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1 Proofs of Theorems

Theorem 1. If f = 1A is the indicator function of a subset A ⊂ V then

‖f‖TV
‖f −medλ(f)‖ 1,λ

=
2 Cut(A,Ac)

min {λ|A|, |Ac|}
.

Proof. The fact that ‖f‖TV = 2 Cut(A,Ac) follows directly from the definition of the total varia-
tion. Indeed, a straightforward computation shows

‖f‖TV =
∑
xi∈A

N∑
j=1

wij |1− f(xj)|+
∑

xi∈Ac

N∑
j=1

wij |f(xj)| =
∑
xi∈A

∑
xj∈Ac

wij +
∑

xi∈Ac

∑
xj∈A

wij .

Thus ‖f‖TV = 2 Cut(A,Ac) as W is symmetric. Let B(f) := ‖f −medλ(f)‖1,λ. To show that
B(f) = min {λ|A|, |Ac|}, suppose first that λ|A| ≤ |Ac|. This inequality implies λ|A| ≤ N − |A|,
or equivalently that |A| ≤ N/(1 + λ). Thus |A| ≤ k := bN/(1 + λ)c, and since f = 1A for
|A| ≤ k it follows immediately that the (k + 1)st largest entry in the range of f equals zero. Thus
medλ(f) = 0 by definition. A direct computation then yields that B(f) =

∑
i∈V |f(xi)|λ = λ|A|.

In the converse case, the fact that |Ac| < λ|A| implies |A| > N/(1 + λ) ≥ k. Thus |A| ≥ k + 1
and medλ(f) = 1. Direct computation then shows that B(f) =

∑
i∈V |f(xi) − 1|λ = |Ac| as

claimed.

Lemma 1. Let h ∈ RN and suppose v ∈ RN satisfies

v(xi) ∈


λ if h(xi) > 0

[−1, λ] if h(xi) = 0

−1 if h(xi) < 0.

(1)

Then v ∈ ∂‖h‖1,λ.

Proof. Note that |h(xi)|λ = v(xi)h(xi) for each xi, so that for arbitrary g ∈ RN and each xi the
inequality

|g(xi)|λ − |h(xi)|λ ≥ v(xi) (g(xi)− h(xi))

holds. Summing both sides over all xi ∈ V then gives the claim.
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Theorem 2. The functions B and T are convex. Moreover, given f ∈ RN the vector v ∈ RN
defined by

v(xi) =


λ if f(xi) > medλ(f)
n−−λn+

n0 if f(xi) = medλ(f)

−1 if f(xi) < medλ(f)

where


n0 = |{xi ∈ V : f(xi) = medλ(f)}|
n− = |{xi ∈ V : f(xi) < medλ(f)}|
n+ = |{xi ∈ V : f(xi) > medλ(f)}|

belongs to ∂B(f).

Proof. The convexity of T (f) follows directly from its definition and a straightforward computation
using the definition of convexity. Due to the continuity B(f), to show convexity it suffices to
establish the existence of a subdifferential at every point.

To this end note that medλ(f) ∈ range(f), so that in particular n0 ≥ 1 by definition. Let 1 ≤
k := bN/(1 + λ)c < N denote that entry of f so that f(xk) = medλ(f). By definition of
medλ(f) there exist at most k elements of f larger than medλ(f), so that n+ ≤ k ≤ N/(1 + λ).
As N = n− + n0 + n+ this implies λn+−n−

n0 ≤ 1. Similarly there exist at most N − (k + 1)
elements of f smaller than medλ(f), so that n− ≤ N − (k + 1) ≤ N −N/(1 + λ). The fact that
N = n− + n0 + n+ then implies n−−λn+

n0 ≤ λ. Combining this with the previous inequality yields
−1 ≤ n−−λn+

n0 ≤ λ.
Put h := f − medλ(f)1, and note that the vector v defined above satisfies v ∈ ∂‖h‖1,λ by the
preceeding lemma. Thus for any g ∈ RN it holds that

||g −medλ(g)1||1,λ − ||f −medλ(f)1||1,λ ≥ 〈v, g − f + (medλ(f)−medλ(g))1〉
by definition of the subdifferential. Note also that 〈v,1〉 = 0, so that in fact

B(g)−B(f) = ||g −medλ(g)1||1,λ − ||f −medλ(f)1||1,λ ≥ 〈v, g − f〉
for g ∈ RN arbitrary. Thus v ∈ ∂B(f) by definition of the subdifferential. In particular ∂B(f) is
always non-empty, so B(f) is convex.

Theorem 3 (Estimate of the energy descent). Each of the F k belongs to C, and if Bkr 6= 0 then
R∑
r=1

Bk+1
r

Bkr

(
Ekr − Ek+1

r

)
≥ ‖F

k − F k+1‖2

∆k
(2)

where Bkr , E
k
r stand for B(fkr ), E(fkr ).

Proof. Let V k ∈ ∂Bk(F k). Then by definition of the subdifferential it follows that

Bk(F k+1) ≥ Bk(F k) + 〈F k+1 − F k, V k〉. (3)

As F k+1 = proxT k+δC
(F k + V k) the definition of the proximal operator implies that F k+1 ∈ C

and that also
F k + V k − F k+1 ∈ ∂(T k + δC)(F k+1).

The definition of the subdifferential and the fact that δC(F k) = δC(F k+1) = 0 then combine to
imply

T k(F k) ≥ T k(F k+1) + 〈F k − F k+1, F k + V k − F k+1〉
= T k(F k+1) + ‖F k − F k+1‖2 + 〈F k − F k+1, V k〉 (4)

Adding (3) and (4) yields

T k(F k) + Bk(F k+1) ≥ T k(F k+1) + Bk(F k) + ‖F k − F k+1‖2,
or equivalently that Bk(F k+1) ≥ T k(F k+1) + ‖F k − F k+1‖2 since Bk(F k) = T k(F k) by con-
struction. Expanding this last inequality shows

R∑
r=1

∆k

Bkr

(
EkrB

k+1
r − T k+1

r

)
≥ ‖F k − F k+1‖2,

which yields the claim after by Bk+1
r in each term of the summation.
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2 Primal-Dual Formulation

Consider the minimization
F k+1 := proxT k+δC

(Gk).

We may write this as the saddle-point problem

min
u∈RNR

max
p∈RMR

〈p,Ku〉+G(u)− F ∗(p).

Here the vector u = (f1, . . . , fR)t is a “vectorized” version of F and the matrixK denotes the block
diagonal matrix

K := blkdiag

(
∆k

Bk1
K, . . . ,

∆k

BkR
K

)
where K is the gradient matrix of the graph. We define the convex function G(u) as

G(u) :=
1

2

R∑
r=1

||fr − gkr ||2 + δC(u),

where δC denotes the barrier function of the convex set C (either the simplex or simplex with labels)
as before. The convex function F ∗(p) denotes the barrier function of the l∞ unit ball, so that

F ∗(p) =

{
0 if |pi| ≤ 1 ∀ 1 ≤ i ≤MR

+∞ otherwise.

Note also that G(u) is uniformly convex, in that if v ∈ ∂G(u) denotes any subdifferential then for
any u′ ∈ RNR the inequality

G(u′)−G(u) ≥ 〈v, u′ − u〉+
1

2
||u− u′||2

holds. We may therefore apply algorithm 2 of [1] with γ = 1 with to solve the saddle-point problem.
This algorithm consists in the iterations

pn+1 = proxσnF∗(pn + σnKūn)

un+1 = proxτnG(un − τnKtpn+1)

θn =
1√

1 + 2τn
τn+1 = θnτn σn+1 = σn/θn

ūn+1 = un+1 + θn(un+1 − un)

and converges provided the inequality σ0 ≤ (τ0||K||22)−1 holds for the initial timesteps. We may
compute the inner proximal operators analytically to find

(proxσnF∗(z))i = zi/max{1, |zi|} ∀ 1 ≤ i ≤MR,

and by completing the square that

proxτnG(z) = projC

(
z + τng

1 + τn

)
,

where g = (gk1 , . . . , g
k
R)t denotesGk in vectorized form. The inner loop of algorithm 1 then follows

by re-writing these computations in matrix form.

References

[1] A. Chambolle and T. Pock. A First-Order Primal-Dual Algorithm for Convex Problems with
Applications to Imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145, 2011.

3


	Proofs of Theorems
	Primal-Dual Formulation

