
Convergence of Monte Carlo Tree Search in
Simultaneous Move Games

Viliam Lisý1 Vojtěch Kovařı́k1 Marc Lanctot2 Branislav Bošanský1

1Agent Technology Center
Dept. of Computer Science and Engineering
FEE, Czech Technical University in Prague

<name>.<surname>
@agents.fel.cvut.cz

2Department of Knowledge Engineering
Maastricht University, The Netherlands

marc.lanctot
@maastrichtuniversity.nl

Abstract

We study Monte Carlo tree search (MCTS) in zero-sum extensive-form games
with perfect information and simultaneous moves. We present a general tem-
plate of MCTS algorithms for these games, which can be instantiated by various
selection methods. We formally prove that if a selection method is ε-Hannan con-
sistent in a matrix game and satisfies additional requirements on exploration, then
the MCTS algorithm eventually converges to an approximate Nash equilibrium
(NE) of the extensive-form game. We empirically evaluate this claim using regret
matching and Exp3 as the selection methods on randomly generated games and
empirically selected worst case games. We confirm the formal result and show
that additional MCTS variants also converge to approximate NE on the evaluated
games.

1 Introduction

Non-cooperative game theory is a formal mathematical framework for describing behavior of inter-
acting self-interested agents. Recent interest has brought significant advancements from the algo-
rithmic perspective and new algorithms have led to many successful applications of game-theoretic
models in security domains [1] and to near-optimal play of very large games [2]. We focus on an
important class of two-player, zero-sum extensive-form games (EFGs) with perfect information and
simultaneous moves. Games in this class capture sequential interactions that can be visualized as a
game tree. The nodes correspond to the states of the game, in which both players act simultaneously.
We can represent these situations using the normal form (i.e., as matrix games), where the values
are computed from the successor sub-games. Many well-known games are instances of this class,
including card games such as Goofspiel [3, 4], variants of pursuit-evasion games [5], and several
games from general game-playing competition [6].

Simultaneous-move games can be solved exactly in polynomial time using the backward induction
algorithm [7, 4], recently improved with alpha-beta pruning [8, 9]. However, the depth-limited
search algorithms based on the backward induction require domain knowledge (an evaluation func-
tion) and computing the cutoff conditions requires linear programming [8] or using a double-oracle
method [9], both of which are computationally expensive. For practical applications and in situations
with limited domain knowledge, variants of simulation-based algorithms such as Monte Carlo Tree
Search (MCTS) are typically used in practice [10, 11, 12, 13]. In spite of the success of MCTS and
namely its variant UCT [14] in practice, there is a lack of theory analyzing MCTS outside two-player
perfect-information sequential games. To the best of our knowledge, no convergence guarantees are
known for MCTS in games with simultaneous moves or general EFGs.

1

Figure 1: A game tree of a game with perfect information and simultaneous moves. Only the leaves
contain the actual rewards; the remaining numbers are the expected reward for the optimal strategy.

In this paper, we present a general template of MCTS algorithms for zero-sum perfect-information
simultaneous move games. It can be instantiated using any regret minimizing procedure for matrix
games as a function for selecting the next actions to be sampled. We formally prove that if the algo-
rithm uses an ε-Hannan consistent selection function, which assures attempting each action infinitely
many times, the MCTS algorithm eventually converges to a subgame perfect ε-Nash equilibrium of
the extensive form game. We empirically evaluate this claim using two different ε-Hannan consis-
tent procedures: regret matching [15] and Exp3 [16]. In the experiments on randomly generated and
worst case games, we show that the empirical speed of convergence of the algorithms based on our
template is comparable to recently proposed MCTS algorithms for these games. We conjecture that
many of these algorithms also converge to ε-Nash equilibrium and that our formal analysis could be
extended to include them.

2 Definitions and background

A finite zero-sum game with perfect information and simultaneous moves can be described by a
tuple (N ,H,Z,A, T , u1, h0), where N = {1, 2} contains player labels, H is a set of inner states
and Z denotes the terminal states. A = A1 ×A2 is the set of joint actions of individual players and
we denote A1(h) = {1 . . .mh} and A2(h) = {1 . . . nh} the actions available to individual players
in state h ∈ H. The transition function T : H×A1×A2 7→ H∪Z defines the successor state given
a current state and actions for both players. For brevity, we sometimes denote T (h, i, j) ≡ hij .
The utility function u1 : Z 7→ [vmin, vmax] ⊆ R gives the utility of player 1, with vmin and vmax

denoting the minimum and maximum possible utility respectively. Without loss of generality we
assume vmin = 0, vmax = 1, and ∀z ∈ Z, u2(z) = 1− u1(z). The game starts in an initial state h0.

A matrix game is a single-stage simultaneous move game with action sets A1 and A2. Each entry
in the matrix M = (aij) where (i, j) ∈ A1 ×A2 and aij ∈ [0, 1] corresponds to a payoff (to player
1) if row i is chosen by player 1 and column j by player 2. A strategy σq ∈ ∆(Aq) is a distribution
over the actions in Aq . If σ1 is represented as a row vector and σ2 as a column vector, then the
expected value to player 1 when both players play with these strategies is u1(σ1, σ2) = σ1Mσ2.
Given a profile σ = (σ1, σ2), define the utilities against best response strategies to be u1(br, σ2) =
maxσ′

1∈∆(A1) σ
′
1Mσ2 and u1(σ1, br) = minσ′

2∈∆(A2) σ1Mσ′2. A strategy profile (σ1, σ2) is an
ε-Nash equilibrium of the matrix game M if and only if

u1(br, σ2)− u1(σ1, σ2) ≤ ε and u1(σ1, σ2)− u1(σ1, br) ≤ ε (1)

Two-player perfect information games with simultaneous moves are sometimes appropriately called
stacked matrix games because at every state h each joint action from setA1(h)×A2(h) either leads
to a terminal state or to a subgame which is itself another stacked matrix game (see Figure 1).

A behavioral strategy for player q is a mapping from states h ∈ H to a probability distribution over
the actions Aq(h), denoted σq(h). Given a profile σ = (σ1, σ2), define the probability of reaching
a terminal state z under σ as πσ(z) = π1(z)π2(z), where each πq(z) is a product of probabilities of
the actions taken by player q along the path to z. Define Σq to be the set of behavioral strategies for
player q. Then for any strategy profile σ = (σ1, σ2) ∈ Σ1×Σ2 we define the expected utility of the
strategy profile (for player 1) as

u(σ) = u(σ1, σ2) =
∑
z∈Z

πσ(z)u1(z) (2)

2

An ε-Nash equilibrium profile (σ1, σ2) in this case is defined analogously to (1). In other words,
none of the players can improve their utility by more than ε by deviating unilaterally. If the strategies
are an ε-NE in each subgame starting in an arbitrary game state, the equilibrium strategy is termed
subgame perfect. If σ = (σ1, σ2) is an exact Nash equilibrium (i.e., ε-NE with ε = 0), then we
denote the unique value of the game vh0 = u(σ1, σ2). For any h ∈ H, we denote vh the value of
the subgame rooted in state h.

3 Simultaneous move Monte-Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a simulation-based state space search algorithm often used
in game trees. The nodes in the tree represent game states. The main idea is to iteratively run
simulations to a terminal state, incrementally growing a tree rooted at the initial state of the game. In
its simplest form, the tree is initially empty and a single leaf is added each iteration. Each simulation
starts by visiting nodes in the tree, selecting which actions to take based on a selection function and
information maintained in the node. Consequently, it transitions to the successor states. When a
node is visited whose immediate children are not all in the tree, the node is expanded by adding a
new leaf to the tree. Then, a rollout policy (e.g., random action selection) is applied from the new
leaf to a terminal state. The outcome of the simulation is then returned as a reward to the new leaf
and the information stored in the tree is updated.

In Simultaneous Move MCTS (SM-MCTS), the main difference is that a joint action of both players
is selected. The algorithm has been previously applied, for example in the game of Tron [12], Urban
Rivals [11], and in general game-playing [10]. However, guarantees of convergence to NE remain
unknown. The convergence to a NE depends critically on the selection and update policies applied,
which are even more non-trivial than in purely sequential games. The most popular selection policy
in this context (UCB) performs very well in some games [12], but Shafiei et al. [17] show that it
does not converge to Nash equilibrium, even in a simple one-stage simultaneous move game. In this
paper, we focus on variants of MCTS, which provably converge to (approximate) NE; hence we do
not discuss UCB any further. Instead, we describe variants of two other selection algorithms after
explaining the abstract SM-MCTS algorithm.

Algorithm 1 describes a single simulation of SM-MCTS. T represents the MCTS tree in which
each state is represented by one node. Every node h maintains a cumulative reward sum over all
simulations through it, Xh, and a visit count nh, both initially set to 0. As depicted in Figure 1,
a matrix of references to the children is maintained at each inner node. The critical parts of the
algorithm are the updates on lines 8 and 14 and the selection on line 10. Each variant below will
describe a different way to select an action and update a node. The standard way of defining the
value to send back is RetVal(u1, Xh, nh) = u1, but we discuss also RetVal(u1, Xh, nh) = Xh/nh,
which is required for the formal analysis in Section 4. We denote this variant of the algorithms

SM-MCTS(node h)1
if h ∈ Z then return u1(h)2
else if h ∈ T and ∃(i, j) ∈ A1(h)×A2(h) not previously selected then3

Choose one of the previously unselected (i, j) and h′ ← T (h, i, j)4
Add h′ to T5
u1 ← Rollout(h′)6
Xh′ ← Xh′ + u1; nh′ ← nh′ + 17
Update(h, i, j, u1)8

return RetVal(u1, Xh′ , nh′)9

(i, j)← Select(h)10
h′ ← T (h, i, j)11
u1 ← SM-MCTS(h′)12
Xh ← Xh + u1; nh ← nh + 113
Update(h, i, j, u1)14

return RetVal(u1, Xh, nh)15

Algorithm 1: Simultaneous Move Monte Carlo Tree Search

3

with additional “M” for mean. Algorithm 1 and the variants below are expressed from player 1’s
perspective. Player 2 does the same except using negated utilities.

3.1 Regret matching

This variant applies regret-matching [15] to the current estimated matrix game at each stage. Sup-
pose iterations are numbered from s ∈ {1, 2, 3, · · · } and at each iteration and each inner node h there
is a mixed strategy σs(h) used by each player, initially set to uniform random: σ0(h, i) = 1/|A(h)|.
Each player maintains a cumulative regret rh[i] for having played σs(h) instead of i ∈ A1(h). The
values are initially set to 0.

On iteration s, the Select function (line 10 in Algorithm 1) first builds the player’s current strategies
from the cumulative regret. Define x+ = max(x, 0),

σs(h, a) =
r+
h [a]

R+
sum

if R+
sum > 0 oth.

1

|A1(h)|
, where R+

sum =
∑

i∈A1(h)

r+
h [i]. (3)

The strategy is computed by assigning higher weight proportionally to actions based on the regret of
having not taken them over the long-term. To ensure exploration, an γ-on-policy sampling procedure
is used choosing action i with probability γ/|A(h)|+ (1− γ)σs(h, i), for some γ > 0.

The Updates on lines 8 and 14 add regret accumulated at the iteration to the regret tables rh. Suppose
joint action (i1, j2) is sampled from the selection policy and utility u1 is returned from the recursive
call on line 12. Define x(h, i, j) = Xhij

if (i, j) 6= (i1, j2), or u1 otherwise. The updates to the
regret are:

∀i′ ∈ A1(h), rh[i′]← rh[i′] + (x(h, i′, j)− u1).

3.2 Exp3

In Exp3 [16], a player maintains an estimate of the sum of rewards, denoted xh,i, and visit counts
nh,i for each of their actions i ∈ A1. The joint action selected on line 10 is composed of an action
independently selected for each player. The probability of sampling action a in Select is

σs(h, a) =
(1− γ) exp(ηwh,a)∑
i∈A1(h) exp(ηwh,i)

+
γ

|A1(h)|
, where η =

γ

|A1(h)|
and wh,i = xh,i

1. (4)

The Update after selecting actions (i, j) and obtaining a result (u1, u2) updates the visits count
(nh,i ← nh,i + 1) and adds to the corresponding reward sum estimates the reward divided by the
probability that the action was played by the player (xh,i ← xh,i +u1/σ

s(h, i)). Dividing the value
by the probability of selecting the corresponding action makes xh,i estimate the sum of rewards over
all iterations, not only the once where action i was selected.

4 Formal analysis

We focus on the eventual convergence to approximate NE, which allows us to make an important
simplification: We disregard the incremental building of the tree and assume we have built the
complete tree. We show that this will eventually happen with probability 1 and that the statistics
collected during the tree building phase cannot prevent the eventual convergence.

The main idea of the proof is to show that the algorithm will eventually converge close to the optimal
strategy in the leaf nodes and inductively prove that it will converge also in higher levels of the tree.
In order to do that, after introducing the necessary notation, we start by analyzing the situation in
simple matrix games, which corresponds mainly to the leaf nodes of the tree. In the inner nodes of
the tree, the observed payoffs are imprecise because of the stochastic nature of the selection functions
and bias caused by exploration, but the error can be bounded. Hence, we continue with analysis of
repeated matrix games with bounded error. Finally, we compose the matrices with bounded errors in

1In practice, we setwh,i = xh,i−maxi′∈A1(h) xh,i′ since exp(xh,i) can easily cause numerical overflows.
This reformulation computes the same values as the original algorithm but is more numerically stable.

4

a multi-stage setting to prove convergence guarantees of SM-MCTS. Any proofs that are omitted in
the paper are included in the appendix available in the supplementary material and on http://arxiv.org
(arXiv:1310.8613).

4.1 Notation and definitions

Consider a repeatedly played matrix game where at time s players 1 and 2 choose actions is and js
respectively. We will use the convention (|A1|, |A2|) = (m,n). Define

G(t) =

t∑
s=1

aisjs , g(t) =
1

t
G(t), and Gmax(t) = max

i∈A1

t∑
s=1

aijs ,

where G(t) is the cumulative payoff, g(t) is the average payoff, and Gmax is the maximum cumula-
tive payoff over all actions, each to player 1 and at time t. We also denote gmax(t) = Gmax(t)/t
and by R(t) = Gmax(t) − G(t) and r(t) = gmax(t) − g(t) the cumulative and average regrets.
For actions i of player 1 and j of player 2, we denote ti, tj the number of times these actions were
chosen up to the time t and tij the number of times both of these actions has been chosen at once.
By empirical frequencies we mean the strategy profile (σ̂1(t), σ̂2(t)) ∈ 〈0, 1〉m×〈0, 1〉n given by
the formulas σ̂1(t, i) = ti/t, σ̂2(t, j) = tj/t. By average strategies, we mean the strategy profile
(σ̄1(t), σ̄2(t)) given by the formulas σ̄1(t, i) =

∑t
s=1 σ

s
1(i)/t, σ̄2(t, j) =

∑t
s=1 σ

s
2(j)/t, where σs1,

σs2 are the strategies used at time s.
Definition 4.1. We say that a player is ε-Hannan-consistent if, for any payoff sequences (e.g.,
against any opponent strategy), lim supt→∞, r(t) ≤ ε holds almost surely. An algorithm A is ε-
Hannan consistent, if a player who chooses his actions based on A is ε-Hannan consistent.

Hannan consistency (HC) is a commonly studied property in the context of online learning in re-
peated (single stage) decisions. In particular, RM and variants of Exp3 has been shown to be Hannan
consistent in matrix games [15, 16]. In order to ensure that the MCTS algorithm will eventually visit
each node infinitely many times, we need the selection function to satisfy the following property.
Definition 4.2. We say that A is an algorithm with guaranteed exploration, if for players 1 and 2
both using A for action selection limt→∞ tij =∞ holds almost surely ∀(i, j) ∈ A1 ×A2.

Note that most of the HC algorithms, namely RM and Exp3, guarantee exploration without any
modification. If there is an algorithm without this property, it can be adjusted the following way.
Definition 4.3. Let A be an algorithm used for choosing action in a matrix game M . For fixed
exploration parameter γ ∈ (0, 1) we define a modified algorithm A∗ as follows: In each time,
with probability (1 − γ) run one iteration of A and with probability γ choose the action randomly
uniformly over available actions, without updating any of the variables belonging to A.

4.2 Repeated matrix games

First we show that the ε-Hannan consistency is not lost due to the additional exploration.
Lemma 4.4. Let A be an ε-Hannan consistent algorithm. Then A∗ is an (ε+ γ)-Hannan consistent
algorithm with guaranteed exploration.

In previous works on MCTS in our class of games, RM variants generally suggested using the
average strategy and Exp3 variants the empirical frequencies to obtain the strategy to be played.
The following lemma says there eventually is no difference between the two.
Lemma 4.5. As t approaches infinity, the empirical frequencies and average strategies will almost
surely be equal. That is, lim supt→∞maxi∈A1

|σ̂1(t, i)− σ̄1(t, i)| = 0 holds with probability 1.

The proof is a consequence of the martingale version of Strong Law of Large Numbers.

It is well known that two Hannan consistent players will eventually converge to NE (see [18, p. 11]
and [19]). We prove a similar result for the approximate versions of the notions.
Lemma 4.6. Let ε > 0 be a real number. If both players in a matrix game with value v are ε-Hannan
consistent, then the following inequalities hold for the empirical frequencies almost surely:

lim sup
t→∞

u (br, σ̂2(t)) ≤ v + 2ε and lim inf
t→∞

u (σ̂1(t), br) ≥ v − 2ε. (5)

5

The proof shows that if the value caused by the empirical frequencies was outside of the interval
infinitely many times with positive probability, it would be in contradiction with definition of ε-HC.
The following corollary is than a direct consequence of this lemma.
Corollary 4.7. If both players in a matrix game are ε-Hannan consistent, then there almost surely
exists t0 ∈ N, such that for every t ≥ t0 the empirical frequencies and average strategies form
(4ε+ δ)-equilibrium for arbitrarly small δ > 0.

The constant 4 is caused by going from a pair of strategies with best responses within 2ε of the game
value guaranteed by Lemma 4.6 to the approximate NE, which multiplies the distance by two.

4.3 Repeated matrix games with bounded error

After defining the repeated games with error, we present a variant of Lemma 4.6 for these games.
Definition 4.8. We define M(t) = (aij(t)) to be a game, in which if players chose actions i and
j, they receive randomized payoffs aij (t, (i1, ...it−1), (j1, ...jt−1)). We will denote these simply
as aij(t), but in fact they are random variables with values in [0, 1] and their distribution in time
t depends on the previous choices of actions. We say that M(t) = (aij(t)) is a repeated game
with error η, if there is a matrix game M = (aij) and almost surely exists t0 ∈ N, such that
|aij(t)− aij | < η holds for all t ≥ t0.

In this context, we will denote G(t) =
∑
s∈{1...t} aisjs(s) etc. and use tilde for the corresponding

variables without errors (G̃(t) =
∑
aisjs etc.). Symbols v and u (·, ·) will still be used with respect

to M without errors. The following lemma states that even with the errors, ε-HC algorithms still
converge to an approximate NE of the game.
Lemma 4.9. Let ε > 0 and c ≥ 0. If M(t) is a repeated game with error cε and both players are
ε-Hannan consistent then the following inequalities hold almost surely:

lim sup
t→∞

u (br, σ̂2) ≤ v + 2(c+ 1)ε, lim inf
t→∞

u (σ̂1, br) ≥ v − 2(c+ 1)ε (6)

and v − (c+ 1)ε ≤ lim inf
t→∞

g(t) ≤ lim sup
t→∞

g(t) ≤ v + (c+ 1)ε. (7)

The proof is similar to the proof of Lemma 4.6. It needs an additional claim that if the algorithm is
ε-HC with respect to the observed values with errors, it still has a bounded regret with respect to the
exact values. In the same way as in the previous subsection, a direct consequence of the lemma is
the convergence to an approximate Nash equilibrium.
Theorem 4.10. Let ε, c > 0 be real numbers. If M(t) is a repeated game with error cε and both
players are ε-Hannan consistent, then for any δ > 0 there almost surely exists t0 ∈ N, such that for
all t ≥ t0 the empirical frequencies form (4(c+ 1)ε+ δ)-equilibrium of the game M .

4.4 Perfect-information extensive-form games with simultaneous moves

Now we have all the necessary components to prove the main theorem.
Theorem 4.11. Let

(
Mh

)
h∈H be a game with perfect information and simultaneous moves with

maximal depth D. Then for every ε-Hannan consistent algorithm A with guaranteed exploration
and arbitrary small δ > 0, there almost surely exists t0, so that the average strategies (σ̂1(t), σ̂2(t))
form a subgame perfect (

2D2 + δ
)
ε-Nash equilibrium for all t ≥ t0.

Once we have established the convergence of the ε-HC algorithms in games with errors, we can
proceed by induction. The games in the leaf nodes are simple matrix game so they will eventually
converge and they will return the mean reward values in a bounded distance from the actual value
of the game (Lemma 4.9 with c = 0). As a result, in the level just above the leaf nodes, the ε-
HC algorithms are playing a matrix game with a bounded error and by Lemma 4.9, they will also
eventually return the mean values within a bounded interval. On level d from the leaf nodes, the
errors of returned values will be in the order of dε and players can gain 2dε by deviating. Summing
the possible gain of deviations on each level leads to the bound in the theorem. The subgame
perfection of the equilibrium results from the fact that for proving the bound on approximation in the
whole game (i.e., in the root of the game tree), a smaller bound on approximation of the equilibrium
is proven for all subgames in the induction. The formal proof is presented in the appendix.

6

BF = 2 BF = 3 BF = 5

0.01

0.10

0.01

0.10

0.01

0.10

0.05
0.1

0.2

10 1000 10 1000 10 1000
t

E
xp

lo
ita

bi
lit

y

Depth = 2 Depth = 3 Depth = 4
0.400

0.200

0.100

0.050

0.025

0.1

100 10000 100 10000 100 10000
t

E
xp

lo
ita

bi
lit

y

Method
RM

RMM

Figure 2: Exploitability of strategies given by the empirical frequencies of Regret matching with
propagating values (RM) and means (RMM) for various depths and branching factors.

5 Empirical analysis

In this section, we first evaluate the influence of propagating the mean values instead of the current
sample value in MCTS to the speed of convergence to Nash equilibrium. Afterwards, we try to
assess the convergence rate of the algorithms in the worst case. In most of the experiments, we
use as the bases of the SM-MCTS algorithm Regret matching as the selection strategy, because a
superior convergence rate bound is known for this algorithm and it has been reported to be very
successful also empirically in [20]. We always use the empirical frequencies to create the evaluated
strategy and measure the exploitability of the first player’s strategy (i.e., vh0 − u(σ̂1, br)).

5.1 Influence of propagation of the mean

The formal analysis presented in the previous section requires the algorithms to return the mean of
all the previous samples instead of the value of the current sample. The latter is generally the case in
previous works on SM-MCTS [20, 11]. We run both variants with the Regret matching algorithm on
a set of randomly generated games parameterized by depth and branching factor. Branching factor
was always the same for both players. For the following experiments, the utility values are randomly
selected uniformly from interval 〈0, 1〉. Each experiment uses 100 random games and 100 runs of
the algorithm.

Figure 2 presents how the exploitability of the strategies produced by Regret matching with prop-
agation of the mean (RMM) and current sample value (RM) develops with increasing number of
iterations. Note that both axes are in logarithmic scale. The top graph is for depth of 2, differ-
ent branching factors (BF) and γ ∈ {0.05, 0.1, 0.2}. The bottom one presents different depths for
BF = 2. The results show that both methods converge to the approximate Nash equilibrium of the
game. RMM converges slightly slower in all cases. The difference is very small in small games, but
becomes more apparent in games with larger depth.

5.2 Empirical convergence rate

Although the formal analysis guarantees the convergence to an ε-NE of the game, the rate of the con-
vergence is not given. Therefore, we give an empirical analysis of the convergence and specifically
focus on the cases that reached the slowest convergence from a set of evaluated games.

7

WC_RM WC_RMM

0.0125
0.0250
0.0500
0.1000
0.2000
0.4000
0.8000

1e+02 1e+04 1e+06 1e+02 1e+04 1e+06
t

E
xp

lo
ita

bi
lit

y Method

Exp3

Exp3M

RM

RMM

Figure 3: The games with maximal exploitability after 1000 iterations with RM (left) and RMM
(right) and the corresponding exploitabililty for all evaluated methods.

We have performed a brute force search through all games of depth 2 with branching factor 2 and
utilities form the set {0, 0.5, 1}. We made 100 runs of RM and RMM with exploration set to γ =
0.05 for 1000 iterations and computed the mean exploitability of the strategy. The games with the
highest exploitability for each method are presented in Figure 3. These games are not guaranteed to
be the exact worst case, because of possible error caused by only 100 runs of the algorithm, but they
are representatives of particularly difficult cases for the algorithms. In general, the games that are
most difficult for one method are difficult also for the other. Note that we systematically searched
also for games in which RMM performs better than RM, but this was never the case with sufficient
number of runs of the algorithms in the selected games.

Figure 3 shows the convergence of RM and Exp3 with propagating the current sample values and
the mean values (RMM and Exp3M) on the empirically worst games for the RM variants. The RM
variants converge to the minimal achievable values (0.0119 and 0.0367) after a million iterations.
This values corresponds exactly to the exploitability of the optimal strategy combined with the uni-
form exploration with probability 0.05. The Exp3 variants most likely converge to the same values,
however, they did not fully make it in the first million iterations in WC RM. The convergence rate of
all the variants is similar and the variants with propagating means always converge a little slower.

6 Conclusion

We present the first formal analysis of convergence of MCTS algorithms in zero-sum extensive-form
games with perfect information and simultaneous moves. We show that any ε-Hannan consistent
algorithm can be used to create a MCTS algorithm that provably converges to an approximate Nash
equilibrium of the game. This justifies the usage of the MCTS as an approximation algorithm for
this class of games from the perspective of algorithmic game theory. We complement the formal
analysis with experimental evaluation that shows that other MCTS variants for this class of games,
which are not covered by the proof, also converge to the approximate NE of the game. Hence, we
believe that the presented proofs can be generalized to include these cases as well. Besides this, we
will focus our future research on providing finite time convergence bounds for these algorithms and
generalizing the results to more general classes of extensive-form games with imperfect information.

Acknowledgments

This work is partially funded by the Czech Science Foundation (grant no. P202/12/2054), the Grant
Agency of the Czech Technical University in Prague (grant no. OHK3-060/12), and the Netherlands
Organisation for Scientific Research (NWO) in the framework of the project Go4Nature, grant num-
ber 612.000.938. The access to computing and storage facilities owned by parties and projects con-
tributing to the National Grid Infrastructure MetaCentrum, provided under the programme “Projects
of Large Infrastructure for Research, Development, and Innovations” (LM2010005) is appreciated.

8

References
[1] Manish Jain, Dmytro Korzhyk, Ondrej Vanek, Vincent Conitzer, Michal Pechoucek, and Milind Tambe. A

double oracle algorithm for zero-sum security games. In Tenth International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2011), pages 327–334, 2011.

[2] Michael Johanson, Nolan Bard, Neil Burch, and Michael Bowling. Finding optimal abstract strategies in
extensive-form games. In Proceedings of the Twenty-Sixth Conference on Artificial Intelligence (AAAI-
12), pages 1371–1379, 2012.

[3] S. M. Ross. Goofspiel — the game of pure strategy. Journal of Applied Probability, 8(3):621–625, 1971.

[4] Glenn C. Rhoads and Laurent Bartholdi. Computer solution to the game of pure strategy. Games,
3(4):150–156, 2012.

[5] Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. In In Pro-
ceedings of the Eleventh International Conference on Machine Learning (ICML-1994), pages 157–163.
Morgan Kaufmann, 1994.

[6] M. Genesereth and N. Love. General game-playing: Overview of the AAAI competition. AI Magazine,
26:62–72, 2005.

[7] Michael Buro. Solving the Oshi-Zumo game. In Proceedings of Advances in Computer Games 10, pages
361–366, 2003.

[8] Abdallah Saffidine, Hilmar Finnsson, and Michael Buro. Alpha-beta pruning for games with simultaneous
moves. In Proceedings of the Thirty-Second Conference on Artificial Intelligence (AAAI-12), pages 556–
562, 2012.

[9] Branislav Bosansky, Viliam Lisy, Jiri Cermak, Roman Vitek, and Michal Pechoucek. Using double-oracle
method and serialized alpha-beta search for pruning in simultaneous moves games. In Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI), pages 48–54, 2013.

[10] H. Finnsson and Y. Björnsson. Simulation-based approach to general game-playing. In The Twenty-Third
AAAI Conference on Artificial Intelligence, pages 259–264. AAAI Press, 2008.

[11] Olivier Teytaud and Sébastien Flory. Upper confidence trees with short term partial information. In
Applications of Eolutionary Computation (EvoApplications 2011), Part I, volume 6624 of LNCS, pages
153–162, Berlin, Heidelberg, 2011. Springer-Verlag.

[12] Pierre Perick, David L. St-Pierre, Francis Maes, and Damien Ernst. Comparison of different selection
strategies in monte-carlo tree search for the game of Tron. In Proceedings of the IEEE Conference on
Computational Intelligence and Games (CIG), pages 242–249, 2012.

[13] Hilmar Finnsson. Simulation-Based General Game Playing. PhD thesis, Reykjavik University, 2012.

[14] L. Kocsis and C. Szepesvári. Bandit-based Monte Carlo planning. In 15th European Conference on
Machine Learning, volume 4212 of LNCS, pages 282–293, 2006.

[15] S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium. Econometrica,
68(5):1127–1150, 2000.

[16] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

[17] M. Shafiei, N. R. Sturtevant, and J. Schaeffer. Comparing UCT versus CFR in simultaneous games. In
Proceeding of the IJCAI Workshop on General Game-Playing (GIGA), pages 75–82, 2009.

[18] Kevin Waugh. Abstraction in large extensive games. Master’s thesis, University of Alberta, 2009.

[19] A. Blum and Y. Mansour. Learning, regret minimization, and equilibria. In Noam Nisan, Tim Rough-
garden, Eva Tardos, and Vijay V. Vazirani, editors, Algorithmic Game Theory, chapter 4. Cambridge
University Press, 2007.

[20] Marc Lanctot, Viliam Lisý, and Mark H.M. Winands. Monte Carlo tree search in simultaneous move
games with applications to Goofspiel. In Workshop on Computer Games at IJCAI, 2013.

9

Appendix

Proof of Lemma 4.4. Denoting by * the variables corresponding to the algorithm A∗ we get

r∗(t) =
1

t
R∗(t) ≤ 1

t
(1 · texpl +R(t− texpl)) =

texpl
t

+
R(t− texpl)
t− texpl

· t− texpl
t

,

where, for given t ∈ N, texpl denotes the number of times A∗ explored up to t-th iteration. By Strong Law of
Large Numbers we have that lim

t→∞

texpl

t
= γ holds almost surely. Therefore

lim sup
t→∞

r∗(t) ≤ lim sup
t→∞

texpl
t

+ lim sup
t−texpl→∞

R(t− texpl)
t− texpl

· lim sup
t→∞

t− texpl
t

≤ γ + ε (1− γ)

≤ γ + ε,

which means that A∗ is (ε+ γ)-Hannan consistent. The guaranteed exploration property of A∗ is trivial.

Remark 6.1. The guaranteed exploration can be, in theory, achieved even without increasing the approximation
factor of Hannan consistency. This method, however, would be impractical in our setting. Fix an increasing
sequence of natural numbers tn, such that lim

n→∞
n
tn

= 0 (for example tn = 2n). Let A be an ε-Hannan

consistent algorithm. We define modified algorithm A+as follows: A+ uniformly explores in times tn, n ∈ N
without modifying the state ofA andA+ behaves asA otherwise. ThenA+ is an ε-Hannan consistent algorithm
with guaranteed exploration.

Proof. Denoting by + the variables corresponding to the algorithm A+ we get the following inequality for
t ∈ (tn, tn+1):

R+(t) =G+
max(t)−G+(t) = max

i

∑
s≤t
s 6=tk

aijs − aisjs +
∑
s≤t
s=tk

aijs − aisjs

≤Gmax(t− n)−G(t− n) + n = R(t− n) + n.

Dividing by t and taking lim sup of both sides gives us ε-Hannan consistency ofA+. Since both players explore
at once, and this happens infinitely many times, the guaranteed exploration property of A+ is trivial.

Proof of Lemma 4.5. It is enough to show that lim
t→∞

|σ̂(t, i)− σ̄(t, i)| = 0 holds almost surely for any given i.

Using the definitions of σ̂(t, i) and σ̄(t, i), we get

σ̂(t, i)− σ̄(t, i) =
1

t

(
ti −

t∑
s=1

σs(i)

)
=

1

t

t∑
s=1

(δiis − σ
s(i)) ,

where δij is the Kronecker delta. Using the (martingale difference version of) Strong Law of Large Numbers
on the sequence of random variables Xt =

∑t
s=1 (δiis − σs(i)) gives the result (the conditions clearly hold,

since E
[
δiit − σt(i)|X1, ..., Xt−1

]
= 0 implies thatXt is a martingale and δiit −σt(i) ∈ [−1, 1] guarantees

that variance is uniformly bounded by 1).

Proof of Lemma 4.6. First we make an observation about gmax, that will also be useful later on:

u (br, σ̂2(t)) = max
i

∑
j

σ̂2(t, j)aij = max
i

∑
j

tj
t
aij =

1

t
max
i

∑
j

tjaij

=
1

t
max
i

t∑
s=1

aijs =
1

t
Gmax(t) = gmax(t). (8)

Now assume for contradiction that with non-zero probability there exists an increasing sequence of time steps
tn ↗∞, such that u (br, σ̂2(tn)) ≥ v + 2ε+ δ for some δ > 0.

Using ε-Hannan consistency gives us the existence of such t0, that gmax(t)−g(t) < ε+ δ
2

holds for all t ≥ t0,
which is equal to g(t) > gmax − (ε + δ

2
). However, since we are using a zero-sum matrix game where gmax

is always at least v, this implies that g(t) > v − (ε+ δ
2
). Using this argument for player 2 gives us that

g(t) < v + ε+
δ

2

10

almost surely holds for all t high enough.

This implies that

lim sup
t→∞

r(t) ≥ lim sup
n→∞

r(tn) = lim sup
t→∞

gmax(tn)− g(tn)

≥lim sup
t→∞

u (br, σ̂2(tn))− g(tn) ≥ v + 2ε+ δ − (v + ε+
δ

2
) > ε

holds with non-zero probability, which is in contradiction with ε-Hannan consistency.

Proof of Corollary 4.7. This follows immediately from Lemmas 4.5 and 4.6 and the fact that in normal-form
zero-sum game with value v the following implication holds:(

u1(br, σ̂2) < v +
ε

2
and u1(σ̂1, br) > v − ε

2

)
=⇒

(u1(br, σ̂2)− u1(σ̂1, σ̂2) < ε and u2(σ̂1, br)− u2(σ̂1, σ̂2) < ε)
def⇐⇒

(σ̂1, σ̂2) is an ε-equilibrium.

Remark 6.2. The following example demonstrates that the extension of the interval in the previous proof is
necessary. Consider the following game

0.4 0.5
0.6 0.5

and a strategy profile (1,0),(1,0). The value of the game is v = 0.5, u(br, (1, 0)) = 0.6 and u((1, 0), br) =
0.4. The best responses to the strategies of both players are 0.1 from the game value, but (1, 0), (1, 0) is a
0.2-NE, since player 2 can improve by 0.2.

Proof of Lemma 4.9. This lemma strengthens the result from Lemma 4.6 and its proof will also be similar. The
only additional technical ingredient is the following inequality.

Since M(t) is a repeated game with error cε, there almost surely exists t0, such that for all t ≥ t0,
|aij(t)− aij | ≤ cε holds. This leads to:

|g̃max(t)− gmax(t)| = max
i

∣∣∣∣∣1t
t∑

s=1

(aijs − aijs(s))

∣∣∣∣∣ ≤ t0
t

+ cε · t− t0
t

t→∞−→ cε. (9)

We are now ready to prove the inequalities in equation (7) from the main paper. Using ε-Hannan consistency,
we can almost surely bound g(t) for δ > 0 and t ≥ t0:

g(t) > gmax(t)− (ε+ δ)

≥ g̃max(t)− (ε+ δ)− |gmax(t)− g̃max(t)|
≥ v − (ε+ δ)− |gmax(t)− g̃max(t)| .

Taking lim inf in the previous inequality and using equation (9) above gives us that

lim inf
t→∞

g(t) ≥ v − ε− cε− δ

holds for any δ > 0, therefore lim inf
t→∞

g(t) ≥ v − (c+ 1) ε. Applying the same procedure for player 2 will

give us the second part of equation (7) from the main paper.

We will prove the left side of inequality (6) from the main paper by contradiction (and omit the proof of the
right side since it is identical): assume for contradiction that with non-zero probability there exists an increasing
sequence of time steps tn ↗∞, such that

u(br, σ̂2(tn)) ≥ v + 2(c+ 1)ε+ δ (10)

11

holds for some δ > 0. Using equation (8) and equation (9) gives us that there almost surely exists t0, such that
for all tn ≥ t0 the following holds:

gmax(tn) ≥ g̃max(tn)− |g̃max(tn)− gmax(tn)|
= u(br, σ̂2(tn))− |g̃max(tn)− gmax(tn)| by equation (8)

≥ (v + 2(c+ 1)ε+ δ)− (cε+
δ

2
) by equations (9), (10)

= (v + (c+ 1)ε) + ε+
δ

2

and equation (7) from the main paper gives us the inequality

lim sup
n→∞

g(tn) ≤ v + (c+ 1)ε.

We can now calculate the average regret r(tn):

lim sup
n→∞

r(tn) = lim sup
n→∞

(gmax(tn)− g(tn))

≥ (v + (c+ 1)ε) + ε+
δ

2
− (v + (c+ 1)ε)

= ε+
δ

2
.

Therefore lim sup r(t) > ε holds with non-zero probability - a contradiction with the fact that player 1 is
ε-Hannan consistent.

Proof of Theorem 4.10. As in the proof of Corollary 4.7, this is an immediate consequence of right-side and
left-side inequalities of equation (5) of Lemma 4.6 in the main paper.

Proof of Theorem 4.11.
Remark. In this proof δ will always be some positive real number. It can vary from term to term, but it can
always be made arbitrarily small. We denote the strategies, values, payoffs, etc., in a specific node h by upper
index (e.g., vh, σ̂h1 (t), gh(t)).

We prove this using backwards induction. It is enough to verify that the hypothesis of the theorem holds for
Cε−equilibrium for some constant C and then calculate the value of C.

Firstly, it is correct to use all of the above propositions in any h ∈ H, becauseA is an algorithm with guaranteed
exploration and we will eventually get there infinite number of times. Denote D the depth of the tree, with the
root being in depth d = 1 and leaves being in depth d = D. Then by backwards induction we have:

d = D: If h ∈ H is a leaf, then by Lemma 4.6 no player can gain more than 2ε utility by deviating from(
σ̂h1 (t), σ̂h2 (t)

)
for t high enough. By Lemma 4.9, the average payoff gh(t) will eventually fall

into the interval
(
vh − ε− δ, vh + ε+ δ

)
.

(IHd): Let us denote as induction hypothesis for level d of the game tree the following: In any node h on
d̃-th level of the tree, for d ≤ d̃ ≤ D, these two bounds hold:

(DBd) No player can gain more than 2(1 + D − d̃)ε + δ by deviating from strategy(
σ̂h1 (t), σ̂h2 (t)

)
.

(PBd) The payoff gh(t) will eventually fall into the interval(
vh −

(
1 +D − d̃

)
ε− δ, vh +

(
1 +D − d̃

)
ε+ δ

)
.

Since both the deviation bound (DBd) and the payoff bound (PBd) hold for d = D, we have that
(IHD) holds.

d 7→ d− 1 : Now we prove the induction step. Assuming that (IHd) holds. we will prove that (IHd−1) holds
as well: Fix a node h ∈ H in depth d − 1 and denote by hij its children. Note that the nodes hij
are nodes in depth d. Then by the induction hypothesis M(t) = (ghij (t))i,j is a game with error
cε = (1 +D − d)ε+ δ. By Lemma 4.9 we have that:

12

(A) no player can gain more than 2(1 +D− d+ 1)ε+ δ = 2(1 +D− (d− 1))ε+ δ by
deviation from

(
σ̂h1 (t), σ̂h2 (t)

)
and

(B) the payoff gh(t) will eventually fall into the interval(
vh − (1 +D − d+ 1)− δ, vh − (1 +D − d+ 1) + δ

)
.

Combining (A) for all h on (d− 1)-th level of the tree with (DBd) gives (DBd−1) and combining
(B) for all h on (d− 1)-th level of the tree with (PBd) gives (PBd−1). Therefore (IHd−1) holds
and the backwards induction is complete.

Calculation of C: Players can gain at most 2ε + δ utility by deviating in leaves, 4ε + δ by deviating one level
above the leaves and so on up to the maximum of 2(D − 1)ε+ δ in the root. Taking the sum of these possible
gains, we see that players can possibly gain at most D

2
(2 + 2 (D − 1)) ε+Dδ = D2ε+ δ utility. This implies

that the pair (σ̂1(t), σ̂2(t)) forms
(
2D2ε+ δ

)
-equilibrium for δ arbitrarily small.

Subgame perfection: We can use the argument with summation of possible improvements over levels for any
internal node in the game tree. The sum for any level d > 1 will be smaller then the sum in the root; hence, the
computed equilibrium is subgame perfect.

13

