
Appendix

1 Sampling from Polya-Gamma Distribution

A random variable X has a Polya-Gamma distribution with parameters a > 0
and c ∈ R, if

X
D

=
1

2π2

∞∑

k=1

gk
(k − 1/2)2 + c2/(4π2)

(1)

where gk ∼ Ga(a, 1) are gamma random variables. By computing the truncated
sum of Eq. 1, we can obtain a approximate sampler

Xtruncated =
1

2π2

K∑

k=1

gk
(k − 1/2)2 + c2/(4π2)

(2)

however, this approximation sampler is biased. [1] proposed a sampler which
corrects the bias by multipling a constant

Xtruncated =
E[X]

E[Xtruncated]
(3)

where E[X] = a
2c tanh(

c
2 ) and E[Xtruncated] =

1
2π2

∑K
k=1

a
(k−1/2)2+c2/(4π2) , ac-

cording to [3, 1]. Denote this approach as truncatedK .
[4] proposed a precise sampling algorithm for Polya-Gamma distributions

Xprecise
D

=

a∑

n=1

Xn (4)

where Xn ∼ PG(1, c) are i.i.d. samples. Denote this approach of precise.
Draw samples from PG(1, c) can be done in O(1).[4]. However, a is document
lengthNd in logistic-normal topic models, sinceNd is quite large, O(Nd) sampler
is too slow. In this paper we draw K << a samples instead. Denote this
approach as pg1K , note that pg1K = precise.

Notes that a = Nd is large, X is sum of i.i.d. random variables. There is
another approximation by the central limit theorem

Xgaussian ∼ N (µ, σ2) (5)
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Table 1: Comparison for different PG samplers.
method precise distribution? precise mean? precise variance? time complexity

truncatedK no yes no O(K)
precise yes yes yes O(a)
pg1K no yes yes O(K)

gaussian no yes yes O(1)

where µ = E[X], σ2 = Var[X]. [3] has shown the moment-generating function
of PG(a, c)

f(t) = E[exp(Xt)] =
cosha(c/2)

cosha(
√
c2−2t
2 )

(6)

we have

E[X] = lim
t→0

f ′(t) (7)

=
a

2c
tanh(

c

2
) (8)

E[X2] = lim
t→0

f ′′(t) (9)

=
a(−(2 + a)c2 + ac2 cosh(c) + 2c sinh(c))

8c4 cosh( c2 )
2

(10)

and Var[X] = E[X2]− E[X]2. Denote this as gaussian.
We summarize the algorithms mentioned above in Table 1. To compare these

results, we draw 1,000,000 samples with different methods from P (λk
d|Z,W,η),

and use these samples to compute P (ηkd |ηd¬k,Z,W). We compared their mean,
variance and Kolmogorov-Smirnoff statistic, which is a measure of two empir-
ical distributions F1(x) and F2(x): KS(F1(x), F2(x)) = maxx |F1(x) − F2(x)|.
Table 3 shows the result. We found in term of KS(η), gaussian did good, and
truncated4 performs similar with pg11. gaussian is 4x faster than pg11, which
is 2x faster than truncated4.

Fig. 1 show the perplexity and time result on the real NIPS data set. We
have similar observations: truncatedK(K > 4) performs similar with pg11 and
gaussian, but the latter two are faster. For larger data sets like NYTimes and
1,000 topics, we observed performance of pg11 and gaussian are still similar, but
truncatedK suffer from numeral instablities: the sampled η is getting to infinity
and program crashes when K < 32. We think this instablities attributes to the
imprecise variance. Both the performance and running time of truncated32 are
much worse than pg11 and gaussian. (Table 2)

2 More Sensitivity Results

We redo sensitivity analysis on a NYTimes data set while keep other experiment
settings same as that in Section 5.3. We observed a plateau of the perplexity
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Table 2: Comparison for different PG samplers on NYTimes corpus (K =
1, 000).

method perplexity time/s
pg11 2913 5519

gaussian 2914 3984
truncated32 2984 16270

Table 3: Comparison for different PG samplers. Parameters are same as Fig. 1
in the paper.

method m samples/second Var[λ] KS(λ) E[η] KS(η)
precise - 1,602 6.65 - 1.0459 -
pg1 1 1,449,280 6.63 0.1146 1.0450 0.0146
pg1 2 757,576 6.66 0.0810 1.0467 0.0088
pg1 4 400,000 6.65 0.0562 1.0454 0.0080
pg1 8 215,517 6.67 0.0391 1.0463 0.0051
pg1 16 111,139 6.67 0.0259 1.0461 0.0041
pg1 32 56,721 6.66 0.0176 1.0450 0.0055
pg1 64 28,769 6.65 0.0123 1.0450 0.0049

truncated 1 3,846,150 15.49 0.1024 1.0241 0.0732
truncated 2 2,127,660 10.45 0.0558 1.0371 0.0350
truncated 4 1,111,110 8.37 0.0281 1.0415 0.0174
truncated 8 578,035 7.44 0.0140 1.0429 0.0087
truncated 16 313,480 7.04 0.0076 1.0441 0.0044
truncated 32 165,289 6.84 0.0039 1.0437 0.0043
truncated 64 84,962 6.76 0.0027 1.0449 0.0026
gaussian - 6,250,000 6.66 0.0036 1.0458 0.0024
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Figure 1: Perplexity and training time with different number of samples m.
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Figure 3: Convergence speed for different number of subiterations S. (a)K =
200; (b)K = 1000.

when the number of pseudo-observations a ∈ [103, 105] (Fig. 2), which corre-
sponds to [0.0035, 0.3509] of the number of training documents D = 285, 000.
This again showed the performance of our algorithm is not sensitivity to a. Sen-
sitivity with respect to number of subiterations S is howed in Fig. 3, we found
the S = 8 sampler still converges fastest. This result is same as that on the
small NIPS corpus. In conclusion, hyper parameters are relatively insensitive
with respect to corpus size and number of topics, hyper parameters suggested
in the paper (a = 0.01D,S = 8) are safe enough to use without tuning.

3 Comparison to Other Data Augmentation Al-

gorithms

We compare our method with [2], who use a uniform distribution for data aug-
mentation on the NIPS data set. By training K = 100 topics on the NIPS
dataset, we found S = 16 leads to the fastest convergence for [2] (Fig. 4). Fig. 5
shows the perplexity and time consumption of our approach and [2], our ap-
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Figure 4: Sensitivity analysis with respect to different number of subiterations.
PG: our Polya-Gamma data augmentation approach. U: Uniform data augmen-
tation approach [2].

proach is both more accurate and faster.
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Figure 5: (a) Perplexity and (b) time for two algorithms on the NIPS corpus.
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