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Abstract

Causal inference uses observational data to infer the causal structure of the data
generating system. We study a class of restricted Structural Equation Models for
time series that we call Time Series Models with Independent Noise (TiMINo).
These models require independent residual time series, whereas traditional meth-
ods like Granger causality exploit the variance of residuals. This work contains
two main contributions: (1) Theoretical: By restricting the model class (e.g. to
additive noise) we provide general identifiability results. They cover lagged and
instantaneous effects that can be nonlinear and unfaithful, and non-instantaneous
feedbacks between the time series. (2) Practical: If there are no feedback loops
between time series, we propose an algorithm based on non-linear independence
tests of time series. We show empirically that when the data are causally insuf-
ficient or the model is misspecified, the method avoids incorrect answers. We
extend the theoretical and the algorithmic part to situations in which the time se-
ries have been measured with different time delays. TiMINo is applied to artificial
and real data and code is provided.

1 Introduction

We first introduce the problem of causal inference on iid data, that is in the case with no time
structure. Let therefore Xi, i ∈ V , be a set of random variables and let G be a directed acyclic
graph (DAG) on V describing the causal relationships between the variables. Given iid samples
from P(Xi),i∈V , we aim at estimating the underlying causal structure of the variables Xi, i ∈ V .
Constraint- or independence-based methods [e.g. Spirtes et al., 2000] assume that the joint distri-
bution is Markov, and faithful with respect to G. The PC algorithm, for example, exploits con-
ditional independences for reconstructing the Markov equivalence class of G (some edges remain
undirected). We say P(Xi),i∈V satisfies a Structural Equation Model [Pearl, 2009] w.r.t. DAG G
if for all i ∈ V we can write Xi = fi(PA

i, N i) , where PAi are the parents of node i in G. Ad-
ditionally, we require (N i)i∈V to be jointly independent. By restricting the function class one can
identify the bivariate case: Shimizu et al. [2006] show that if P(X,Y ) allows for Y = a ·X + NY
with NY ⊥⊥ X then P(X,Y ) only allows for X = b · Y +NX with NX ⊥⊥ Y if (X,NY ) are jointly
Gaussian ( ⊥⊥ stands for statistical independence). This idea has led to the extensions of nonlin-
ear additive functions f(x, n) = g(x) + n [Hoyer et al., 2009]. Peters et al. [2011b] show how
identifiability for two variables generalizes to the multivariate case.

We now turn to the case of time series data. For each i from a finite V , let therefore
(
Xi
t

)
t∈N be

a time series. Xt denotes the vector of time series values at time t. We call the infinite graph that
contains each variable Xi

t as a node the full time graph. The summary time graph contains all #V

∗Significant parts of this research was done, when Jonas Peters was at the MPI Tübingen.
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components of the time series as vertices and an arrow between Xi and Xj , i 6= j, if there is an
arrow from Xi

t−k to Xj
t in the full time graph for some k. We are given a sample (X1, . . . ,XT )

of a multivariate time series and estimate the true summary time graph. I.i.d. methods are not
directly applicable because a common history might introduce complicated dependencies between
contemporaneous data Xt and Yt. Nevertheless several methods dealing with time series data are
motivated by the iid setting (Section 2). Many of them encounter similar problems: when the model
assumptions are violated (e.g. in the presence of a confounder) the methods draw false causal
conclusions. Furthermore, they do not include nonlinear instantaneous effects. In this work, we
extend the Structural Equation Model framework to time series data and call this approach time
series models with independent noise (TiMINo). These models include nonlinear and instantaneous
effects. They assume Xt to be a function of all direct causes and some noise variable, the collection
of which is supposed to be jointly independent. This model formulation comes with substantial
benefits: In Section 3 we prove that for TiMINo models the full causal structure can be recovered
from the distribution. Section 4 introduces an algorithm (TiMINo causality) that recovers the model
structure from a finite sample. It can be equipped with any algorithm for fitting time series. If
the data do not satisfy the model assumptions, TiMINo causality remains mostly undecided instead
of drawing wrong causal conclusions. Section 5 deals with time series that have been shifted by
different (unknown) time delays. Experiments on simulated and real data sets are shown in Section 6.

2 Existing methods

Granger causality [Granger, 1969] (G-causality for the remainder of the article) is based on the
following idea: Xi does not Granger cause Xj if including the past of Xi does not help in pre-
dicting Xj

t given the past of all all other time series Xk, k 6= i. In principle, “all other” means all
other information in the world. In practice, one is limited to Xk, k ∈ V . The phrase “does not
help” is translated into a significance test assuming a multivariate time series model. If the data
follow the assumed model, e.g. the VAR model below, G-causality is sometimes interpreted as test-
ing whether Xi

t−h, h > 0 is independent of Xj
t given Xk

t−h, k ∈ V \ {i}, h > 0 [see Florens and
Mouchart, 1982, Eichler, 2011, Chu and Glymour, 2008, Quinn et al., 2011, and ANLTSM below].
Linear G-causality considers a VAR model: Xt =

∑p
τ=1 A(τ)Xt−τ +Nt , where Xt and Nt are

vectors and A(τ) are matrices. For checking whether Xi G-causes Xj one fits a full VAR model
Mfull to Xt and a VAR model Mrestr to Xt that predicts Xi

t without using Xj (using the constraints
A · i(τ) = 0 for all 1 ≤ τ ≤ p). One tests whether the reduction of the residual sum of squares
(RSS) of Xi

t is significant by using the following test statistic: T := (RSSrestr−RSSfull)/(pfull−prestr)
RSSfull/(N−pfull)

,
where pfull and prestr are the number of parameters in the respective models. For the significance
test we use T ∼ Fpfull−prestr,N−pfull . G-causality has been extended to nonlinear G-causality, [e.g.
Chen et al., 2004, Ancona et al., 2004]. In this paper we focus on an extension for the bivariate
case proposed by Bell et al. [1996]. It is based on generalized additive models (gams) [Hastie and
Tibshirani, 1990]: Xi

t =
∑p
τ=1

∑n
j=1 fi,j,τ (X

j
t−τ ) + N i

t , where Nt is a #V dimensional noise
vector. Bell et al. [1996] utilize the same F statistic as above using estimated degrees of freedom.
Following Bell et al. [1996], Chu and Glymour [2008] introduce additive nonlinear time series mod-
els (ANLTSM for short) for performing relaxed conditional independence tests: If including one
variable, e.g. X1

t−1, into a model for X2
t that already includes X2

t−2, X
2
t−1, and X1

t−2 does not im-
prove the predictability of X2

t , then X1
t−1 is said to be independent of X2

t given X2
t−2, X

2
t−1, X

1
t−2

(if the maximal time lag is 2). Chu and Glymour [2008] propose a method based on constraint-
based methods like FCI [Spirtes et al., 2000] in order to infer the causal structure exploiting those
conditional independence statements. The instantaneous effects are assumed to be linear and the
confounders linear and instantaneous.
TS-LiNGAM [Hyvärinen et al., 2008] is based on LiNGAM [Shimizu et al., 2006] from the iid
setting. It allows for instantaneous effects and assumes all relationships to be linear.

These approaches encounter some methodological problems. Instantaneous effects: G-causality
cannot deal with instantaneous effects. E.g., when Xt is causing Yt, including any of the two time
series helps for predicting the other and G-causality infers X → Y and Y → X . ANLTSM and
TS-LiNGAM only allow for linear instantaneous effects. Theorem 1 shows that the summary time
graph may still be identifiable when the instantaneous effects are linear and the variables are jointly
Gaussian. TS-LiNGAM does not work in these situations. Confounders: G-causality might fail
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when there is a confounder between Xt and Yt+1, say. The path between Xt and Yt+1 cannot be
blocked by conditioning on any observed variables; G-causality infers X → Y . We will see empir-
ically that TiMINo remains undecided instead; Entner and Hoyer [2010] and Janzing et al. [2009]
provide (partial) results for the iid setting. ANLTSM does not allow for nonlinear confounders or
confounders with time structure and TS-LiNGAM may fail, too (Exp. 1). Robustness: Theorem 1
(ii) shows that performing general conditional independence tests suffices. The conditioning sets,
however, are too large and the tests are performed under a simple model (e.g. VAR). If the model is
misspecified, one may draw wrong conclusions without noticing (e.g. Exp. 3).

For TiMINo (defined below), Lemma 1 shows that after fitting and checking the model by using
unconditional independence tests, the difficult conditional independences have been checked im-
plicitly. A model check is not new [e.g. Hoyer et al., 2009, Entner and Hoyer, 2010] but is thus
an effective tool. We can equip bivariate G-causality with a test for cross-correlations; this is not
straight-forward for multivariate G-causality. Furthermore, using cross-correlation as an indepen-
dence test does not always suffice (see Section 2).

3 Structural Equation models for time series: TiMINo

Definition 1 Consider a time series Xt = (Xi
t)i∈V whose finite dimensional distributions are ab-

solutely continuous w.r.t a product measure (e.g. there is a pdf or pmf). The time series satisfies a
TiMINo if there is a p > 0 and ∀i ∈ V there are sets PAi

0 ⊆ XV \{i},PAi
k ⊆ XV , s.t. ∀t

Xi
t = fi

(
(PAi

p)t−p, . . . , (PA
i
1)t−1, (PA

i
0)t, N

i
t

)
, (1)

with N i
t jointly independent over i and t and for each i, N i

t are identically distributed in t. The
corresponding full time graph is obtained by drawing arrows from any node that appears in the
right-hand side of (1) toXi

t . We require the full time graph to be acyclic. Section 6 shows examples.

Theorem 1 (i) assumes that (1) follows an identifiable functional model class (IFMOC). This means
that (I) causal minimality holds, a weak form of faithfulness that assumes a statistical dependence
between cause and effect given all other parents [Spirtes et al., 2000]. And (II), all fi come from a
function class that is small enough to make the bivariate case identifiable. Peters et al. [2011b] give
a precise definition. Important examples include nonlinear functions with additive Gaussian noise
and linear functions with additive non-Gaussian noise. Due to space constraints, proofs are provided
in the appendix. In the one-dimensional linear case model (1) is time-reversible if and only if the
noise is normally distributed [Peters et al., 2009].

Theorem 1 Suppose that Xt can be represented as a TiMINo (1) with PA(Xi
t) =

⋃p
k=0(PA

i
k)t−k

being the direct causes of Xi
t and that one of the following holds:

(i) Equations (1) come from an IFMOC (e.g. nonlinear functions fi with additive Gaussian
noise N i

t or linear functions fi with additive non-Gaussian noise N i
t ). The summary time

graph can contain cycles.
(ii) Each component exhibits a time structure (PA(Xi

t) contains at least one Xi
t−k), the joint

distribution is faithful w.r.t. the full time graph, and the summary time graph is acyclic.
Then the full time graph can be recovered from the joint distribution of Xt. In particular, the true
causal summary time graph is identifiable. (Neither of the conditions (i) and (ii) implies the other.)

Many function classes satisfy (i) [Peters et al., 2013]. To estimate fi from data (E[Xi
t |Xt−p,

. . . ,Xt−1] for additive noise) we require stationarity and/or α mixing, or geometric ergodicity [e.g.
Chu and Glymour, 2008]. Condition (ii) shows how time structure simplifies the causal inference
problem. For iid data the true graph is not identifiable in the linear Gaussian case; with time structure
it is. We believe that condition (ii) is more difficult to verify in practice; faithfulness is not required
for (i). In (ii), the acyclicity prevents the full time graph from being fully connected up to order p.

4 A practical method: TiMINo causality

The algorithm for TiMINo causality is based on the theoretical finding in Theorem 1. It takes the
time series data as input and outputs either a DAG that estimates the summary time graph or re-
mains undecided. It tries to fit a TiMINo model to the data and outputs the corresponding graph. If
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no model with independent residuals is found, it outputs “I do not know”. This becomes intractable
for a time series with many components; for time series without feedback loops, we adapt a method
for additive noise models without time structure suggested by Mooij et al. [2009] that avoids enu-
merating all DAGs. Algorithm 1 shows the modified version. As reported by Mooij et al. [2009],
the time complexity is O(d2 · f(n, d) · t(n, d)), where d is the number of time series, n the sample
size and f(n, d) and t(n, d) the complexity of the user-specific regression method and independence
test, respectively. Peters et al. [2013] discuss the algorithm’s correctness. We present our choices
but do not claim their optimality, any other fitting method and independence test can be used, too.

Algorithm 1 TiMINo causality
1: Input: Samples from a d-dimensional time series of length T : (X1, . . . ,XT ), maximal order p
2: S := (1, . . . , d)
3: repeat
4: for k in S do
5: Fit TiMINo for Xk

t using Xk
t−p, . . . , X

k
t−1, X

i
t−p, . . . , X

i
t−1, X

i
t for i ∈ S \ {k}

6: Test if residuals are indep. of Xi, i ∈ S.
7: end for
8: Choose k∗ to be the k with the weakest dependence. (If there is no k with independence,

break and output: “I do not know - bad model fit”).
9: S := S \ {k∗}; pa(k∗) := S

10: until length(S)= 1
11: For all k remove all parents that are not required to obtain independent residuals.
12: Output: (pa(1), . . . ,pa(d))

Depending on the assumed model class, TiMINo causality has to be provided with a fitting method.
Here, we chose the R functions ar for VAR fitting (fi(p1, . . . , pr, n) = ai,1 ·p1+ . . .+ai,r ·pr+n),
gam for generalized additive models (fi(p1, . . . , pr, n) = fi,1(p1)+. . .+fi,r(pr)+n) [e.g. Bell et al.,
1996] and gptk for GP regression (fi(p1, . . . , pr, n) = fi(p1, . . . , pr) + n). We call the methods
TiMINo-linear, TiMINo-gam and TiMINo-GP, respectively. For the first two AIC determines the
order of the process. All fitting methods are used in a “standard way”. For gam we used the built-in
nonparametric smoothing splines. For the GP we used zero mean, squared exponential covariance
function and Gaussian Likelihood. The hyper-parameters are automatically chosen by marginal
likelihood optimization. Code is available online.

To test for independence between a residual time series Nk
t and another time series Xi

t , i ∈ S,
we shift the latter time series up to the maximal order ±p (but at least up to ±4); for each of those
combinations we perform HSIC [Gretton et al., 2008], an independence test for iid data. One could
also use a test based on cross-correlation that can be derived from Thm 11.2.3. in [Brockwell and
Davis, 1991]. This is related to what is done in transfer function modeling [e.g. §13.1 in Brockwell
and Davis, 1991], which is restricted to two time series and linear functions. As opposed to the
iid setting, testing for cross-correlation is often enough in order to reject a wrong model. Only
Experiments 1 and 5 describe situations, in which cross-correlations fail. To reduce the running
time one can use cross-correlation to determine the graph structure and use HSIC as a final model
check. For HSIC we used a Gaussian kernel; as in [Gretton et al., 2008], the bandwidth is chosen
such that the median distance of the input data leads to an exponent of one. Testing for non-vanishing
autocorrelations in the residuals is not included yet.

If the model assumptions only hold in some parts of the summary time graph, we can still try
to discover parts of the causal structure. Our code package contains this option. We obtained
positive results on simulated data but there is no corresponding identifiability statement.

Our method has some potential weaknesses. It can happen that one is able to fit a model only in the
wrong direction. This, however, requires an “unnatural” fine tuning of the functions [Janzing and
Steudel, 2010] and is relevant only when there are time series without time structure or the data are
non-faithful (see Theorem 1). The null hypothesis of the independence test represents independence,
although the scientific discovery of a causal relationship should rather be the alternative hypothesis.
This fact may lead to wrong causal conclusions (instead of “I do not know”) on small data sets.The
effect is strengthened by the Bonferroni correction of the HSIC based independence test; one may
require modifications for a high number of time series components. For large sample sizes, even
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smallest differences between the true data generating process and the model may lead to rejected
independence tests [discussed by Peters et al., 2011a].

5 TiMINo for Shifted Time Series

In some applications, we observe the components of the time series with varying time delay. Instead
ofXi

t we are then working with X̃i
t = Xi

t−`, with 0 ≤ ` ≤ k. E.g., in functional magnetic resonance
imaging brain activity is measured through an increased blood flow in the corresponding area. It
has been reported that these data often suffer from different time delays [e.g. Buxton et al., 1998,
Smith et al., 2011]. Given the (shifted) measurements X̃i

t , we therefore have to cope with causal
relationships that go backward in time. This is only resolved when going back to the unobserved
true data Xi

t . Measures like Granger causality will fail in these situations. This does not necessarily
have to be the case, however. The structure still remains identifiable even if we observe X̃i

t instead
of X̃i

t (the following theorem generalizes the second part of Theorem 1 and is proved accordingly)1:

Theorem 2 Assume condition (ii) from Theorem 1 with X̃i
t = Xi

t−`, where 0 ≤ ` ≤ k are unknown
time delays. Then, the full time graph of X̃t is identifiable from the joint distribution of X̃t. In
particular, the summary time graphs of X̃t and Xt are identical and therefore identifiable.

As opposed to Theorem 1 we cannot identify the full time graph of Xt. It may not be possible, for
example, to distinguish between a lag two effect from X1 to X2 and a corresponding lag one effect
with a shifted time seriesX2. The method for recovering the network structure stays almost the same
as the one for non-shifted time series. only line 5 of Algorithm 1 has to be updated: we additionally
include Xi

t+` for 0 ≤ ` ≤ k for all i ∈ S \ {k}. While TiMINo exploits an asymmetry between
cause and effect emerging from restricted structural equations, G-causality exploits the asymmetry
of time. The latter asymmetry is broken when considering shifted time series.

6 Experiments

6.1 Artificial Data

We always included instantaneous effects, fitted models up to order p = 2 or p = 6 and set α = 0.05.

Experiment 1: Confounder with time lag. We simulate 100 data sets (length 1000) from Zt =
a ·Zt−1 +NZ,t, Xt = 0.6 ·Xt−1 + 0.5 ·Zt−1 +NX,t, Yt = 0.6 · Yt−1 + 0.5 ·Zt−2 +NY,t, with a
between 0 and 0.95 and N·,t ∼ 0.4 ·N (0, 1)3. Here, Z is a hidden common cause for X and Y . For
all a, Xt contains information about Zt−1 and Yt+1 (see Figure 1); G-causality and TS-LiNGAM
wrongly infer X → Y . For large a, Yt contains additional information about Xt+1, which leads
to the wrong arrow Y → X . TiMINo causality does not decide for any a. The nonlinear methods
perform very similar (not shown). For a = 0, a cross-correlation test is not enough to rejectX → Y .
Further, all methods fail for a = 0 and Gaussian noise. (Similar results for non-linear confounder.)

Experiment 2: Linear, Gaussian with instantaneous effects. We sample 100 data sets (length
2000) from Xt = A1 ·Xt−1 +NX,t,Wt = A2 ·Wt−1 + A3 ·Xt +NW,t, Yt = A4 · Yt−1 + A5 ·
Wt−1+NY,t, Zt = A6 ·Zt−1+A7 ·Wt+A8 ·Yt−1+NZ,t andN·,t ∼ 0.4 ·N (0, 1) andAi iid from
U([−0.8,−0.2] ∪ [0.2, 0.8]). We regard the graph containing X → W → Y → Z and W → Z as
correct. TS-LiNGAM and G-causality are not able to recover the true structure (see Table 1). We
obtain similar results for non-linear instantaneous interactions.

Experiment 3: Nonlinear, non-Gaussian without instantaneous effects. We simulate 100 data
sets (length 500) from Xt = 0.8Xt−1 + 0.3NX,t, Yt = 0.4Yt−1 + (Xt−1 − 1)2 + 0.3NY,t, Zt =
0.4Zt−1 + 0.5 cos(Yt−1) + sin(Yt−1) + 0.3NZ,t, with N·,t ∼ U([−0.5, 0.5]) (similar results for
other noise distributions, e.g. exponential). Thus, X → Y → Z is the ground truth. Nonlinear
G-causality fails since the implementation is only pairwise and it thus always infers an effect from
X to Z. Linear G-causality cannot remove the nonlinear effect fromXt−2 to Zt by using Yt−1. Also
TiMINo-linear assumes a wrong model but does not make any decision. TiMINo-gam and TiMINo-
GP work well on this data set (Table 2). This specific choice of parameters show that a significant

1We believe that a corresponding statement for condition (i) holds, too.
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Figure 1: Exp.1: Part of the causal full time graph with hidden common cause Z (top left). TiMINo
causality does not decide (top right), whereas G-causality and TS-LiNGAM wrongly infer causal
connections between X and Y (bottom).

G-causal. TiMINo TS-
DAG linear linear LiNGAM

correct 13% 83% 19%
wrong 87% 7% 81%

no dec. 0% 10% 0%

Table 1: Exp.2: Gaussian data and linear
instantaneous effects: only TiMINo mostly
discovers the correct DAG.

100 300 500 700 900
0

0.5

1

length of time seriesp
ro

p
. 
o
f 
c
o
rr

e
c
t 
(−

)
a
n
d
 i
n
c
o
rr

e
c
t 
(−

.)
a
n
s
w

e
rs

Figure 2: Exp.4: TiMINo-GP (blue) works reli-
ably for long time series. TiMINo-linear (red) and
TiMINo-gam (black) mostly remain undecided.

difference in performance is possible. For other parameters (e.g. less impact of the nonlinearity),
G-causality and TS-LiNGAM still assume a wrong model but make fewer mistakes.

Table 2: Exp.3: Since the data are nonlinear, linear G-causality and TS-LiNGAM give wrong an-
swers, TiMINo-lin does not decide. Nonlinear G-causality fails because it analyzes the causal struc-
ture between pairs of time series.

DAG Grangerlin Grangernonlin TiMINolin TiMINogam TiMINoGP TS-LiNGAM
correct 69% 0% 0% 95% 94% 12%
wrong 31% 100% 0% 1% 1% 88%

no dec. 0% 0% 100% 4% 5% 0%

Experiment 4: Non-additive interaction. We simulate 100 data sets with different lengths from
Xt = 0.2 ·Xt−1+0.9NX,t, Yt = −0.5+exp(−(Xt−1+Xt−2)

2)+0.1NY,t, with N·,t ∼ N (0, 1).
Figure 2 shows that TiMINo-linear and TiMINo-gam remain mainly undecided, whereas TiMINo-
GP performs well. For small sample sizes, one observes two effects: GP regression does not obtain
accurate estimates for the residuals, these estimates are not independent and thus TiMINo-GP re-
mains more often undecided. Also, TiMINo-gam makes more correct answers than one would ex-
pect due to more type II errors. Linear G-causality and TS-LiNGAM give more than 90% incorrect
answers, but non-linear G-causality is most often correct (not shown). Bad model assumptions do
not always lead to incorrect causal conclusions.

Experiment 5: Non-linear Dependence of Residuals. In Experiment 1, TiMINo equipped with a
cross-correlation inferred a causal edge, although there were none. The opposite is also possible:
Xt = −0.5 ·Xt−1+NX,t, Yt = −0.5 ·Yt−1+X2

t−1+NY,t and N·,t ∼ 0.4 ·N (0, 1) (length 1000).
TiMINo-gam with cross-correlation infers no causal link between X and Y , whereas TiMINo-gam
with HSIC correctly identifies X → Y .

Experiment 6: Shifted Time Series. We simulate 100 random DAGs with #V = 3 nodes by
choosing a random ordering of the nodes and including edges with a probability of 0.6. The struc-
tural equations are additive (gam). Each component is of the form f(x) = a ·max(x,−0.1) + b ·
sign(x)

√
|x|, with a, b iid from U([−0.5,−0.2] ∪ [0.2, 0.5]). We sample time series (length 1000)

from Gaussian noise and observe the sink node time series with a time delay of three. This makes all
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traditional methods inapplicable. The performance of linear G-causality, for example, drops from
an average Structural Hamming Distance (SHD) of 0.38 without time delay to 1.73 with time delay.
TiMINo-gam causality recognizes the wrong model assumption. The SHD increases from 0.13 (17
undecided cases) to 0.71 (79 undecided cases). Adjusting for a time delay (Section 5) yields an
SHD of 0.70 but many more decisions (18 undecided cases). Although it is possible to adjust for
time delays, the procedure enlarges the model space, which makes rejecting all wrong models more
difficult. Already #V = 5 leads to worse average SHD: G-causality: 4.5, TiMINo-gam: 1.5 (92
undecided cases) and TiMINo-gam with time delay adjustment: 2.4 (38 undecided cases).

6.2 Real Data

We fitted up to order 6 and included instantaneous effects. For TiMINo, “correct” means that
TiMINo-gam is correct and TiMINo-linear is correct or undecided. TiMINo-GP always remains
undecided because there are too few data points to fit such a general model. Again, α is set to 0.05.

Experiment 7: Gas Furnace. [Box et al., 2008, length 296], Xt describes the input gas rate and
Yt the output CO2. We regard X → Y as being true. TS-LiNGAM, G-causality, TiMINo-lin
and TiMINo-gam correctly infer X → Y . Disregarding time information leads to a wrong causal
conclusion: The method described by Hoyer et al. [2009] leads to a p-value of 4.8% in the correct
and 9.1% in the false direction.

Experiment 8: Old Faithful. [Azzalini and Bowman, 1990, length 194] Xt contains the duration
of an eruption and Yt the time interval to the next eruption of the Old Faithful geyser. We regard
X → Y as the ground truth. Although the time intervals [t, t+1] do not have the same length for all
t, we model the data as two time series. TS-LiNGAM and TiMINo give correct answers, whereas
linear G-causality infers X → Y , and nonlinear G-causality infers Y → X .

Experiment 9: Abalone (no time structure). The abalone data set [Asuncion and Newman, 2007]
contains (among others that lead to similar results) age Xt and diameter Yt of a certain shell fish.
If we model 1000 randomly chosen samples as time series, G-causality (both linear and nonlinear)
infers no causal relation as expected. TS-LiNGAM wrongly infers Y → X , which is probably due
to the nonlinear relationship. TiMINo gives the correct result.

Experiment 10: Diary (confounder). We consider 10 years of weekly prices for butter Xt and
cheddar cheese Yt (length 522, http://future.aae.wisc.edu/tab/prices.html) We
expect their strong correlation to be due to the (hidden) milk price Mt: X ← M → Y . TiMINo
does not decide, whereas TS-LiNGAM and G-causality wrongly infer X → Y . This may be due to
different time lags of the confounder (cheese has longer storing and maturing times than butter).

Experiment 11: Temperature in House. We placed temperature sensors in six rooms (1 - Shed,
2 - Outside, 3 - Kitchen Boiler, 4 - Living Room, 5 - WC, 6 - Bathroom) of a house in the black
forest and recorded the temperature on an hourly basis (length 7265). This house is not inhabited
for most of the year, and lacking central heating; the few electric radiators start if the temperatur
drops close to freezing. TiMINo does not decide since the model leads to dependent residuals.
Although we do not provide any theory for the following steps, we analyze the model leading to
the “least dependent” residuals by setting the test level α to zero. TiMINo causality then outputs
a causal ordering of the variables. We applied TiMINo-lin and TiMINo-gam to the data sets using
lags up to twelve (half a day) and report the proportion in which node i precedes node j (see matrix).


0 0.25 0.83 1 1 1

0.75 0 0.83 1 1 1
0.17 0.17 0 0.75 0.33 0.33
0 0 0.25 0 0 0
0 0 0.67 1 0 0
0 0 0.67 1 1 0



This procedure reveals a sensible causal structure (we -
arbitrarily- refer to entries larger than 0.5 as causation). 2
(outside) causes all other readings, and none of the other
temperatures causes 2. 1 (shed) causes all other readings
except for 2. This is wrong, but not surprising since the
shed’s temperature is rather close to the outside temper-
ature. 4 (living room) does not cause any other reading,
but every other reading does cause it (the living room is
the only room without any heating). The links 5 → 3 and 6 → 3 appear spurious, and come with
numbers close to 0.5. These might be erroneous, however, they might also be due to the fact that
sensor 3 is sitting on top of the kitchen boiler, which acts as a heat reservoir that delays temperature
changes. The link 6 → 5 comes with a large number, but it is plausible since unlike the WC, the
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bathroom has a window and is thus affected directly by outside temperature, causing fast regulation
of its radiator, which is placed on a thin wooden wall facing the WC.

The phase slope index [Nolte et al., 2008] performed well in Exp. 7, in all other experiments it either
gave wrong results or did not decide. Due to space constraints we omit details about this method.
We did not find any code for ANLTSM.

7 Conclusions and Future Work

This paper shows how causal inference on time series benefits from the framework of Structural
Equation Models. The identifiability statement is more general than existing results. The algorithm
is based on unconditional independence tests and is applicable to multivariate, linear, nonlinear
and instantaneous interactions. It contains the option of remaining undecided. While methods like
Granger causality are built on the asymmetry of time direction, TiMINo additionally takes into ac-
count identifiability emerging from restricted structural equation models. This leads to a straightfor-
ward way of dealing with (unknown) time delays in the different time series. Although an extensive
evaluation on real data sets is still required, we believe that our results emphasize the potential use
of causal inference methods. They may provide guidance for future interventional experiments.

As future work one may use heteroscedastic models [Chen et al., 2012] and systematically prepro-
cess the data (removing trends, periodicities, etc.). This may reduce the number of cases where
TiMINo causality is undecided. TiMINo causality evaluates a model fit by checking independence
of the residuals. As suggested in Mooij et al. [2009], Yamada and Sugiyama [2010], one may make
the independence of the residuals as a criterion for the fitting process or at least for order selection.

8 Appendix

Lemma 1 (Markov Condition for TiMINo) If Xt = (Xi
t)i∈V satisfy a TiMINo model, each

variable Xi
t is conditionally independent of each of its non-descendants given its parents.

Proof . With S := PA(Xi
t) =

⋃p
k=0(PA

i
k)t−k and Eq. (1) we get Xi

t |S=s = fi(s,N
i
t ) for an s

with p(s) > 0. Any non-descendant of Xi
t is a function of all noise variables from its ancestors and

is thus independent of Xi
t given S = s. This is the only time we assume t ∈ N in this paper. �

Proof of Theorem 1 Suppose that Xt allows for two TiMINo representations that lead to different
full time graphs G and G′. (i) Assume that G and G′ do not differ in the instantaneous effects:
PAi

0(in G) = PAi
0(in G′) ∀i. Wlog, there is some k > 0 and an edge X1

t−k → X2
t , say, that is in

G but not in G′. From G′ and Lemma 1 we have that X1
t−k ⊥⊥ X2

t | S , where S = ({Xi
t−l, 1 ≤ l ≤

p, i ∈ V } ∪NDt) \ {X1
t−k, X

2
t }, and NDt are all Xi

t that are non-descendants (wrt instantaneous
effects) of X2

t . Applied to G, causal minimality leads to a contradiction: X1
t−k 6⊥⊥ X2

t | S . Now,
let G and G′ differ in the instantaneous effects and choose S = {Xi

t−l, 1 ≤ l ≤ p, i ∈ V }. For

each s and i we have: Xi
t |S=s = fi(s, (P̃A

i

0)t), where P̃A
i

0 are all instantaneous parents of Xi
t

conditioned on S = s. All Xi
t |S=s with the instantaneous effects describe two different structures

of an IFMOC. This contradicts the identifiability results by Peters et al. [2011b]. (ii) Because of
Lemma 1 and faithfulness G and G′ only differ in the instantaneous effects. But each instantaneous
arrow Xi

t → Xj
t forms a v-structure together with Xj

t−k → Xj
t ; Xj

t−k cannot be connected with
Xi
t since this introduces a cycle in the summary time graph. �

Proof of Theorem 2 Two full time graphs G and G′ for X̃t can differ only in the directions of edges
between time series. Assume Xi

t → Xj
t+k in G and Xi

t ← Xj
t+k in G′. Choose the largest k

possible. Then there is a v-structure Xi
t−` → Xi

t ← Xj
t+k for some `. A connection between Xi

t−`
and Xj

t+k would lead to a pair as above with a larger k. �
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