
6 Appendix

The following elementary lemma shows that the residual controls the error of the CG method.
Lemma 2. If ŵi satisfies ‖Xŵi − ei‖2 < ε, then ε

σmax(X) < ‖ŵi −wi‖2 < ε
σmin(X) .

Proof. We define the residual b = Xŵi−ei, and note that the optimal solution wi satisfies Xwi =
ei. Therefore, b = Xŵi −Xwi = X(ŵi −wi), which finishes the proof.

6.1 Proof of Theorem 1

6.1.1 Background

We begin with a formal definition of the approximate Newton direction based on an approximate
Hessian.
Definition 1. Let J denote a (symmetric) subset of variables. We define the Newton direction re-
stricted to J with a positive definite approximated Hessian H as follows:

DH
J (X) ≡ arg min

D:Dij=0
∀(i,j)/∈J

tr(∇g(X)TD) +
1
2

vec(D)TH vec(D) + λ‖X +D‖1. (10)

Since H is positive definite, (10) is well-defined. For convenience, we also introduce DJ(X) ≡
D
∇2g(X)
J (X) to denote the computation using the exact Hessian.

We work within the framework of [9], but in a more general setting encompassing approximate
Newton directions. At each iteration, the iterate Yt is updated by Yt ← Yt + αtD

Ht

Jt
(Yt), where Jt

is a subset of variables chosen at iteration t, and Ht is the Hessian approximation. Under the setting
of QUIC and BIGQUIC, J1, J3, . . . denote the fixed sets, and J2, J4, . . . denote the free sets. The
sequence Jt satisfies the following Gauss-Seidel condition:⋃

j=0,...,T−1

Jt+j ⊇ N ∀t = 1, 2, . . . (11)

where N is the set including all possible (i, j) pairs. Also, we require

Ht � η ∀t = 1, 2, . . . , (12)

which is part of the assumption of Theorem 1. The setting is summarized in Algorithm 2.

Algorithm 2: General Block Quadratic Approximation method for Sparse Inverse Covariance
Learning
Input : Empirical covariance matrix S (positive semi-definite p× p), regularization parameter

matrix λ, initial Y0, inner stopping tolerance ε
Output: Sequence of Yt.

1 for t = 0, 1, . . . do
2 Generate a variable subset Jt.
3 Compute the Newton direction Dt ≡ DHt

Jt
(Yt) by (10).

4 Compute the step-size αt using an Armijo-rule based step-size selection in (6).
5 Update Yt+1 = Yt + αtDt.

6.1.2 Global convergence

We prove that the sequence {Yt}t=1,2,... converges to the global optimum, thereby generalizing
Theorem 1.

Proposition 3 in [9] states that the line search condition will be satisfied in a finite number of itera-
tions, meaning that the step size α is well defined. Next, we generalize Lemma 2 and Proposition 2
of [9] to accommodate the approximated Hessian.

10

Lemma 3. δ = δJ(X) in the line search condition (6) satisfies

δ = tr((∇g(X))TDHt) + λ‖X +DHt‖1 − λ‖X‖1 ≤ −η‖DHt‖2F . (13)

where DHt = DHt

J (X) is the minimizer of the `1-regularized quadratic approximation defined in
(10).

The proof is the same as in [9] after we replace ∇2g(X) by Ht. The following lemma shows that
DH is an indicator of optimality.

Lemma 4. For a positive definite H , X is the optimal solution of f(X) if and only if DH(X) = 0.

Proof. IfDH(X) 6= 0, then Lemma 3 shows that δ(X) < 0. According to Proposition 3 in [9] there
is a line search step α > 0 such that f(X +αDH(X))− f(X) < σαδ(X), implying that X cannot
be the optimal solution.

Conversely, if DH(X) = 0, we want to show that any direction D and step size α > 0 does not
result in a descent. Since 0 is the optimal solution of (10), we have

α tr(∇g(X)TD) +
1
2
α2 vec(D)TH vec(D) + λ‖X + αD‖1 ≥ λ‖X‖1.

So

α tr(∇g(X)TD) + λ‖X + αD‖1 − λ‖X‖1 ≥
1
2
α2 vec(D)TH vec(D).

Since g(X + αD)− g(X) = α tr(∇g(X)TD) + o(α), we have

lim
α↓0

f(X + αD)− f(X)
α

= lim
α↓0

α tr(∇g(X)TD) + o(α) + λ‖X + αD‖1 − λ‖X‖1
α

≥ lim
α↓0

α2 vec(D)TH vec(D) + o(α)
α

= 0.

We proved that no direction D is a descent direction, thus X is the global optimum.

We can further generalize Lemma 4 when a subset J of variables is used. We first define the
minimum-norm subgradient for f .

Definition 2. We define the minimum-norm subgradient gradSij f(X) as follows:

gradSij f(X) =

∇ijg(X) + λij if Xij > 0,
∇ijg(X)− λij if Xij < 0,
sign(∇ijg(X)) max(|∇ijg(X)| − λij , 0) if Xij = 0.

Lemma 4 in [9] shows that gradSij f(X) = 0 for all (i, j) ∈ J if and only if X is optimal in a
problem constrained to the subset J . Combine with Lemma 4 to prove the following:

Lemma 5. For a positive matrix H and a subset of indexes J , DH
J (X) = 0 if and only if

gradSij f(X) = 0 ∀(i, j) ∈ J .

Next, we look at a convergent subsequence Yst
just as in [9].

Lemma 6. For any convergent subsequence Yst
→ Y ∗, we have DH̄

st
≡ DH̄

Jst
(Yst

) → 0 for some
H̄ � η.

Proof. There exists an infinite index set T ⊆ {s1, s2, . . . } and µ > 0 such that ‖DHt
t ‖F > µ for all

t ∈ T . We can assume αst
< 1 for all st without loss of generality. By selecting the subsequence

st appropriately we can also assume that Hst → H̄ for some η̄ � H̄ � η.

11

Using the same arguments as outlined in the proof of Lemma 6 in [9], we get

(1− σ)η̄−2µ ≤ O(αt‖DHt
t ‖F), (14)

Again, by Lemma 3, we have

−αtδt ≥ αtη‖DHt
t ‖2F ≥ ηαt‖D

Ht
t ‖Fµ.

Since {αtδt}t → 0, it follows that {αt‖DHt
t ‖F }t → 0. Combining with Ht → H̄ we have

{αt‖DH̄
t ‖F }t → 0. Taking limit as t ∈ T and t→∞, we have

(1− σ)ηµ ≤ 0,

a contradiction which finishes the proof.

We have the tools to prove Theorem 1.

Assume a subsequence {Yt}T converges to Ȳ . Since the choice of the index set Jt selected at
each step is finite, we can further assume that Jt = J̄0 for all t ∈ T , considering an appropriate

subsequence of T if necessary. From Lemma 6, D
H̄J̄0
J̄0

(Yt) → 0 for some positive definite matrix

H̄J̄ . Therefore D
H̄J̄0
J̄0

(Ȳ) = 0. This implies

gradSij f(Ȳ) = 0 ∀(i, j) ∈ J̄1.

We can then apply Gauss-Seidel condition (11) to show

gradSij f(Ȳ) = 0 ∀(i, j) ∈ J̄t

for all t, and thus Ȳ is the optimal solution of (1).

6.2 Proof of Theorem 2

Next, we focus on proving the convergence rate of the sequence {Xt}1,2,... generated by BIGQUIC.
First, we show that under assumption (8), the updates of BIGQUIC will be equivalent to uncon-
strained Newton updates.
Lemma 7. There exists a T > 0 such that

sign((Xt)ij) = sign((X∗)ij) ∀i, j, t ≥ T,
where sign(a) can be 1,−1, 0.

Proof. First, consider the cast that X∗ij = 0. The optimality condition of (1) implies that
|∇ijg(X∗)| ≤ λ. Combined with Assumption (8), we have |∇ijg(X∗)| < λ. Since Xt → X∗

as proved in the previous section, g(Xt)→ g(X∗), so there exists a Tij > 0 such that

|∇ijg(Xt)| < λ ∀t ≥ Tij .
Therefore, from the definition of fixed set, (i, j) will be always in the fixed set when t ≥ Tij .
For other X∗ij 6= 0, there exists a Tij such that |X∗ij − (Xt)ij | < |X∗ij |/2 for all t ≥ Tij , which
implies sign((Xt)ij) = sign(X∗ij).

Combining two cases, we can take T = maxi,j Tij and finish the proof.

Lemma 7 suggests that we can divide the index set into the following two partitions:

F = {(i, j) | X∗ij 6= 0},
Z = {(i, j) | X∗ij = 0}., (15)

where Z is always in the fixed set.

According to Proposition 3 in [9], the step size equals to 1 when Xt is close to X∗. Therefore, after
a finite number of iterations, BIGQUIC solves the following unconstrained subproblem:

arg min
X,Xij=0∀(i,j)∈F

{− log detX + tr(SX) + λ‖X‖1} ≡ f̄(X), (16)

12

Moreover, by Lemma 7, after a finite number of iterationsXij will never change its sign, that implies
that the update rule for BIGQUIC is equivalent to solving the problem

arg min
X,Xij=0∀(i,j)∈F

{− log detX + tr(SX) + λ
∑
i,j

sign(X∗ij)Xij} ≡ f̄(X) (17)

with Newton’s method with step size one. The objective function of (17) is smooth and therefore we
can apply theorems derived for Newton’s method on smooth unconstrained optimization.

Newton methods on smooth unconstrained optimization

We mainly use the results from [4] that considers the case of inexact Newton methods for uncon-
strained smooth function. The inexact Newton method is defined as follows. At each iteration,
xt+1 ← xt + st, where st satisfies

∇2f(xt)st +∇f(xt) = rt, and
‖rt‖

‖∇f(xt)‖
≤ ηk. (18)

Theorem 3.3 in [4] shows that the algorithm converges linearly if ηk is upper bounded.
Theorem 4. Assume that∇2f(x) is Hölder continuous with exponent p (0 < p ≤ 1) and the inexact
Newton iterates {xt} converge to x∗. It follows that xt converges to x∗ with rate at least 1 + p if
and only if ‖rt‖ = O(‖∇f(xt)‖1+p).

A function f(x) is Hölder continuous if and only if

|f(x)− f(y)| ≤ C‖x− y‖p. (19)

In our problem, ∇2f̄(X) = ∇2g(X) = X−1 ⊗X−1 and according to [9] Xt will be in a bounded
set such that MI � Xt � mI . Therefore the objective function f̄(X) is Holders continuous. We
can write ‖rt‖ = O(‖∇f(xt)‖1+p) more formally as follows:

∃C > 0 such that
‖rt‖

‖∇f(xt)‖1+p
≤ C. (20)

The inexact Newton method is different from BIGQUIC because we exactly solve the problem, but
with approximated Hessian. However, The following derivation connects the two.

Assume Ht is the approximate Hessian in BIGQUIC, and dt is the solution of (3). As have shown
earlier, after finite number of iterations BIGQUIC updates are equivalent to solving (17) with New-
ton’s method, which implies

dt = −H−1
t ∇f̄(X).

Substitute into (18) and we have∇2f̄(xt)dt +∇f̄(xt) = rt, so

rt = dt +∇2f̄(x)−1∇f̄(x)

= (∇2f̄(x)−1 −H−1
t)∇f̄(xt).

Therefore
‖rt‖

‖∇f̄(xt)1+p‖
≤ ‖(∇

2f̄(X))−1 −H−1
t ‖

‖∇f̄(xt)‖p
.

Consider the case that p > 1. Define

∆ = ∇2g(xt)−Ht,

we have

‖∇2f̄(xt)−1 −H−1
t ‖ = ‖∇2f̄(xt)−1 −∇2f̄(xt)−1(I +∇2f̄(xt)−1∆)−1‖

= ‖∇2f̄(xt)−1∆ + o(∆)‖
≤ ‖∇2f̄(xt)−1‖‖∆‖+ o(‖∆‖).

Now for BIGQUIC,∇2f̄(xt) = X−1
t ⊗X−1

t , so we have

‖∇2f̄(Xt)−1 −H−1
t ‖ ≤ σmax(Xt)2‖∆‖+ o(‖∆‖).

13

Table 1: The time and memory requirement for sparse Cholesky factorization.

p (dimensionality) ‖A‖0 ‖L‖0 (memory usage) time (sec)
100 888 893 0.01
500 5,094 17,494 0.01

1000 9,992 57,547 0.02
5000 19,960 1,327,992 3.15

10000 99,948 5,388,053 30.00
50000 500,304 130,377,362 3245.00

Condition (20) becomes

‖rt‖
‖∇f̄(Xt)‖1+p

≤ (σmax(Xt))2‖∆‖+ o(‖∆‖)
‖∇f̄(Xt)‖p

.

Therefore, as long as
‖Ht −∇2f̄(Xt)‖ = O(‖∇f̄(Xt)‖p), (21)

rt satisfies (20), and therefore Xt → X∗ for all the variables in F (free set) with rate at least 1 + p.

Also, all the variables in the fixed set will have (Xt)ij = 0 = X∗ij as shown in Lemma 7, so
Xt → X∗ with rate at least 1 + p, thus proving the theorem.

6.3 Proof of Theorem 3

From Lemma 2, ‖ŵi − wi‖ = O(‖bi‖), so the error of computed and exact W can be bounded
by ‖Ŵ − W‖ = O(‖B‖). To further bound ‖Ĥ − ∇2g(X)‖, notice that Ĥ = Ŵ ⊗ Ŵ and
∇2g(X) = X ⊗X . Assume ∆ = Ŵ −W , then

‖Ĥ −∇2g(X)‖ ≤ ‖(W + ∆)⊗ (W + ∆)−W ⊗W‖
≤ max
‖D‖=1

‖(W + ∆)D(W + ∆)−WDW‖

= max
‖D‖=1

‖2∆DW + ∆D∆‖

≤ 2‖∆‖‖W‖+ ‖∆‖2

≤ O(‖∆‖) = O(‖B‖).
Combined with Theorem 2 we complete the proof.

6.4 Demonstration of the scalability of sparse Cholesky factorization

Recall that in the line search step, the computational bottleneck is the checking of positive defi-
niteness and the computation of the determinant of a sparse matrix with dimension that can reach
a million. In the following we motivate the conclusion that this problem cannot be expected to be
solved using sparse Cholesky factorization for matrices with dimension larger than 100,000.

The Cholesky factorization L (A = LLT) of a sparse matrixA is usually sparse, but not as sparse as
the original matrix. The sparsity depends on the permutation of indices, but there is no theoretical
guarantees. The time and space complexity for sparse Cholesky factorization is proportional to ‖L‖0
and in the following experiment we demonstrate that ‖L‖0 grows quickly in our synthetic data.

We generate random positive definite p by p matrices with p = 100, 500, 1000, 5000, 10000, 50000,
and the number of nonzero elements ‖L‖0 is shown in Table 1. We can observe that the number
of nonzeros in L (computed by MATLAB sparse Cholesky factorization with symamd to find the
permutation) grows nonlinearly with ‖A‖0 and or p and therefore other (better) solutions have to be
explored. That well motivates our Schur based approach.

6.5 Other Difficulties.

Many other difficulties arise when dealing with large sparse matrices in the sparse inverse covariance
estimation problem. Randomized coordinate descent can converge much faster than cyclic coordi-
nate descent when solving (3). This behavior is not completely understood, but empirical evidence

14

(a) Comparison of coordinate descent implemen-
tations utilizing different degrees of randomness.

(b) Comparison of the effect of different stopping
conditions used for the conjugate gradient method
for gradient computation.

Figure 5: Demonstration of two difficulties in scaling QUIC to ultra high dimensional data. Fig-
ure 5(a) shows that the degree of randomness in the coordinate descent solver is crucial for fast
convergence. Figure 5(b) shows that the accuracy of the conjugate gradient method is important in
BIGQUIC. Both figures run on ER dataset with λ = 0.5.

supports it, see Figure 5(a). In our proposed algorithm we process the variables in blocks as de-
scribed in detail in Section 3.1; however this blocking scheme removes some degree of randomness
in coordinate selection. Empirical evidence suggests that the problem can be solved by clustering,
as shown in Figure 6.

Yet another problem to be tackled is determining the proper stopping tolerance for conjugate gradient
descent (CG), the sparse linear solver we employ to compute columns of the matrix W . In Figure
5(b), we conduct another experiment that the CG stopping tolerance of gradientW = X−1 is varied
from 10−3 to 10−9, and the Hessian computation is set to be very accurate (10−13). The results show
that with a lower accurate gradient computation, the solver cannot converge to the optimal solution,
so that the accuracy highly depends on the stopping tolerance of CG of gradient. In comparison, the
Hessian computation can be inaccurate, as shown in in Section 4.

6.6 The benefit of graph clustering algorithm

In addition to the empirical number we showed in the main paper, we further provide exact count of
boundary nodes for each off-diagonal blocks in Figure 6(b). As shown in Figure 6(b), total number
of boundary nodes is 83 in a dataset with p = 693, means we only need to compute 693 + 83
columns of W in one sweep; while using a random partition requires 693×5 column computations.

As discussed in Figure 5(a), the convergence will be slow if we apply block coordinate descent to
destroy the randomness. However, with graph clustering partition, the off-diagonal elements are
minimized, so the variables are more decoupled into each block. In the extreme case, when there are
no boundary points, all the off-diagonal blocks of D and W are 0, the Newton subproblem (3) can
be decomposed into k subproblems, each for one diagonal block. So block-coordinate descent can
converge in one iteration if all the blocks are exactly minimized. Even if there are few off-diagonal
elements, after one sweep over blocks the solution can be very close to the optimum. Figure 6(a)
shows the results.

6.7 Time Analysis

In this section we present a detailed time complexity analysis. We assume k is the number of
blocks used in the coordinate descent step, T is the average number of CG iterations and Tinner is the
number of coordinate sweeps in one Newton iteration, and Touter is number of coordinate descent
sweeps within a single block. Finally, s is the size of the free set, and m is the number of nonzeros
in Xt. In step 1, BIGQUIC computes the gradient in order to partition the variables into the fixed
and free sets; this takesO(mTp) time for computingW andO(p2d) time for computing S = Y Y T .
The graph clustering algorithm in the step 3 requires O(s+ kp) flops. The block coordinate descent
method needs O((p + |B|)ToutermT) time for computing columns of W , where |B| is the number

15

(a) Convergence of different coordinate de-
scent strategies.

(b) Number of boundary nodes for each
block identified by graph clustering.

Figure 6: A demonstration of identifying blocks by clustering. Figure 6(a) shows that the convergence of
BIGQUIC is close to QUIC when blocks are identified by graph clustering algorithms. Figure 6(b) presents
the number of boundary nodes (number of column evaluations of W) is very small for each off-diagonal block,
when blocks are identified by graph clustering.

of boundary nodes, and O(pm) for computing USq
, and O(Tinnerp/k) for the coordinate descent

updates themselves. Finally, the line search steps cost O(spTL), where L is the number of the line
search steps. We can see that the time needed to compute the columns ofW , O((p+ |B|)mTTouter),
dominates the time complexity, which underscores the importance of minimizing the number of
boundary nodes |B| via our clustering scheme. BIGQUIC is summarized in Algorithm 1.

16

