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A Variational Bayes

A.1 Batch VB

As described in the main text, the idea of VB is to find the distribution qD that best approximates
the true posterior, pD. More specifically, the optimization problem of VB is defined as finding a qD

to minimize the KL divergence between the approximating distribution and the posterior:

KL (qD ‖ pD) := EqD [log (qD/pD)]

Typically qD takes a particular, constrained form, and finding the optimal qD amounts to finding the
optimal parameters for qD. Moreover, the optimal parameters usually cannot be expressed in closed
form, so often a coordinate descent algorithm is used.

For the LDA model, we have qD in the form of Eq. (8) and pD defined by Eq. (7). We wish to find the
following variational parameters (i.e., parameters to qD): λ (describing each topic), γ (describing
the topic proportions in each document), and φ (describing the assignment of each word in each
document to a topic).

A.1.1 Evidence lower bound

Finding qD to minimize the KL divergence between qD and pD is equivalent to finding qD to maxi-
mize the evidence lower bound (ELBO),

ELBO := EqD [log p(Θ, x1:D)]− EqD [log qD]
= EqD [log pD] + p(x1:D)− EqD [log qD]
= −KL (qD ‖ pD) + p(x1:D),

since p(x1:D) is constant in qD. The VB optimization problem is often phrased in terms of the
ELBO instead of the KL divergence.

The ELBO for LDA can be written as follows, where the model parameters are β, θ, z and the data
is w; η and α are fixed hyperparameters.

ELBO(λ, γ, φ) = Eq [log p(β, θ, z, w | η, α)]− Eq [log q(β, θ, z | λ, γ, φ)]

=
K∑

k=1

Eq [log Dirichlet(βk | ηk)] +
D∑

d=1

Eq [log Dirichlet(θd | α)]

+
D∑

d=1

Nd∑

n=1

Eq [log Multinomial(zdn | θd)] +
D∑

d=1

Nd∑

n=1

Eq [log Multinomial(wdn | βzdn)]
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−
K∑

k=1

Eq [log Dirichlet(βk | λk)]−
D∑

d=1

Eq [log Dirichlet(θd | γd)]

−
D∑

d=1

Nd∑

n=1

Eq [log Multinomial(zdn | φdwdn)] .

The expectations in q in the previous equation can be evaluated as follows. The equations below
make use of the digamma function ψ and trigamma function ψ1. Here,

ψ(x) =
d

dx
log Γ(x) =

[
d

dx
Γ(x)

]
/Γ(x)

ψ1(x) =
d2

dx2
log Γ(x) =

d

dx
ψ(x).

Then,

Eq [log Dirichlet(βk | ηk)]

= log Γ

(
V∑

v=1

ηkv

)
−

V∑

v=1

log Γ(ηkv) +
V∑

v=1

(ηkv − 1) Eq[log βkv]

= log Γ

(
V∑

v=1

ηkv

)
−

V∑

v=1

log Γ(ηkv) +
V∑

v=1

(ηkv − 1)

(
ψ(λkv)− ψ

( V∑

u=1

λku

))

Eq [log Dirichlet(θd | α)]

= log Γ

(
K∑

k=1

αk

)
−

K∑

k=1

log Γ(αk) +
K∑

k=1

(αk − 1) Eq[log θdk]

= log Γ

(
K∑

k=1

αk

)
−

K∑

k=1

log Γ(αk) +
K∑

k=1

(αk − 1)



ψ(γdk)− ψ
( K∑

j=1

γdj

)




Eq [log Multinomial(zdn | θd)]

=
K∑

k=1

φdwdnkEq[log θdk]

=
K∑

k=1

φdwdnk



ψ(γdk)− ψ
( K∑

j=1

γdj

)




Eq [log Multinomial(wdn | βzdn)]

=
V∑

v=1

{wdn = v} Eq[log βzdn,v]

=
V∑

v=1

{wdn = v}
K∑

k=1

φdwdnkEq[log βkv]

=
V∑

v=1

K∑

k=1

{wdn = v} φdwdnk

(
ψ(λkv)− ψ

( V∑

u=1

λku

))

Eq [log Dirichlet(βk | λk)]

= log Γ

(
V∑

v=1

λkv

)
−

V∑

v=1

log Γ(λkv) +
V∑

v=1

(λkv − 1) Eq[log βkv]

= log Γ

(
V∑

v=1

λkv

)
−

V∑

v=1

log Γ(λkv) +
V∑

v=1

(λkv − 1)

(
ψ(λkv)− ψ

( V∑

u=1

λku

))

Eq [log Dirichlet(θd | γd)]
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= log Γ

(
K∑

k=1

γdk

)
−

K∑

k=1

log Γ(γdk) +
K∑

k=1

(γdk − 1) Eq[log θdk]

= log Γ

(
K∑

k=1

γdk

)
−

K∑

k=1

log Γ(γdk) +
K∑

k=1

(γdk − 1)



ψ(γdk)− ψ
( K∑

j=1

γdj

)




Eq [log Multinomial(zdn | φdn)]

=
K∑

k=1

φdwdnk log φdwdnk.

A.1.2 Coordinate ascent

We maximize the ELBO via coordinate ascent in each dimension of the variational parameters: λ,
γ, and φ.

Variational parameter λ. Choose a topic index k. Fix γ, φ, and each λj for j #= k. Then we can
write the ELBO’s functional dependence on λk as follows, where “const” is a constant in λk.

ELBO(λk) =
V∑

v=1

(ηkv − 1)

(
ψ(λkv)− ψ

( V∑

u=1

λku

))

+
D∑

d=1

Nd∑

n=1

V∑

v=1

{wdn = v} φdwdnk

(
ψ(λkv)− ψ

( V∑

u=1

λku

))

− log Γ

(
V∑

v=1

λkv

)
+

V∑

v=1

log Γ(λkv)

−
V∑

v=1

(λkv − 1)

(
ψ(λkv)− ψ

( V∑

u=1

λku

))
+ const

=
V∑

v=1

(
ηkv − λkv +

D∑

d=1

Nd∑

n=1

{wdn = v} φdwdnk

) (
ψ(λkv)− ψ

( V∑

u=1

λku

))

− log Γ

(
V∑

v=1

λkv

)
+

V∑

v=1

log Γ(λkv) + const

The partial derivative of ELBO(λk) with respect to one of the dimensions of λk, say λkv , is

∂

∂λkv
ELBO(λk)

= −
(

ψ(λkv)− ψ
( V∑

u=1

λku

))

+

(
ηkv − λkv +

D∑

d=1

Nd∑

n=1

{wdn = v} φdwdnk

) (
ψ1(λkv)− ψ1

( V∑

u=1

λku

))

−
∑

t:t!=v

(
ηkt − λkt +

D∑

d=1

Nd∑

n=1

{wdn = t} φdwdnk

)
ψ1

( V∑

u=1

λku

)
− ψ

( V∑

u=1

λku

)
+ ψ(λkv)

= ψ1(λkv)

(
ηkv − λkv +

D∑

d=1

Nd∑

n=1

{wdn = v} φdwdnk

)

− ψ
( V∑

u=1

λku

) V∑

u=1

(
ηku − λku +

D∑

d=1

Nd∑

n=1

{wdn = u} φdwdnk

)
.
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From the last line of the previous equation, we see that one can set the gradient of ELBO(λk) to
zero by setting

λkv ← ηkv +
D∑

d=1

Nd∑

n=1

{wdn = v} φdwdnk for v = 1, . . . , V.

Equivalently, if ndv is the number of occurrences (tokens) of word type v in document d, then the
update may be written

λkv ← ηkv +
D∑

d=1

ndv φdvk for v = 1, . . . , V.

Variational parameter γ. Now choose a document d. Fix λ, φ, and γc for c #= d. Then we can
express the functional dependence of the ELBO on γd as follows.

ELBO(γd) =
K∑

k=1

(αk − 1)



ψ(γdk)− ψ
( K∑

j=1

γdj

)


 +
Nd∑

n=1

K∑

k=1

φdwdnk



ψ(γdk)− ψ
( K∑

j=1

γdj

)




− log Γ

(
K∑

k=1

γdk

)
+

K∑

k=1

log Γ(γdk)−
K∑

k=1

(γdk − 1)



ψ(γdk)− ψ
( K∑

j=1

γdj

)




+ const

=
K∑

k=1

(
αk − γdk +

Nd∑

n=1

φdwdnk

)

ψ(γdk)− ψ
( K∑

j=1

γdj

)




− log Γ

(
K∑

k=1

γdk

)
+

K∑

k=1

log Γ(γdk) + const

The partial derivative of ELBO(γd) with respect to one of the dimensions of γd, say γdk, is

∂

∂γdk
ELBO(γd)

= −



ψ(γdk)− ψ
( K∑

j=1

γdj

)


 +

(
αk − γdk +

Nd∑

n=1

φdwdnk

)

ψ1(γdk)− ψ1

( K∑

j=1

γdj

)




−
∑

i:i !=k

(
αi − γdi +

Nd∑

n=1

φdwdni

)
ψ1

( K∑

j=1

γdj

)
− ψ

( K∑

j=1

γdj

)
+ ψ(γdk)

= ψ1(γdk)

(
αk − γdk +

Nd∑

n=1

φdwdnk

)
− ψ1

( K∑

j=1

γdj

) K∑

j=1

(
αj − γdj +

Nd∑

n=1

φdwdnj

)
.

As for the λ case above, one obvious way to achieve a gradient of ELBO(γd) equal to zero is to set

γdk ← αk +
Nd∑

n=1

φdwdnk for k = 1, . . . ,K.

Equivalently,

γdk ← αk +
V∑

v=1

ndv φdvk for k = 1, . . . ,K.

Variational parameter φ. Finally, consider fixing λ, γ, and φcu for (c, u) #= (d, v). In this case,
the dependence of the ELBO on φdv can be written as follows.

ELBO(φdv)
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=
K∑

k=1

ndv φdvk



ψ(γdk)− ψ
( K∑

j=1

γdj

)




+
K∑

k=1

ndv φdvk

(
ψ(λkv)− ψ

( V∑

u=1

λku

))
−

K∑

k=1

ndv φdvk log φdvk + const

=
K∑

k=1

ndv φdvk



− log φdvk + ψ(γdk)− ψ
( K∑

j=1

γdj

)
+ ψ(λkv)− ψ

( V∑

u=1

λku

)




+ const

The partial derivative of ELBO(φdv) with respect to one of the dimensions of φdv , say φdvk, is

∂

∂φdvk
ELBO(φdv)

= ndv



− log φdvk + ψ(γdk)− ψ
( K∑

j=1

γdj

)
+ ψ(λkv)− ψ

( V∑

u=1

λku

)
− 1



 .

Using the method of Lagrange multipliers to incorporate the constraint that
∑K

k=1 φdvk = 1, we
wish to find ρ and φdvk such that

0 =
∂

∂φdvk

[
ELBO(φdv)− ρ

(
K∑

k=1

φdvk − 1

)]
. (9)

Setting

φdvk ∝k exp



ψ(γdk)− ψ
( K∑

j=1

γdj

)
+ ψ(λkv)− ψ

( V∑

u=1

λku

)




achieves the desired outcome in Eq. (9). Here, ∝k indicates that the proportionality is across k. The
optimal choice of ρ is expressed via this proportionality. The above assignment may also be written
as

φdvk ∝k exp (Eq[log θdk] + Eq[log βkv])

The coordinate-ascent algorithm iteratively updates the parameters λ, γ, and φ. In practice, we
usually iterate the updates for the “local” parameters φ and γ until they converge, then update the
“global” parameter λ, and repeat. The resulting batch variational Bayes algorithm is presented in
Alg. 1.

A.2 SDA-Bayes VB

For a fixed hyperparameter α, we can think of BatchVB as an algorithm that takes input in the form
of a prior on topic parameters β and a minibatch of documents. In particular, let Cb be the bth
minibatch of documents; for documents with indices in Db, these documents can be summarized by
the word counts (nd)d∈Db . Then, in the notation of Eq. (2), we have Θ = β, A = BatchVB, and

q0(β) =
K∏

k=1

Dirichlet(βk|ηk).

In general, the bth posterior takes the same form and therefore can be summarized by its parameters
λ(b):

qb(β) =
K∏

k=1

Dirichlet(βk|λ(b)
k ).
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In this case, if we set the prior parameters to λ(0)
k := ηk, Eq. (2) becomes the following algorithm.

Algorithm 4: Streaming VB for LDA
Input: Hyperparameter η
Initialize λ(0) ← η
foreach Minibatch Cb of documents do

λ(b) ← BatchVB
(
Cb, λ(b−1)

)

qb(β) =
∏K

k=1 Dirichlet(βk|λ(b)
k )

Next, we apply the asynchronous, distributed updates described in the “Asyn-
chronous Bayesian updating” portion of Sec. 2 to the batch VB primitive and LDA
model. In this case, λ(post) is the posterior parameter estimate maintained at the
master, and each worker updates this value after a local computation. The poste-
rior after seeing a collection of minibatches is q(β) =

∏K
k=1 Dirichlet(βk|λ(post)

k ).

Algorithm 5: SDA-Bayes with VB primitive for LDA
Input: Hyperparameter η
Initialize λ(post) ← η
foreach Minibatch Cb of documents, at a worker do

Copy master value locally: λ(local) ← λ(post) λ ← BatchVB
(
Cb, λ(local)

)

∆λ ← λ− λ(local)

Update the master value synchronously: λ(post) ← λ(post) + ∆λ

B Expectation Propagation

B.1 Batch EP

Our batch expectation propagation (EP) algorithm for LDA learns a posterior for both the document-
specific topic mixing proportions (θd)D

d=1 and the topic distributions over words (βk)K
k=1. By con-

trast, the algorithm in [14] learns only the former and so is not appropriate to the model in Sec. 3.

For consistency, we also follow [14] in making a distinction between token and type word updates,
where a token refers to a particular word instance and a type refers to all words with the same
vocabulary value. Let C = (wd)D

d=1 denote the set of documents that we observe, and for each word
v in the vocabulary, let ndv denote the number of times v appears in document d.

Collapsed posterior. We begin by collapsing (i.e., integrating out) the word assignments z in the
posterior (7) of LDA. We can express the collapsed posterior as

p(β, θ | C, η,α) ∝
[

K∏

k=1

DirichletV (βk | ηk)

]
·

D∏

d=1

[
DirichletK(θd | α) ·

V∏

v=1

(
K∑

k=1

θdk βkv

)ndv]
.

For each document-word pair (d, v), consider approximating the term
∑K

k=1 θdkβkv above by
[

K∏

k=1

DirichletV (βk | χkdv + 1V )

]
· DirichletK(θd | ζdv + 1K),

where χkdv ∈ RV , ζdv ∈ RK , and 1M is a vector of all ones of length M . This proposal serves
as inspiration for taking the approximating variational distribution for p(β, θ | C, η,α) to be of the
form

q(β, θ | λ, γ) :=

[
K∏

k=1

q(βk | λk)

]
·

D∏

d=1

q(θd | γd), (10)

where q(βk | λk) = Dirichlet(βk | λk) and q(θd | γd) = Dirichlet(θd | γd), with the parameters

λk = ηk +
D∑

d=1

V∑

v=1

ndvχkdv, γd = α +
V∑

v=1

ndvζdv, (11)
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and the constraints λk ∈ RV
+ and γd ∈ RK

+ for each k and d. We assume this form in the remainder
of the analysis and write q(β, θ | χ, ζ) for q(β, θ | λ, γ), where χ = (χkdv), ζ = (ζdv).

Optimization problem. We seek to find the optimal parameters (χ, ζ) by minimizing the (reverse)
KL divergence:

min
χ,ζ

KL (p(β, θ | C, η,α) ‖ q(β, θ | χ, ζ)) .

This joint minimization problem is not tractable, and the idea of EP is to proceed iteratively by fixing
most of the factors in Eq. (10) and minimizing the KL divergence over the parameters related to a
single word.

More formally, suppose we already have a set of parameters (χ, ζ). Consider a document d and word
v that occurs in document d (i.e., ndv ≥ 1). We start by removing the component of q related to
(d, v) in Eq. (10). Following [7], we subtract out the effect of one occurrence of word v in document
d, but at the end of this process we update the distribution on the type level. In doing so, we use the
following shorthand for the remaining global parameters:

λ\(d,v)
k = λk − χkdv = ηk + (ndv − 1)χkdv +

∑

(d′,v′):(d′,v′) !=(d,v)

nd′v′χkd′v′

γ\(d,v)
d = γd − ζdv = α + (ndv − 1)ζdv +

∑

v′:v′ !=v

ndv′ζdv′ .

We replace this removed part of q by the term
∑K

k=1 θdkβkv , which corresponds to the contribution
of one occurrence of word v in document d to the true posterior p. Call the resulting normalized
distribution q̃dv , so q̃dv(β, θ | λ\(d,v), γ\d, γ

\(d,v)
d ) satisfies

∝
[

K∏

k=1

Dirichlet(βk | λ\(d,v)
k )

]
·




∏

d′ !=d

Dirichlet(θd′ | γd′)



 · Dirichlet(θd | γ\(d,v)
d ) ·

K∑

k=1

θdk βkv.

We obtain an improved estimate of the posterior q by updating the parameters from (λ, γ) to (λ̂, γ̂),
where

(λ̂, γ̂) = arg min
λ′,γ′

KL
(
q̃dv(β, θ | λ\(d,v), γ\d, γ

\(d,v)
d ) ‖ q(β, θ | λ′, γ′)

)
. (12)

Solution to the optimization problem. First, note that for d′ : d′ #= d, we have γ̂d′ = γd′ .

Now consider the index d chosen on this iteration. Since β and θ are Dirichlet-distributed under q,
the minimization problem in Eq. (12) reduces to solving the moment-matching equations [7, 20]

Eq̃dv [log βku] = Eλ̂k
[log βku] for 1 ≤ k ≤ K, 1 ≤ u ≤ V,

Eq̃dv [log θdk] = Eγ̂d [log θdk] for 1 ≤ k ≤ K.

These can be solved via Newton’s method though [7] recommends solving exactly for the first and
“average second” moments of βku and θdk, respectively, instead. We choose the latter approach for
consistency with [7]; our own experiments also suggested taking the approach of [7] was faster than
Newton’s method with no noticeable performance loss. The resulting moment updates are

λ̂ku =

∑V
y=1

(
Eq̃dv [β2

ky]− Eq̃dv [βky]
)

∑V
y=1

(
Eq̃dv [βky]2 − Eq̃dv [β2

ky]
) · Eq̃dv [βku] (13)

γ̂dk =

∑K
j=1

(
Eq̃dv [θ2

dj ]− Eq̃d,n [θdj ]
)

∑K
j=1

(
Eq̃dv [θdj ]2 − Eq̃dv [θ2

dj ]
) · Eq̃dv [θdk]. (14)
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We then set (χkdv)K
k=1 and ζdv such that the new global parameters (λk)K

k=1 and γd are equal to the
optimal parameters (λ̂k)K

k=1 and γ̂d. The resulting algorithm is presented below (Alg. 6).

Algorithm 6: EP for LDA
Input: Data C = (wd)D

d=1; hyperparameters η, α
Output: λ
Initialize ∀(k, d, v), χkdv ← 0 and ζdv ← 0
while (χ, ζ) not converged do

foreach (d, v) with ndv ≥ 1 do
/* Variational distribution without the word token (d, v) */

∀k, λ\(d,v)
k ← ηk + (ndv − 1)χkdv +

∑
(d′,v′) !=(d,v) nd′v′χkd′v′

γ\(d,v)
d ← α + (ndv − 1)ζdv +

∑
v′ !=v ndv′ζdv′

If any of λ\(d,v)
ku or γ\(d,v)

dk are non-positive, skip updating this (d, v) (†)
/* Variational parameters from moment-matching */

∀(k, u), compute λ̂ku from Eq. (13)
∀k, compute γ̂dk from Eq. (14)
/* Type-level updates to parameter values */

∀k, χkdv ← n−1
dv

(
λ̂k − λ\(d,v)

k

)
+

(
1− n−1

dv

)
χkdv

ζdv ← n−1
dv

(
γ̂d − γ\(d,v)

d

)
+

(
1− n−1

dv

)
ζdv

Other χ, ζ remain unchanged

/* Global variational parameters */

∀k, λk ← ηk +
∑D

d=1

∑V
v=1 ndvχkdv

The results in the main text (Sec. 4) are reported for Alg. 6. We also tried a slightly modified
EP algorithm that makes token-level updates to parameter values, rather than type-level updates.
This modified version iterates through each word placeholder in document d; that is, through pairs
(d, n) rather than pairs (d, v) corresponding to word values. Since there are always at least as many
(d, n) pairs as (d, v) pairs with ndv ≥ 1 (and usually many more of the former), the modified
algorithm requires many more iterations. In practice, we find better experimental performance for
the modified EP algorithm in terms of log predictive probability as a function of number of data
points in the training set seen so far: e.g., leveling off at about−7.96 for Nature vs.−8.02. However,
the modified algorithm is also much slower, and still returns much worse results than SDA-Bayes or
SVI, so we do not report these results in the main text.3

B.2 SDA-Bayes EP

Putting a batch EP algorithm for LDA into the SDA-Bayes framework is almost identical to putting
a batch VB algorithm for LDA into the SDA-Bayes framework. This similarity is to be expected
since SDA-Bayes works out of the box with a batch approximation algorithm in the correct form.

For a fixed hyperparameter α, we can think of BatchEP as an algorithm (just like BatchVB) that
takes input in the form of a prior on topic parameters β and a minibatch of documents. The same

3Here and in the main text we run EP with η = 1. We also tried EP with η = 0.01, but the positivity check
for λ\(d,v)

ku and γ\(d,v)
dk on line (†) in Algorithm 6 always failed and as a result none of the parameters were

updated.
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setup and notation from Sup. Mat. A.2 applies. In this case, Eq. (2) becomes the following algorithm.

Algorithm 7: Streaming EP for LDA
Input: Hyperparameter η
Initialize λ(0) ← η
foreach Minibatch Cb of documents do

λ(b) ← BatchEP
(
Cb, λ(b−1)

)

qb(β) =
∏K

k=1 Dirichlet(βk|λ(b)
k )

This algorithm is exactly the same as Alg. 4 but with a batch EP primitive instead of a batch VB
primitive.

Next, we apply the asynchronous, distributed updates described in the “Asynchronous Bayesian
updating” portion of Sec. 2 to the batch EP primitive and LDA model. Again, the
setup and notation from Sup. Mat. A.2 applies, and we find the following algorithm.

Algorithm 8: SDA-Bayes with EP primitive for LDA
Input: Hyperparameter η
Initialize λ(post) ← η
foreach Minibatch Cb of documents, at a worker do

Copy master value locally: λ(local) ← λ(post) λ ← BatchEP
(
Cb, λ(local)

)

∆λ ← λ− λ(local)

Update the master value synchronously: λ(post) ← λ(post) + ∆λ

Indeed, the recipe outlined here applies more generally to other primitives besides EP and VB.
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