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Abstract

Recently, Valiant and Valiant [1, 2] showed that a class of distributional proper-
ties, which includes such practically relevant properties as entropy, the number
of distinct elements, and distance metrics between pairs of distributions, can be
estimated given a sublinear sized sample. Specifically, given a sample consisting
of independent draws from any distribution over at most n distinct elements, these
properties can be estimated accurately using a sample of size O(n/ log n). We
propose a novel modification of this approach and show: 1) theoretically, this esti-
mator is optimal (to constant factors, over worst-case instances), and 2) in practice,
it performs exceptionally well for a variety of estimation tasks, on a variety of nat-
ural distributions, for a wide range of parameters. Perhaps unsurprisingly, the key
step in our approach is to first use the sample to characterize the “unseen” portion
of the distribution. This goes beyond such tools as the Good-Turing frequency
estimation scheme, which estimates the total probability mass of the unobserved
portion of the distribution: we seek to estimate the shape of the unobserved portion
of the distribution. This approach is robust, general, and theoretically principled;
we expect that it may be fruitfully used as a component within larger machine
learning and data analysis systems.

1 Introduction

What can one infer about an unknown distribution based on a random sample? If the distribution
in question is relatively “simple” in comparison to the sample size—for example if our sample
consists of 1000 independent draws from a distribution supported on 100 domain elements—then
the empirical distribution given by the sample will likely be an accurate representation of the true
distribution. If, on the other hand, we are given a relatively small sample in relation to the size
and complexity of the distribution—for example a sample of size 100 drawn from a distribution
supported on 1000 domain elements—then the empirical distribution may be a poor approximation
of the true distribution. In this case, can one still extract accurate estimates of various properties of
the true distribution?

Many real–world machine learning and data analysis tasks face this challenge; indeed there are
many large datasets where the data only represent a tiny fraction of an underlying distribution we
hope to understand. This challenge of inferring properties of a distribution given a “too small”
sample is encountered in a variety of settings, including text data (typically, no matter how large the
corpus, around 30% of the observed vocabulary only occurs once), customer data (many customers
or website users are only seen a small number of times), the analysis of neural spike trains [15],

∗http://theory.stanford.edu/~valiant/ A portion of this work was done while at Microsoft Research.
†http://cs.brown.edu/people/pvaliant/
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and the study of genetic mutations across a population1. Additionally, many database management
tasks employ sampling techniques to optimize query execution; improved estimators would allow
for either smaller sample sizes or increased accuracy, leading to improved efficiency of the database
system (see, e.g. [6, 7]).

We introduce a general and robust approach for using a sample to characterize the “unseen” portion
of the distribution. Without any a priori assumptions about the distribution, one cannot know what
the unseen domain elements are. Nevertheless, one can still hope to estimate the “shape” or his-
togram of the unseen portion of the distribution—essentially, we estimate how many unseen domain
elements occur in various probability ranges. Given such a reconstruction, one can then use it to
estimate any property of the distribution which only depends on the shape/histogram; such prop-
erties are termed symmetric and include entropy and support size. In light of the long history of
work on estimating entropy by the neuroscience, statistics, computer science, and information the-
ory communities, it is compelling that our approach (which is agnostic to the property in question)
outperforms these entropy-specific estimators.

Additionally, we extend this intuition to develop estimators for properties of pairs of distributions,
the most important of which are the distance metrics. We demonstrate that our approach can ac-
curately estimate the total variational distance (also known as statistical distance or �1 distance)
between distributions using small samples. To illustrate the challenge of estimating variational dis-
tance (between distributions over discrete domains) given small samples, consider drawing two sam-
ples, each consisting of 1000 draws from a uniform distribution over 10,000 distinct elements. Each
sample can contain at most 10% of the domain elements, and their intersection will likely contain
only 1% of the domain elements; yet from this, one would like to conclude that these two samples
must have been drawn from nearly identical distributions.

1.1 Previous work: estimating distributions, and estimating properties

There is a long line of work on inferring information about the unseen portion of a distribution,
beginning with independent contributions from both R.A. Fisher and Alan Turing during the 1940’s.
Fisher was presented with data on butterflies collected over a 2 year expedition in Malaysia, and
sought to estimate the number of new species that would be discovered if a second 2 year expedition
were conducted [8]. (His answer was “≈ 75.”) At nearly the same time, as part of the British WWII
effort to understand the statistics of the German enigma ciphers, Turing and I.J. Good were working
on the related problem of estimating the total probability mass accounted for by the unseen portion of
a distribution [9]. This resulted in the Good-Turing frequency estimation scheme, which continues
to be employed, analyzed, and extended by our community (see, e.g. [10, 11]).

More recently, in similar spirit to this work, Orlitsky et al. posed the following natural question:
given a sample, what distribution maximizes the likelihood of seeing the observed species frequen-
cies, that is, the number of species observed once, twice, etc.? [12, 13] (What Orlitsky et al. term
the pattern of a sample, we call the fingerprint, as in Definition 1.) Orlitsky et al. show that such
likelihood maximizing distributions can be found in some specific settings, though the problem of
finding or approximating such distributions for typical patterns/fingerprints may be difficult. Re-
cently, Acharya et al. showed that this maximum likelihood approach can be used to yield a near-
optimal algorithm for deciding whether two samples originated from identical distributions, versus
distributions that have large distance [14].

In contrast to this approach of trying to estimate the “shape/histogram” of a distribution, there has
been nearly a century of work proposing and analyzing estimators for particular properties of distri-
butions. In Section 3 we describe several standard, and some recent estimators for entropy, though
we refer the reader to [15] for a thorough treatment. There is also a large literature on estimating
support size (also known as the “species problem”, and the related “distinct elements” problem), and
we refer the reader to [16] and to [17] for several hundred references.

Over the past 15 years, the theoretical computer science community has spent significant effort
developing estimators and establishing worst-case information theoretic lower bounds on the sample
size required for various distribution estimation tasks, including entropy and support size (e.g. [18,
19, 20, 21]).

1Three recent studies (appearing in Science last year) found that very rare genetic mutations are especially
abundant in humans, and observed that better statistical tools are needed to characterize this “rare events”
regime, so as to resolve fundamental problems about our evolutionary process and selective pressures [3, 4, 5].
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The algorithm we present here is based on the intuition of the estimator described in our theoretical
work [1]. That estimator is not practically viable, and additionally, requires as input an accurate
upper bound on the support size of the distribution in question. Both the algorithm proposed in this
current work and that of [1] employ linear programming, though these programs differ significantly
(to the extent that the linear program of [1] does not even have an objective function and simply
defines a feasible region). Our proof of the theoretical guarantees in this work leverages some of
the machinery of [1] (in particular, the “Chebyshev bump construction”) and achieves the same
theoretical worst-case optimality guarantees. See Appendix A for further theoretical and practical
comparisons with the estimator of [1].

1.2 Definitions and examples

We begin by defining the fingerprint of a sample, which essentially removes all the label-information
from the sample. For the remainder of this paper, we will work with the fingerprint of a sample,
rather than the with the sample itself.
Definition 1. Given a samples X = (x1, . . . , xk), the associated fingerprint, F = (F1,F2, . . .),
is the “histogram of the histogram” of the sample. Formally, F is the vector whose ith component,
Fi, is the number of elements in the domain that occur exactly i times in sample X .

For estimating entropy, or any other property whose value is invariant to relabeling the distribution
support, the fingerprint of a sample contains all the relevant information (see [21], for a formal proof
of this fact). We note that in some of the literature, the fingerprint is alternately termed the pattern,
histogram, histogram of the histogram or collision statistics of the sample.

In analogy with the fingerprint of a sample, we define the histogram of a distribution, a representation
in which the labels of the domain have been removed.
Definition 2. The histogram of a distribution D is a mapping hD : (0, 1] → N∪ {0}, where hD(x)
is equal to the number of domain elements that each occur in distribution D with probability x.
Formally, hD(x) = |{α : D(α) = x}|, where D(α) is the probability mass that distribution D
assigns to domain element α. We will also allow for “generalized histograms” in which hD does
not necessarily take integral values.

Since h(x) denotes the number of elements that have probability x, we have
�

x:h(x) �=0 x·h(x) = 1,
as the total probability mass of a distribution is 1. Any symmetric property is a function of only the
histogram of the distribution:

• The Shannon entropy H(D) of a distribution D is defined to be
H(D) := −

�

α∈sup(D)

D(α) log2 D(α) = −
�

x:hD(x) �=0

hD(x)x log2 x.

• The support size is the number of domain elements that occur with positive probability:
|sup(D)| := |{α : D(α) > 0}| =

�

x:hD(x) �=0

hD(x).

We provide an example to illustrate the above definitions:
Example 3. Consider a sequence of animals, obtained as a sample from the distribution of animals
on a certain island, X = (mouse,mouse, bird, cat,mouse, bird, bird,mouse, dog,mouse). We
have F = (2, 0, 1, 0, 1), indicating that two species occurred exactly once (cat and dog), one species
occurred exactly three times (bird), and one species occurred exactly five times (mouse).

Consider the following distribution of animals:

Pr(mouse) = 1/2, P r(bird) = 1/4, P r(cat) = Pr(dog) = Pr(bear) = Pr(wolf) = 1/16.

The associated histogram of this distribution is h : (0, 1] → Z defined by h(1/16) = 4, h(1/4) = 1,
h(1/2) = 1, and for all x �∈ {1/16, 1/4, 1/2}, h(x) = 0.

As we will see in Example 5 below, the fingerprint of a sample is intimately related to the Binomial
distribution; the theoretical analysis will be greatly simplified by reasoning about the related Poisson
distribution, which we now define:
Definition 4. We denote the Poisson distribution of expectation λ as Poi(λ), and write poi(λ, j) :=
e
−λ

λ
j

j! , to denote the probability that a random variable with distribution Poi(λ) takes value j.
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Example 5. Let D be the uniform distribution with support size 1000. Then hD(1/1000) = 1000,
and for all x �= 1/1000, hD(x) = 0. Let X be a sample consisting of 500 independent draws
from D. Each element of the domain, in expectation, will occur 1/2 times in X , and thus the
number of occurrences of each domain element in the sample X will be roughly distributed as
Poi(1/2). (The exact distribution will be Binomial(500, 1/1000), though the Poisson distribu-
tion is an accurate approximation.) By linearity of expectation, the expected fingerprint satisfies
E[Fi] ≈ 1000 · poi(1/2, i). Thus we expect to see roughly 303 elements once, 76 elements twice, 13
elements three times, etc., and in expectation 607 domain elements will not be seen at all.

2 Estimating the unseen

Given the fingerprint F of a sample of size k, drawn from a distribution with histogram h, our high-
level approach is to find a histogram h� that has the property that if one were to take k independent
draws from a distribution with histogram h�, the fingerprint of the resulting sample would be similar
to the observed fingerprint F . The hope is then that h and h� will be similar, and, in particular, have
similar entropies, support sizes, etc.

As an illustration of this approach, suppose we are given a sample of size k = 500, with fingerprint
F = (301, 78, 13, 1, 0, 0, . . .); recalling Example 5, we recognize that F is very similar to the
expected fingerprint that we would obtain if the sample had been drawn from the uniform distribution
over support 1000. Although the sample only contains 391 unique domain elements, we might be
justified in concluding that the entropy of the true distribution from which the sample was drawn is
close to H(Unif(1000)) = log2(1000).

In general, how does one obtain a “plausible” histogram from a fingerprint in a principled fashion?
We must start by understanding how to obtain a plausible fingerprint from a histogram.

Given a distribution D, and some domain element α occurring with probability x = D(α), the prob-
ability that it will be drawn exactly i times in k independent draws from D is Pr[Binomial(k, x) =
i] ≈ poi(kx, i). By linearity of expectation, the expected ith fingerprint entry will roughly satisfy

E[Fi] ≈
�

x:hD(x) �=0

h(x)poi(kx, i). (1)

This mapping between histograms and expected fingerprints is linear in the histogram, with coeffi-
cients given by the Poisson probabilities. Additionally, it is not hard to show that V ar[Fi] ≤ E[Fi],
and thus the fingerprint is tightly concentrated about its expected value. This motivates a “first mo-
ment” approach. We will, roughly, invert the linear map from histograms to expected fingerprint
entries, to yield a map from observed fingerprints, to plausible histograms h�.

There is one additional component of our approach. For many fingerprints, there will be a large space
of equally plausible histograms. To illustrate, suppose we obtain fingerprint F = (10, 0, 0, 0, . . .),
and consider the two histograms given by the uniform distributions with respective support sizes
10,000, and 100,000. Given either distribution, the probability of obtaining the observed fingerprint
from a set of 10 samples is > .99, yet these distributions are quite different and have very different
entropy values and support sizes. They are both very plausible–which distribution should we return?

To resolve this issue in a principled fashion, we strengthen our initial goal of “returning a histogram
that could have plausibly generated the observed fingerprint”: we instead return the simplest his-
togram that could have plausibly generated the observed fingerprint. Recall the example above,
where we observed only 10 distinct elements, but to explain the data we could either infer an ad-
ditional 9,900 unseen elements, or an additional 99,000. In this sense, inferring “only” 9,900 addi-
tional unseen elements is the simplest explanation that fits the data, in the spirit of Occam’s razor.2

2.1 The algorithm

We pose this problem of finding the simplest plausible histogram as a pair of linear programs. The
first linear program will return a histogram h� that minimizes the distance between its expected fin-
gerprint and the observed fingerprint, where we penalize the discrepancy between Fi and E[Fh

�

i
] in

proportion to the inverse of the standard deviation of Fi, which we estimate as 1/
√
1 + Fi, since

2The practical performance seems virtually unchanged if one returns the “plausible” histogram of minimal
entropy, instead of minimal support size (see Appendix B).
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Poisson distributions have variance equal to their expectation. The constraint that h� corresponds to
a histogram simply means that the total probability mass is 1, and all probability values are nonneg-
ative. The second linear program will then find the histogram h�� of minimal support size, subject to
the constraint that the distance between its expected fingerprint, and the observed fingerprint, is not
much worse than that of the histogram found by the first linear program.
To make the linear programs finite, we consider a fine mesh of values x1, . . . , x� ∈ (0, 1] that be-
tween them discretely approximate the potential support of the histogram. The variables of the linear
program, h�

1, . . . , h
�
�

will correspond to the histogram values at these mesh points, with variable h�
i

representing the number of domain elements that occur with probability xi, namely h�(xi).
A minor complicating issue is that this approach is designed for the challenging “rare events” regime,
where there are many domain elements each seen only a handful of times. By contrast if there is
a domain element that occurs very frequently, say with probability 1/2, then the number of times
it occurs will be concentrated about its expectation of k/2 (and the trivial empirical estimate will
be accurate), though fingerprint Fk/2 will not be concentrated about its expectation, as it will take
an integer value of either 0, 1 or 2. Hence we will split the fingerprint into the “easy” and “hard”
portions, and use the empirical estimator for the easy portion, and our linear programming approach
for the hard portion. The full algorithm is below (see our websites or Appendix D for Matlab code).

Algorithm 1. ESTIMATE UNSEEN

Input: Fingerprint F = F1,F2, . . . ,Fm, derived from a sample of size k,
vector x = x1, . . . , x� with 0 < xi ≤ 1, and error parameter α > 0.

Output: List of pairs (y1, h�
y1), (y2, h

�
y2), . . . , with yi ∈ (0, 1], and h�

yi ≥ 0.

• Initialize the output list of pairs to be empty, and initialize a vector F � to be equal to F .
• For i = 1 to k,

– If
�

j∈{i−�
√

i�,...,i+�
√
i�} Fj ≤ 2

√
i [i.e. if the fingerprint is “sparse” at index i]

Set F �
i = 0, and append the pair (i/k,Fi) to the output list.

• Let vopt be the objective function value returned by running Linear Program 1 on input F �, x.
• Let h be the histogram returned by running Linear Program 2 on input F �, x, vopt,α.
• For all i s.t. hi > 0, append the pair (xi, hi) to the output list.

Linear Program 1. FIND PLAUSIBLE HISTOGRAM

Input: Fingerprint F = F1,F2, . . . ,Fm, derived from a sample of size k,
vector x = x1, . . . , x� consisting of a fine mesh of points in the interval (0, 1].

Output: vector h� = h�
1, . . . , h

�
�, and objective value vopt ∈ R.

Let h�
1, . . . , h

�
� and vopt be, respectively, the solution assignment, and corresponding objective function

value of the solution of the following linear program, with variables h�
1, . . . , h

�
�:

Minimize:
m�

i=1

1√
1 + Fi

�����Fi −
��

j=1

h�
j · poi(kxj , i)

�����

Subject to:
��

j=1 xjh
�
j =

�
i Fi/k, and ∀j, h�

j ≥ 0.
Linear Program 2. FIND SIMPLEST PLAUSIBLE HISTOGRAM

Input: Fingerprint F = F1,F2, . . . ,Fm, derived from a sample of size k,
vector x = x1, . . . , x� consisting of a fine mesh of points in the interval (0, 1],
optimal objective function value vopt from Linear Program 1, and error parameter α > 0.

Output: vector h� = h�
1, . . . , h

�
�.

Let h�
1, . . . , h

�
� be the solution assignment of the following linear program, with variables h�

1, . . . , h
�
�:

Minimize:
��

j=1 h
�
j Subject to:

�m
i=1

1√
1+Fi

���Fi −
��

j=1 h
�
j · poi(kxj , i)

��� ≤ vopt+α,
��

j=1 xjh
�
j =

�
i Fi/k, and ∀j, h�

j ≥ 0.

Theorem 1. There exists a constant C0 > 0 and assignment of parameter α := α(k) of Algorithm 1
such that for any c > 0, for sufficiently large n, given a sample of size k = c n

logn
consisting of

independent draws from a distribution D over a domain of size at most n, with probability at least
1 − e−n

Ω(1)
over the randomness in the selection of the sample, Algorithm 13, when run with a

sufficiently fine mesh x1, . . . , x�, returns a histogram h� such that |H(D)−H(h�)| ≤ C0√
c
.

3For simplicity, we prove this statement for Algorithm 1 with the second bullet step of the algorithm modi-
fied as follows: there is an explicit cutoff N such that the linear programming approach is applied to fingerprint
entries Fi for i ≤ N , and the empirical estimate is applied to fingerprints Fi for i > N .
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The above theorem characterizes the worst-case performance guarantees of the above algorithm in
terms of entropy estimation. The proof of Theorem 1 is rather technical and we provide the complete
proof together with a high-level overview of the key components, in Appendix C. In fact, we prove
a stronger theorem—guaranteeing that the histogram returned by Algorithm 1 is close (in a specific
metric) to the histogram of the true distribution; this stronger theorem then implies that Algorithm 1
can accurately estimate any statistical property that is sufficiently Lipschitz continuous with respect
to the specific metric on histograms.

The information theoretic lower bounds of [1] show that there is some constant C1 such that for
sufficiently large k, no algorithm can estimate the entropy of (worst-case) distributions of support
size n to within ±0.1 with any probability of success greater 0.6 when given a sample of size at most
k = C1

n

logn
. Together with Theorem 1, this establishes the worst-case optimality of Algorithm 1

(to constant factors).

3 Empirical results

In this section we demonstrate that Algorithm 1 performs well, in practice. We begin by briefly
discussing the five entropy estimators to which we compare our estimator in Figure 1. The first
three are standard, and are, perhaps, the most commonly used estimators [15]. We then describe two
recently proposed estimators that have been shown to perform well [22].

The “naive” estimator: the entropy of the empirical distribution, namely, given a fingerprint F
derived from a set of k samples, Hnaive(F) := −

�
i
Fi

i

k
| log2 i

k
|.

The Miller-Madow corrected estimator [23]: the naive estimator Hnaive corrected to try to ac-
count for the second derivative of the logarithm function, namely HMM (F) := Hnaive(F) +
(
�

i Fi)−1
2k , though we note that the numerator of the correction term is sometimes replaced by vari-

ous related quantities, see [24].

The jackknifed naive estimator [25, 26]: HJK(F) := k ·Hnaive(F)− k−1
k

�k

j=1 H
naive(F−j),

where F−j is the fingerprint given by removing the contribution of the jth sample.

The coverage adjusted estimator (CAE) [27]: Chao and Shen proposed the CAE, which is specif-
ically designed to apply to settings in which there is a significant component of the distribution that
is unseen, and was shown to perform well in practice in [22].4 Given a fingerprint F derived from
a set of k samples, let Ps := 1 − F1/k be the Good–Turing estimate of the probability mass of
the “seen” portion of the distribution [9]. The CAE adjusts the empirical probabilities according to
Ps, then applies the Horvitz–Thompson estimator for population totals [28] to take into account the
probability that the elements were seen. This yields:

HCAE(F) := −
�

i

Fi

(i/k)Ps log2 ((i/k)Ps)

1− (1− (i/k)Ps)
k

.

The Best Upper Bound estimator [15]: The final estimator to which we compare ours is the Best
Upper Bound (BUB) estimator of Paninski. This estimator is obtained by searching for a minimax
linear estimator, with respect to a certain error metric. The linear estimators of [2] can be viewed
as a variant of this estimator with provable performance bounds.5 The BUB estimator requires, as
input, an upper bound on the support size of the distribution from which the samples are drawn;
if the bound provided is inaccurate, the performance degrades considerably, as was also remarked
in [22]. In our experiments, we used Paninski’s implementation of the BUB estimator (publicly
available on his website), with default parameters. For the distributions with finite support, we gave
the true support size as input, and thus we are arguably comparing our estimator to the best–case
performance of the BUB estimator.

See Figure 1 for the comparison of Algorithm 1 with these estimators.
4One curious weakness of the CAE, is that its performance is exceptionally poor on some simple large

instances. Given a sample of size k from a uniform distribution over k elements, it is not hard to show that
the bias of the CAE is Ω(log k). This error is not even bounded! For comparison, even the naive estimator has
error bounded by a constant in the limit as k → ∞ in this setting. This bias of the CAE is easily observed in
our experiments as the “hump” in the top row of Figure 1.

5We also implemented the linear estimators of [2], though found that the BUB estimator performed better.
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Naive

Miller−Madow

Jackknifed

CAE

BUB

Unseen

Figure 1: Plots depicting the square root of the mean squared error (RMSE) of each entropy estimator over
500 trials, plotted as a function of the sample size; note the logarithmic scaling of the x-axis. The samples are
drawn from six classes of distributions: the uniform distribution, Unif [n] that assigns probability pi = 1/n
for i = 1, 2, . . . , n; an even mixture of Unif [n5 ] and Unif [ 4n5 ], which assigns probability pi = 5

2n for
i = 1, . . . , n

5 and probability pi = 5
8n for i = n

5 + 1, . . . , n; the Zipf distribution Zipf [n] that assigns
probability pi =

1/i�n
j=1 1/j for i = 1, 2, . . . , n and is commonly used to model naturally occurring “power law”

distributions, particularly in natural language processing; a modified Zipf distribution with power–law exponent
0.6, Zipf2[n], that assigns probability pi = 1/i0.6�n

j=1 1/j0.6
for i = 1, 2, . . . , n; the geometric distribution

Geom[n], which has infinite support and assigns probability pi = (1/n)(1 − 1/n)i, for i = 1, 2 . . .; and
lastly an even mixture of Geom[n/2] and Zipf [n/2]. For each distribution, we considered three settings of
the parameter n: n = 1, 000 (left column), n = 10, 000 (center column), and n = 100, 000 (right column). In
each plot, the sample size ranges over the interval [n0.6, n1.25].

All experiments were run in Matlab. The error parameter α in Algorithm 1 was set to be 0.5 for all
trials, and the vector x = x1, x2, . . . used as the support of the returned histogram was chosen to be a coarse
geometric mesh, with x1 = 1/k2, and xi = 1.1xi−1. The experimental results are essentially unchanged
if the parameter α varied within the range [0.25, 1], or if x1 is decreased, or if the mesh is made more fine
(see Appendix B). Appendix D contains our Matlab implementation of Algorithm 1 (also available from our
websites).

The unseen estimator performs far better than the three standard estimators, dominates the CAE estimator
for larger sample sizes and on samples from the Zipf distributions, and also dominates the BUB estimator, even
for the uniform and Zipf distributions for which the BUB estimator received the true support sizes as input.
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Figure 2: Plots depicting the estimated the total variation distance (�1 distance) between two uniform distri-
butions on n = 10, 000 points, in three cases: the two distributions are identical (left plot, d = 0), the supports
overlap on half their domain elements (center plot, d = 0.5), and the distributions have disjoint supports (right
plot, d = 1). The estimate of the distance is plotted along with error bars at plus and minus one standard
deviation; our results are compared with those for the naive estimator (the distance between the empirical dis-
tributions). The unseen estimator can be seen to reliably distinguish between the d = 0, d = 1

2 , and d = 1
cases even for samples as small as several hundred.

3.1 Estimating �1 distance and number of words in Hamlet

The other two properties that we consider do not have such widely-accepted estimators as entropy,
and thus our evaluation of the unseen estimator will be more qualitative. We include these two exam-
ples here because they are of a substantially different flavor from entropy estimation, and highlight
the flexibility of our approach.

Figure 2 shows the results of estimating the total variation distance (�1 distance). Because total
variation distance is a property of two distributions instead of one, fingerprints and histograms are
two-dimensional objects in this setting (see Section 4.6 of [29]), and Algorithm 1 and the linear pro-
grams are extended accordingly, replacing single indices by pairs of indices, and Poisson coefficients
by corresponding products of Poisson coefficients.

Finally, in contrast to the synthetic tests above, we also evaluated our estimator on a real-data prob-
lem which may be seen as emblematic of the challenges in a wide gamut of natural language pro-
cessing problems: given a (contiguous) fragment of Shakespeare’s Hamlet, estimate the number
of distinct words in the whole play. We use this example to showcase the flexibility of our linear
programming approach—our estimator can be customized to particular domains in powerful and
principled ways by adding or modifying the constraints of the linear program. To estimate the his-
togram of word frequencies in Hamlet, we note that the play is of length ≈ 25, 000, and thus the
minimum probability with which any word can occur is 1

25,000 . Thus in contrast to our previous
approach of using Linear Program 2 to bound the support of the returned histogram, we instead
simply modify the input vector x of Linear Program 1 to contain only probability values ≥ 1

25,000 ,
and forgo running Linear Program 2. The results are plotted in Figure 3. The estimates converge
towards the true value of 4268 distinct words extremely rapidly, and are slightly negatively biased,
perhaps reflecting the fact that words appearing close together are correlated.

In contrast to Hamlet’s charge that “there are more things in heaven and earth...than are dreamt of
in your philosophy,” we can say that there are almost exactly as many things in Hamlet as can be
dreamt of from 10% of Hamlet.
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Figure 3: Estimates of the total number of distinct word forms in Shakespeare’s Hamlet (excluding stage
directions and proper nouns) as a functions of the length of the passage from which the estimate is inferred.
The true value, 4268, is shown as the horizontal line.
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