
A Appendix

Figure A.1: Quadratic approximations to the logistic loss. We see that the red curve, namely the
quadratic approximation taken at ⌘ = 0, p = 1/(1 + e⌘) = 0.5 is always above the actual loss
curve. Meanwhile, quadratic approximations taken at the more extreme locations of p = 0.05 and
p = 0.95 undershoot the true loss over a large range. Note that the curvature of the loss is symmetric
in the natural parameter ⌘ and so the performance of the quadratic approximation is equivalent at p
and 1� p for all p 2 (0, 1).

A.1 Description of Simulation Study

Section 4.1 gives the motivation for and a high-level description of our simulation study. Here, we
give a detailed description of the study.

Generating features. Our simulation has 1050 features. The first 50 discriminative features form
5 groups of 10; the last 1000 features are nuisance terms. Each x

i

was independently generated as
follows:

1. Pick a group number g 2 1, ..., 25, and a sign sgn = ±1.
2. If g  5, draw the entries of x

i

with index between 10 (g � 1) + 1 and 10 (g � 1) + 10

uniformly from sgn · Exp(C), where C is selected such that E[(x
i

)

2
j

] = 1 for all j. Set all
the other discriminative features to 0. If g > 5, set all the discriminative features to 0.

3. Draw the last 1000 entries of x
i

independently from N (0, 1).

Notice that this procedure guarantees that the columns of X all have the same expected second
moments.

Generating labels. Given an x
i

, we generate y
i

from the Bernoulli distribution with parameter
�(x

i

· �), where the first 50 coordinates of � are 0.057 and the remaining 1000 coordinates are 0.
The value 0.057 was selected to make the average value of |x

i

· �| in the presence of signal be 2.

Training. For each simulation run, we generated a training set of size n = 75. For this purpose, we
cycled over the group number g deterministically. The penalization parameters were set to roughly
optimal values. For dropout, we used � = 0.9 while from L2-penalization we used � = 32.
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Figure A.2: Comparison of two L2 regularizers. In both cases, the black solid ellipses are level sur-
faces of the likelihood and the blue dashed curves are level surfaces of the regularizer; the optimum
of the regularized objective is denoted by OPT. The left panel shows a classic spherical L2 regulizer
k�k22, whereas the right panel has an L2 regularizer �>

diag(I)� that has been adapted to the shape
of the likelihood (I is the Fisher information matrix). The second regularizer is still aligned with
the axes, but the relative importance of each axis is now scaled using the curvature of the likelihood
function. As argued in (11), dropout training is comparable to the setup depicted in the right panel.
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