sidered the analogous less skinny “second order” bumps by defining g2(y) :=
1
8s

�
g1(y − π

s
) + 2g1(y) + g1(y +

π

s
)
�
, then the results would still hold, though the proofs

are slightly more cumbersome.
Definition 16. The Chebyshev earthmoving scheme is defined in terms of k as follows: as in Defi-
nition 15, let s = 0.2 log k. For i ≥ s+ 1, define the ith bump function fi(x) = poi(kx, i− 1) and
associated bump center ci = i−1

k
. For i ∈ {0, . . . , s} let fi(x) = Bi(x), and for i ∈ {1, . . . , s},

define their associated bump centers ci = 2s
k
(1− cos( iπ

s
)), and let c0 := c1.

The following lemma characterizes the key properties of the Chebyshev earthmoving scheme.
Namely, that the scheme is, in fact, an earthmoving scheme, that each bump can be expressed as
a low-eight linear combination of Poisson functions, and that the scheme incurs a small relative-
earthmover cost.
Lemma 17. The Chebyshev earthmoving scheme, of Definition 16 has the following properties:

• For any x ≥ 0, �

i≥0

fi(x) = 1,

hence the Chebyshev earthmoving scheme is a valid earthmoving scheme.

• Each Bi(x) may be expressed as
�∞

j=0 aijpoi(kx, j) for aij satisfying

∞�

j=0

|aij | ≤ 2k0.3.

• The Chebyshev earthmoving scheme is [O(
√
δ), n]-good, for n = δk log k, and δ ≥ 1

log k
.

The proof of the above lemma is quite involved, and we split its proof into a series of lemmas. The
first lemma below shows that the Chebyshev scheme is a valid earthmoving scheme (the first bullet
in the above lemma):
Lemma 18. For any x

s�

i=−s+1

g2(x+
πi

s
) = 1, and

∞�

i=0

fi(x) = 1.

Proof. g2(y) is a linear combination of cosines at integer frequencies j, for j = 0, . . . , s, shifted by
±π/2s and ±3π/s2. Since

�s

i=−s+1 g2(x + πi

s
) sums these cosines over all possible multiples of

π/s, we note that all but the frequency 0 terms will cancel. The cos(0y) = 1 term will show up once
in each g1 term, and thus 1 + 3 + 3 + 1 = 8 times in each g2 term, and thus 8 · 2s times in the sum
in question. Together with the normalizing factor of 16s, the total sum is thus 1, as claimed.

For the second part of the claim,

∞�

i=0

fi(x) =




s�

j=−s+1

g2(cos
−1

�
xk

2s
− 1

�
+

πj

s
)




s−1�

j=0

poi(xk, j) +
�

j≥s

poi(xk, j)

= 1 ·
s−1�

j=0

poi(xk, j) +
�

j≥s

poi(xk, j) = 1.

We now show that each Chebyshev bump may be expressed as a low-weight linear combination of
Poisson functions.
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Lemma 19. Each Bi(x) may be expressed as
�∞

j=0 aijpoi(kx, j) for aij satisfying

∞�

j=0

|aij | ≤ 2k0.3.

Proof. Consider decomposing gi3(y) into a linear combination of cos(�y), for � ∈ {0, . . . , s}. Since
cos(−�y) = cos(�y), g1(y) consists of one copy of cos(sy), two copies of cos(�y) for each �
between 0 and s, and one copy of cos(0y); g2(y) consists of ( 1

16s times) 8 copies of different g1(y)’s,
with some shifted so as to introduce sine components, but these sine components are canceled out
in the formation of gi3(y), which is a symmetric function for each i. Thus since each g3 contains
at most two g2’s, each gi3(y) may be regarded as a linear combination

�s

�=0 cos(�y)bi� with the
coefficients bounded as |bi�| ≤ 2

s
.

Since ti was defined so that ti(cos(y)) = gi3(y) =
�s

�=0 cos(�y)bi�, by the definition of Cheby-
shev polynomials we have ti(z) =

�s

�=0 T�(z)bi�. Thus the bumps are expressed as Bi(x) =
��s

�=0 T�(1− xk

2s )bi�
� ��s−1

j=0 poi(xk, j)
�

. We further express each Chebyshev polynomial via its

coefficients as T�(1− xk

2s ) =
��

m=0 β�m(1− xk

2s )
m and then expand each term via binomial expan-

sion as (1− xk

2s )
m =

�m

q=0(−
xk

2s )
q
�
m

q

�
to yield

Bi(x) =
s�

�=0

��

m=0

m�

q=0

s−1�

j=0

β�m

�
−xk

2s

�q �m
q

�
bi� poi(xk, j).

We note that in general we can reexpress xq poi(xk, j) = xq x
j
k
j
e
−xk

j! = poi(xk, j+q) (j+q)!
j!kq , which

finally lets us express Bi as a linear combination of Poisson functions, for all i ∈ {0, . . . , s}:

Bi(x) =
s�

�=0

��

m=0

m�

q=0

s−1�

j=0

β�m

�
− 1

2s

�q �m
q

�
(j + q)!

j!
bi� poi(xk, j + q).

It remains to bound the sum of the absolute values of the coefficients of the Poisson functions. That
is, by the triangle inequality, it is sufficient to show that

s�

�=0

��

m=0

m�

q=0

s−1�

j=0

����β�m

�
− 1

2s

�q �m
q

�
(j + q)!

j!
bi�

���� ≤ 2k0.3

We take the sum over j first: the general fact that
��

m=0

�
m+i

i

�
=

�
i+�+1
i+1

�
implies that

�s−1
j=0

(j+q)!
j! =

�s−1
j=0

�
j+q

q

�
q! = q!

�
s+q

q+1

�
= 1

q+1
(s+q)!
(s−1)! , and further, since q ≤ m ≤ � ≤ s we

have s+ q ≤ 2s which implies that this final expression is bounded as 1
q+1

(s+q)!
(s−1)! = s 1

q+1
(s+q)!

s! ≤
s · (2s)q . Thus we have

s�

�=0

��

m=0

m�

q=0

s−1�

j=0

����β�m

�
− 1

2s

�q �m
q

�
(j + q)!

j!
bi�

���� ≤
s�

�=0

��

m=0

m�

q=0

����β�ms

�
m

q

�
bi�

����

= s
s�

�=0

|bi�|
��

m=0

|β�m|2m

Chebyshev polynomials have coefficients whose signs repeat in the pattern (+, 0,−, 0), and thus we
can evaluate the innermost sum exactly as |T�(2i)|, for i =

√
−1. Since we bounded |bi�| ≤ 2

s
above,

the quantity to be bounded is now s
�s

�=0
2
s
|T�(2i)|. Since the explicit expression for Chebyshev

polynomials yields |T�(2i)| = 1
2

�
(2−

√
5)� + (2 +

√
5)�

�
and since |2 −

√
5|� = (2 +

√
5)−� we

finally bound s
�s

�=0
2
s
|T�(2i)| ≤ 1+

�s

�=−s
(2+

√
5)� < 1+ 2+

√
5

2+
√
5−1

·(2+
√
5)s < 2·(2+

√
5)s <

2 · k0.3, as desired, since s = 0.2 log k and log(2 +
√
5) < 1.5 and 0.2 · 1.5 = 0.3.
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We now turn to the main thrust of Lemma 17, showing that the scheme is [O(
√
δ), n]-good, where

n = δk log k, and δ ≥ 1
log k

; the following lemma, quantifying the “skinnyness” of the Chebyshev
bumps is the cornerstone of this argument.

Lemma 20. |g2(y)| ≤ π
7

y4s4
for y ∈ [−π, π] \ (−3π/s, 3π/s), and |g2(y)| ≤ 1/2 everywhere.

Proof. Since g1(y) =
�s−1

j=−s
cos jy = sin(sy) cot(y/2), and since sin(α + π) = − sin(α), we

have the following:

g2(y) =
1

16s

�
g1(y −

3π

2s
) + 3g1(y −

π

2s
) + 3g1(y +

π

2s
) + g1(y +

3π

2s
)

�

=
1

16s

�
sin(ys+ π/2)

�
cot(

y

2
− 3π

4s
)− 3 cot(

y

2
− π

4s
)

+3 cot(
y

2
+

π

4s
)− cot(

y

2
+

3π

4s
)

��
.

Note that
�
cot(y2 − 3π

4s )− 3 cot(y2 − π

4s ) + 3 cot(y2 + π

4s )− cot(y2 + 3π
4s )

�
is a discrete approxi-

mation to (π/2s)3 times the third derivative of the cotangent function evaluated at y/2. Thus it
is bounded in magnitude by (π/2s)3 times the maximum magnitude of d

3

dx3 cot(x) in the range
x ∈ [y2−

3π
4s ,

y

2+
3π
4s ]. Since the magnitude of this third derivative is decreasing for x ∈ (0, π), we can

simply evaluate the magnitude of this derivative at y

2−
3π
4s . We thus have d

3

dx3 cot(x) =
−2(2+cos(2x))

sin4(x) ,

whose magnitude is at most 6
(2x/π)4 for x ∈ (0, π]. For y ∈ [3π/s, π], we trivially have that

y

2 − 3π
4s ≥ y

4 , and thus we have the following bound:

| cot(y
2
− 3π

4s
)− 3 cot(

y

2
− π

4s
) + 3 cot(

y

2
+

π

4s
)− cot(

y

2
+

3π

4s
)| ≤

� π

2s

�3 6

(y/2π)4
≤ 12π7

y4s3
.

Since g2(y) is a symmetric function, the same bound holds for y ∈ [−π,−3π/s]. Thus |g2(y)| ≤
12π7

16s·y4s3
< π

7

y4s4
for y ∈ [−π, π] \ (−3π/s, 3π/s). To conclude, note that g2(y) attains a global

maximum at y = 0, with g2(0) =
1

16s (6 cot(π/4s)− 2 cot(3π/4s)) ≤ 1
16s

24s
π

< 1/2.

Lemma 21. The Chebyshev earthmoving scheme of Definition 16 is [O(
√
δ), n]-good, where n =

δk log k, and δ ≥ 1
log k

.

Proof. We split this proof into two parts: first we will consider the cost of the portion of the scheme
associated with all but the first s + 1 bumps, and then we consider the cost of the skinny bumps fi
with i ∈ {0, . . . , s}.
For the first part, we consider the cost of bumps fi for i ≥ s+ 1; that is the relative earthmover cost
of moving poi(xk, i) mass from x to i

k
, summed over i ≥ s. By definition of relative earthmover

distance, the cost of moving mass from x to i

k
is | log xk

i
|, which, since log y ≤ y− 1, we bound by

xk

i
− 1 when i < xk and i

xk
− 1 otherwise. We thus split the sum into two parts.

For i ≥ �xk� we have poi(xk, i)( i

xk
− 1) = poi(xk, i− 1)− poi(xk, i). This expression telescopes

when summed over i ≥ max{s, �xk�} to yield poi(xk,max{s, �xk�} − 1) = O( 1√
s
).

For i ≤ �xk� − 1 we have, since i ≥ s, that poi(xk, i)(xk
i
− 1) ≤ poi(xk, i)((1 + 1

s
) xk

i+1 − 1) =

(1 + 1
s
)poi(xk, i + 1) − poi(xk, i). The 1

s
term sums to at most 1

s
, and the rest telescopes to

poi(xk, �xk�) − poi(xk, s) = O( 1√
s
). Thus in total, fi for i ≥ s + 1 contributes O( 1√

s
) to the

relative earthmover cost, per unit of weight moved.

We now turn to the skinny bumps fi(x) for i ≤ s. The simplest case is when x is outside the region
that corresponds to the cosine of a real number — that is, when xk ≥ 4s. It is straightforward
to show that fi(x) is very small in this region. We note the general expression for Chebyshev
polynomials: Tj(x) = 1

2

�
(x−

√
x2 − 1)j + (x+

√
x2 − 1)j

�
, whose magnitude we bound by
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|2x|j . Further, since 2x ≤ 2
e
ex, we bound this by ( 2

e
)je|x|j , which we apply when |x| > 1. Recall

the definition fi(x) = ti(1 − xk

2s )
�s−1

j=0 poi(xk, j), where ti is the polynomial defined so that
ti(cos(y)) = gi3(y), that is, ti is a linear combination of Chebyshev polynomials of degree at most s
and with coefficients summing in magnitude to at most 2, as was shown in the proof of Lemma 19.
Since xk > s, we may bound

�s−1
j=0 poi(xk, j) ≤ s · poi(xk, s). Further, since z ≤ ez−1 for all

z, letting z = x

4s yields x ≤ 4s · e x
4s−1, from which we may bound poi(xk, s) = (xk)se−xk

s! ≤
e
−xk

s! (4s · e xk
4s −1)s = 4sss

es·e3xk/4s!
≤ 4se−3xk/4. We combine this with the above bound on the

magnitude of Chebyshev polynomials, Tj(z) ≤ ( 2
e
)je|z|j ≤ ( 2

e
)se|z|s, where z = (1 − xk

2s ) yields
Tj(z) ≤ ( 2

e2
)se

xk
2 . Thus fi(x) ≤ poly(s)4se−3xk/4( 2

e2
)se

xk
2 = poly(s)( 8

e2
)se−

xk
4 . Since xk

4 ≥ s
in this case, fi is exponentially small in both x and s; the total cost of this earthmoving scheme, per
unit of mass above 4s

k
is obtained by multiplying this by the logarithmic relative distance the mass

has to move, and summing over the s+1 values of i ≤ s, and thus remains exponentially small, and
is thus trivially bounded by O( 1√

s
).

To bound the cost in the remaining case, when xk ≤ 4s and i ≤ s, we work with the trigonometric
functions gi3, instead of ti directly. For y ∈ (0, π], we seek to bound the per-unit-mass relative
earthmover cost of, for each i ≥ 0, moving gi3(y) mass from 2s

k
(1 − cos(y)) to ci. (Recall from

Definition 16 that ci = 2s
k

�
1− cos( iπ

s
)
�

for i ∈ {1, . . . , s}, and c0 = c1.) For i ≥ 1, this
contribution is at most

s�

i=1

|gi3(y)(log(1− cos(y))− log(1− cos(
iπ

s
))|.

We analyze this expression by first showing that for any x, x� ∈ (0, π],

|log(1− cos(x))− log(1− cos(x�))| ≤ 2| log x− log x�|.

Indeed, this holds because the derivative of log(1 − cos(x)) is positive, and strictly less than the
derivative of 2 log x; this can be seen by noting that the respective derivatives are sin(y)

1−cos(y) and 2
y

,
and we claim that the second expression is always greater. To compare the two expressions, cross-
multiply and take the difference, to yield y sin y−2+2 cos y, which we show is always at most 0 by
noting that it is 0 when y = 0 and has derivative y cos y − sin y, which is negative since y < tan y.
Thus we have that | log(1− cos(y))− log(1− cos( iπ

s
))| ≤ 2| log y − log iπ

s
|; we use this bound in

all but the last step of the analysis. Additionally, we ignore the
�s−1

j=0 poi(xk, j) term as it is always
at most 1.

Case 1: y ≥ π

s
.

We will show that

|g03(y)(log y − log
π

s
)|+

s�

i=1

|gi3(y)(log y − log
iπ

s
)| = O(

1

sy
),

where the first term is the contribution from f0, c0. For i such that y ∈ ( (i−3)π
s

, (i+3)π
s

), by the
second bounds on |g2| in the statement of Lemma 20, gi3(y) < 1, and for each of the at most 6
such i, |(log y − log max{1,i}π

s
)| < 1

sy
, to yield a contribution of O( 1

sy
). For the contribution from

i such that y ≤ (i−3)π
s

or y ≥ (i−3)π
s

, the first bound of Lemma 20 yields |gi3(y)| = O( 1
(ys−iπ)4 ).

Roughly, the bound will follow from noting that this sum of inverse fourth powers is dominated by
the first few terms. Formally, we split up our sum over i ∈ [s] \ [ys

π
− 3, ys

π
+ 3] into two parts

according to whether i > ys/π:

s�

i≥ ys
π +3

1

(ys− iπ)4
|(log y − log

iπ

s
)| ≤

∞�

i≥ ys
π +3

π4

(ys
π
− i)4

(log i− log
ys

π
)

≤ π4

� ∞

w= ys
π +2

1

(ys
π
− w)4

(logw − log
ys

π
). (2)
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Since the antiderivative of 1
(α−w)4 (logw − logα) with respect to w is

−2w(w2 − 3wα+ 3α2) logw + 2(w − α)3 log(w − α) + α(2w2 − 5wα+ 3α2 + 2α2 logα)

6(w − α)3α3
,

the quantity in Equation 2 is equal to the above expression evaluated with α = ys

π
, and w = α+ 2,

to yield

O(
1

ys
)− log

ys

π
+ log(2 +

ys

π
) = O(

1

ys
).

A nearly identical argument applies to the portion of the sum for i ≤ ys

π
+ 3, yielding the same

asymptotic bound of O( 1
ys
).

Case 2:
ys

π
< 1.

The per-unit mass contribution from the 0th bump is trivially at most |g03(y)(log
ys

π
− log 1)| ≤

log ys

π
. The remaining relative earthmover cost is

�s

i=1 |gi3(y)(log
ys

π
− log i)|. To bound this sum,

we note that log i ≥ 0, and log ys

π
≤ 0 in this region, and thus split the above sum into the corre-

sponding two parts, and bound them separately. By Lemma 20, we have:
s�

i=1

gi3(y) log i ≤ O

�
1 +

∞�

i=3

log i

π4(i− 1)4

�
= O(1).

s�

i=1

gi3(y) log
ys

π
≤ O (log ys) ≤ O(

1

ys
),

since for ys ≤ π, we have | log ys| < 4/ys.

Having concluded the case analysis, recall that we have been using the change of variables x =
2s
k
(1− cos(y)). Since 1− cos(y) = O(y2), we have xk = O(sy2). Thus the case analysis yielded

a bound of O( 1
ys
), which we may thus express as O( 1√

sxk
).

For a distribution with histogram h, the cost of moving earth on this region, for bumps fi where
i ≤ s is thus

O(
�

x:h(x) �=0

h(x) · x · 1√
sxk

) = O(
1√
sk

�

x:h(x) �=0

h(x)
√
x).

Since
�

x
x · h(x, y) = 1, and

�
x
h(x) ≤ n, by the Cauchy–Schwarz inequality,

�

x

√
xh(x) =

�

x

�
x · h(x)

�
h(x) ≤

√
n,

and hence since n = δk log k, the contribution to the cost of these bumps is bounded by O(
�

n

sk
) =

O(
√
δ). As we have already bounded the relative earthmover cost for bumps fi for i > s at least

this tightly, this concludes the proof.

We are now equipped to prove Theorem 2.

Proof of Theorem 2. Let g be the generalized histogram returned by Algorithm 2, and let h be
the generalized histogram constructed in Lemma 12—assuming the sample from the true distri-
bution p is “faithful”, which occurs with probability 1 − e−n

Ω(1)
by Lemma 11. Lemma 12 as-

serts that R(p, h) = O( 1
kΩ(1) ). Let h�, g� be the generalized histograms that result from apply-

ing the Chebyshev earthmoving scheme of Definition 16 to h and g, respectively. By Lemma 17,
R(h, h�) = O(

�
1/c), and R(g, g�) = O(

�
1/c). Our goal is to bound R(p, g), which we do via

the triangle inequality as

R(p, g) ≤ R(p, h) +R(h, h�) +R(h�, g�) +R(g�, g) = O(
�

1/c) +R(g�, h�).

All that remains is to prove the bound R(g�, h�) = O( 1
kΩ(1) ).
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Our strategy to bound this relative earthmover distance is to construct an earthmoving scheme that
equates g� and h� whose cost can be related to the terms of the first constraint of the linear program.
By definition, g�, h� are generalized histograms supported at the bump centers ci. Our earthmoving
scheme is defined as follows: for each i �∈ [kB, kB + 2kC ], if h�(ci) > g�(ci), then we move
ci (h�(ci)− g�(ci)) units of probability mass in h� from location ci to location k

B

k
; analogously, if

h�(ci) < g�(ci), then we move ci (g�(ci)− h�(ci)) units of probability mass in g� from location ci to
location k

B

k
. After performing this operation, the remaining discrepancy in the resulting histograms

will be confined to probability range [k
B

k
, k

B+2kC

k
], and hence can be equated at an additional cost

of at most

log
kB + 2kC

kB
= O(kC−B) = O(

1

kΩ(1)
).

We now analyze the relative earthmover cost of equalizing h�(ci) and g�(ci) for all i �∈ [kB, kB+2kC ]

by moving the discrepancy to location k
B

k
. Since all but the first s+1 bumps are simply the standard

Poisson bumps fi(x) = poi(xk, i− 1), for i > s we have

|h�(ci)− g�(ci)| =

������

�

x:h(x)+g(x) �=0

(h(x)− g(x))x · poi(kx, i− 1)

������

=

������

�

x:h(x)+g(x) �=0

(h(x)− g(x))poi(kx, i)
i

k

������
.

Recall by construction that h(x) = g(x) for all x > k
B+k

C

k
. Thus by tail bounds for Poissons, the

total relative earthmover cost of equalizing h� and g� for all bump centers ci with i > kB + 2kC is
trivially bounded by o( log k

k
).

Next, we consider the contribution of the discrepancies in the Poisson bumps with centers ci for
i ∈ [s + 1, kB]. Since

�
i≤kB poi(kx, i) = o(1/k2) for x ≥ k

B+k
C

k
, the discrepancy in the first kB

expected fingerprints of g, h is specified, up to negligible error, by the terms in the first constraint of
the linear program:

�

i<kB

������

�

x:h(x)+g(x) �=0

(h(x)− g(x))poi(kx, i)
i

k

������

≤
�

i<kB

i

k
·
√
k + 1√
Fi + 1





������
Fi −

�

x:g(x) �=0

g(x)poi(kx, i)

������
+

������
Fi −

�

x:h(x) �=0

h(x)poi(kx, i)

������





≤ O(k3B−1/2) = O(
1

kΩ(1)
)

Finally, we consider the contribution of the discrepancies in the first s+1 = O(log k) bump centers,
corresponding to the skinny Chebyshev bumps. Note that for such centers, ci, the correspond-
ing bump functions fi(x) are expressible by definition as fi(x) =

�
j≥0 aijpoi(xk, j), for some

coefficients aij , where
�

j≥0 aij ≤ β. Thus we have the following, where
�

x
is shorthand for
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�
x:h(x)+g(x) �=0:

|h�(ci)− g�(ci)| =

�����
�

x

(h(x)− g(x))xfi(x)

�����

=

������

�

x

(h(x)− g(x))x
�

j≥0

aijpoi(xk, j)

������

=

������

�

j≥0

aij
�

x

(h(x)− g(x))xpoi(xk, j)

������

=

������

�

j≥1

ai,j−1
j

k

�

x

(h(x)− g(x))poi(xk, j)

������
.

Since aij = 0 for j > log k, and since each Chebyshev bump is a linear combination of only the
first 2s < log k Poisson functions, the total cost of equalizing h� and g� at each of these Chebyshev
bump centers is bounded as

β

�����

log k�

i=1

i

k

�

x

(h(x)− g(x))poi(xk, j)

����� | log c0| log k

where the | log c0| term, for c0 being the first bump center, is a crude upper bound on the per-unit
mass relative earthmover cost of moving the mass to probability k

B

k
, and the final factor of log k is

because there are at most s < log k centers corresponding to “skinny” bumps. We bound this via
the triangle inequality and an appeal to the first constraint of the linear program, as above, yielding
a bound of O(βk2B log3

k√
k

). Since β = O(k0.3) from Lemma 17, this contribution is thus also
O( 1

kΩ(1) ).

We have thus bounded all the parts of R(g�, h�) by O( 1
kΩ(1) ), completing the proof.

We note that what we actually proved applies rather more generally than to just Linear Program 3. As
long as the second and third constraints are satisfied, then if the left hand side of the first constraint,
and the objective function are somewhat small, similar results hold.
Proposition 22. For any c > 0, for sufficiently large n, given the fingerprint F from a “faithful”
sample of size k = c n

logn
from a distribution p ∈ Dn, consider any vector vx indexed by elements

x ∈ X := { 1
k2 ,

2
k2 ,

3
k2 , . . . ,

k
B+k

C

k
} such that

•
�

x∈X
x · vx +

�k

i=kB+2kC
i

k
Fi = 1

• ∀x ∈ X, vx ≥ 0

Let A :=
�

x∈X
vx, and let B :=

�k
B

i=1
1√

Fi+1

��Fi −
�

x∈X
poi(kx, i)vx

��.

Appending the high-frequency portion of F to v as in Algorithm 2, returns a generalized histogram
gLP such that

R(p, gLP ) ≤ O

�
1√
c
+

�
A

k log k
+

B log3 k

k0.2

�
.

This implies, for example, that the results of Theorem 2 hold even when the right hand side of the
first constraint is increased by any constant factor, and, instead of optimizing the objective function,
any point with objective less than a constant multiple of n is chosen. (Of course, in practice one
usually does not know n—the support size of the unknown distribution—so minimizing the objective
function is a natural way to guarantee this criterion.)
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D Matlab code

Below is our Matlab implementation of Algorithm 1. Our implementation uses the linprog command
for solving the linear programs, which requires Matlab’s Optimization toolkit. This code is also
available from our websites.

1 function [histx,x] = unseen(f)

2 % Input: fingerprint f, where f(i) represents number of elements that

3 % appear i times in a sample. Thus sum_i i*f(i) = sample size.

4 % File makeFinger.m transforms a sample into the associated ...

fingerprint.

5 %

6 % Output: approximation of 'histogram' of true distribution. ...

Specifically,

7 % histx(i) represents the number of domain elements that occur with

8 % probability x(i). Thus sum_i x(i)*histx(i) = 1, as ...

distributions have

9 % total probability mass 1.

10 %

11 % An approximation of the entropy of the true distribution can be ...

computed

12 % as: Entropy = (-1)*sum(histx.*x.*log(x))

13

14 f=f(:)';

15 k=f*(1:size(f,2))'; %total sample size

16

17

18 %%%%%%% algorithm parameters %%%%%%%%%%%

19 gridFactor = 1.1; % the grid of probabilities will be ...

geometric, with this ratio.

20 % setting this smaller may slightly increase accuracy, at the cost ...

of speed

21 alpha = .5; %the allowable discrepancy between the returned ...

solution and the "best" (overfit).

22 % 0.5 worked well in all examples we tried, though the results ...

were nearly indistinguishable

23 % for any alpha between 0.25 and 1. Decreasing alpha increases ...

the chances of overfitting.

24 xLPmin = 1/(k*max(10,k)); % minimum allowable probability.

25 % a more aggressive bound like 1/kˆ1.5 would make the LP slightly ...

faster,

26 % though at the cost of accuracy

27 maxLPIters = 1000; % the 'MaxIter' parameter for Matlab's ...

'linprog' LP solver.

28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

29

30

31 % Split the fingerprint into the 'dense' portion for which we

32 % solve an LP to yield the corresponding histogram, and 'sparse'

33 % portion for which we simply use the empirical histogram

34 x=0;

35 histx = 0;

36 fLP = zeros(1,max(size(f)));

37 for i=1:max(size(f))

38 if f(i)>0

39 wind = ...

[max(1,i-ceil(sqrt(i))),min(i+ceil(sqrt(i)),max(size(f)))];

40 if sum(f(wind(1):wind(2)))<2*sqrt(i)

41 x=[x, i/k];

42 histx=[histx,f(i)];

43 fLP(i)=0;

44 else

45 fLP(i)=f(i);
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46 end

47 end

48 end

49

50 % If no LP portion, return the empirical histogram

51 fmax = max(find(fLP>0));

52 if min(size(fmax))==0

53 x=x(2:end);

54 histx=histx(2:end);

55 return;

56 end

57

58 % Set up the first LP

59 LPmass = 1 - x*histx'; %amount of probability mass in the LP region

60

61 fLP=[fLP(1:fmax), zeros(1,ceil(sqrt(fmax)))];

62 szLPf=max(size(fLP));

63

64 xLPmax = fmax/k;

65 xLP=xLPmin*gridFactor.ˆ(0:ceil(log(xLPmax/xLPmin)/log(gridFactor)));

66 szLPx=max(size(xLP));

67

68 objf=zeros(szLPx+2*szLPf,1);

69 objf(szLPx+1:2:end)=1./(sqrt(fLP+1)); % discrepancy in ith ...

fingerprint expectation

70 objf(szLPx+2:2:end)=1./(sqrt(fLP+1)); % weighted by 1/sqrt(f(i) + 1)

71

72 A = zeros(2*szLPf,szLPx+2*szLPf);

73 b=zeros(2*szLPf,1);

74 for i=1:szLPf

75 A(2*i-1,1:szLPx)=poisspdf(i,k*xLP);

76 A(2*i,1:szLPx)=(-1)*A(2*i-1,1:szLPx);

77 A(2*i-1,szLPx+2*i-1)=-1;

78 A(2*i,szLPx+2*i)=-1;

79 b(2*i-1)=fLP(i);

80 b(2*i)=-fLP(i);

81 end

82

83 Aeq = zeros(1,szLPx+2*szLPf);

84 Aeq(1:szLPx)=xLP;

85 beq = LPmass;

86

87

88 options = optimset('MaxIter', maxLPIters,'Display','off');

89 for i=1:szLPx

90 A(:,i)=A(:,i)/xLP(i); %rescaling for better conditioning

91 Aeq(i)=Aeq(i)/xLP(i);

92 end

93 [sol, fval, exitflag, output] = linprog(objf, A, b, Aeq, beq, ...

zeros(szLPx+2*szLPf,1), Inf*ones(szLPx+2*szLPf,1),[], options);

94 if exitflag==0

95 'maximum number of iterations reached--try increasing ...

maxLPIters'

96 end

97 if exitflag<0

98 'LP1 solution was not found, still solving LP2 anyway...'

99 exitflag

100 end

101

102 % Solve the 2nd LP, which minimizes support size subject to ...

incurring at most

103 % alpha worse objective function value (of the objective function ...

in the

104 % previous LP).

105 objf2=0*objf;
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106 objf2(1:szLPx) = 1;

107 A2=[A;objf']; % ensure at most alpha worse obj value

108 b2=[b; fval+alpha]; % than solution of previous LP

109 for i=1:szLPx

110 objf2(i)=objf2(i)/xLP(i); %rescaling for better conditioning

111 end

112 [sol2, fval2, exitflag2, output] = linprog(objf2, A2, b2, Aeq, ...

beq, zeros(szLPx+2*szLPf,1), Inf*ones(szLPx+2*szLPf,1),[], ...

options);

113

114 if not(exitflag2==1)

115 'LP2 solution was not found'

116 exitflag2

117 end

118

119

120 %append LP solution to empirical portion of histogram

121 sol2(1:szLPx)=sol2(1:szLPx)./xLP'; %removing the scaling

122 x=[x,xLP];

123 histx=[histx,sol2'];

124 [x,ind]=sort(x);

125 histx=histx(ind);

126 ind = find(histx>0);

127 x=x(ind);

128 histx=histx(ind);

1 function f=makeFinger(v)

2

3 % Input: vector of integers, v

4 % Output: vector of fingerprints, f where f(i) = |{j: ...

|{k:v(k)=j}|=i }|

5 % i.e. f(i) is the number of elements that occur exactly i ...

times

6 % in the vector v

7

8 h1 = hist(v,min(v):max(v));

9 f=hist(h1,0:max(h1));

10 f=f(2:end);

Example of how to invoke the unseen estimator:

1 % Generate a sample of size 10,000 from the uniform distribution ...

of support 100,000

2 n=100000; k=10000;

3 samp = randi(n,k,1);

4

5 % Compute corresponding 'fingerprint'

6 f = makeFinger(samp);

7

8

9 % Estimate distribution from which sample was drawn

10 [h,x]=unseen(f);

11

12

13 %output entropy of the true distribution, Unif[n]

14 trueEntropy = log(n)

15

16 %output entropy of the empirical distribution of the sample

17 empiricalEntropy = ...

-f'*(((1:max(size(f)))/k).*log(((1:max(size(f)))/k)))'

18

19 %output entropy of the recovered histogram, [h,x]

20 estimatedEntropy = -h*(x.*log(x))'
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