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Abstract

Cross language text classification is an important learningtask in natural language
processing. A critical challenge of cross language learning arises from the fact that
words of different languages are in disjoint feature spaces. In this paper, we pro-
pose a two-step representation learning method to bridge the feature spaces of dif-
ferent languages by exploiting a set of parallel bilingual documents. Specifically,
we first formulate a matrix completion problem to produce a complete parallel
document-term matrix for all documents in two languages, and then induce a low
dimensional cross-lingual document representation by applying latent semantic
indexing on the obtained matrix. We use a projected gradientdescent algorithm
to solve the formulated matrix completion problem with convergence guarantees.
The proposed method is evaluated by conducting a set of experiments with cross
language sentiment classification tasks on Amazon product reviews. The experi-
mental results demonstrate that the proposed learning method outperforms a num-
ber of other cross language representation learning methods, especially when the
number of parallel bilingual documents is small.

1 Introduction

Cross language text classification is an important natural language processing task that exploits a
large amount of labeled documents in an auxiliary source language to train a classification model for
classifying documents in a target language where labeled data is scarce. An effective cross language
learning system can greatly reduce the manual annotation effort in the target language for learning
good classification models. Previous work in the literaturehas demonstrated successful performance
of cross language learning systems on various cross language text classification problems, including
multilingual document categorization [2], cross languagefine-grained genre classification [14], and
cross-lingual sentiment classification [18, 16].

The challenge of cross language text classification lies in the language barrier. That is documents
in different languages are expressed with different word vocabularies and thus have disjoint feature
spaces. A variety of methods have been proposed in the literature to address cross language text
classification by bridging the cross language gap, including transforming the training or test data
from one language domain into the other language domain by using machine translation tools or
bilingual lexicons [18, 6, 23], and constructing cross-lingual representations by using readily avail-
able auxiliary resources such as bilingual word pairs [16],comparable corpora [10, 20, 15], and
other multilingual resources [3, 14].

In this paper, we propose a two-step learning method to induce cross-lingual feature representa-
tions for cross language text classification by exploiting aset of unlabeled parallel bilingual docu-
ments. First we construct a concatenated bilingual document-term matrix where each document is
represented in the concatenated vocabulary of two languages. In such a matrix, a pair of parallel
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documents are represented as a row vector filled with observed word features from both the source
language domain and the target language domain, while a non-parallel document in a single lan-
guage is represented as a row vector filled with observed wordfeatures only from its own language
and has missing values for the word features from the other language. We then learn the unobserved
feature entries of this sparse matrix by formulating a matrix completion problem and solving it us-
ing a projected gradient descent optimization algorithm. By doing so, we expect to automatically
capture important and robust low-rank information based onthe word co-occurrence patterns ex-
pressed both within each language and across languages. Next we perform latent semantic indexing
over the recovered document-term matrix and induce a low-dimensional dense cross-lingual repre-
sentation of the documents, on which standard monolingual classifiers can be applied. To evaluate
the effectiveness of the proposed learning method, we conduct a set of experiments with cross lan-
guage sentiment classification tasks on multilingual Amazon product reviews. The empirical results
show that the proposed method significantly outperforms a number of cross language learning meth-
ods. Moreover, the proposed method produces good performance even with a very small number of
unlabeled parallel bilingual documents.

2 Related Work

Many works in the literature address cross language text classification by first translating documents
from one language domain into the other one via machine translation tools or bilingual lexicons
and then applying standard monolingual classification algorithms [18, 23], domain adaptation tech-
niques [17, 9, 21], or multi-view learning methods [22, 2, 1,13, 12]. For example, [17] proposed
an expectation-maximization based self-training method,which first initializes a monolingual clas-
sifier in the target language with the translated labeled documents from the source language and
then retrains the model by adding unlabeled documents from the target language with automatically
predicted labels. [21] proposed an instance and feature bi-weighting method by first translating
documents from one language domain to the other one and then simultaneously re-weighting in-
stances and features to address the distribution difference across domains. [22] proposed to use
the co-training method for cross language sentiment classification on parallel corpora. [2] pro-
posed a multi-view majority voting method to categorize documents in multiple views produced
from machine translation tools. [1] proposed a multi-view co-classification method for multilingual
document categorization, which minimizes both the training loss for each view and the prediction
disagreement between different language views. Our proposed approach in this paper shares similar-
ity with these approaches in exploiting parallel data produced by machine translation tools. But our
approach only requires a small set of unlabeled parallel documents, while these approaches require
at least translating all the training documents in one language domain.

Another important group of cross language text classification methods in the literature con-
struct cross-lingual representations by exploiting bilingual word pairs [16, 7], parallel corpora
[10, 20, 15, 19, 8], and other resources [3, 14]. [16] proposed a cross-language structural cor-
respondence learning method to induce language-independent features by using pivot word pairs
produced by word translation oracles. [10] proposed a cross-language latent semantic indexing
(CL-LSI) method to induce cross-lingual representations by performing LSI over a dual-language
document-term matrix, where each dual-language document contains its original words and the
corresponding translation text. [20] proposed a cross-lingual kernel canonical correlation analysis
(CL-KCCA) method. It first learns two projections (one for each language) by conducting kernel
canonical correlation analysis over a paired bilingual corpus and then uses them to project doc-
uments from language-specific feature spaces to the shared multilingual semantic feature space.
[15] employed cross-lingual oriented principal componentanalysis (CL-OPCA) over concatenated
parallel documents to learn a multilingual projection by simultaneously minimizing the projected
distance between parallel documents and maximizing the projected covariance of documents across
languages. Some other work uses multilingual topic models such as the coupled probabilistic latent
semantic analysis and the bilingual latent Dirichlet allocation to extract latent cross-lingual topics
as interlingual representations [19]. [14] proposed to uselanguage-specific part-of-speech (POS)
taggers to tag each word and then map those language-specificPOS tags to twelve universal POS
tags as interlingual features for cross language fine-grained genre classification. Similar to the mul-
tilingual semantic representation learning approaches such as CL-LSI, CL-KCCA and CL-OPCA,
our two-step learning method exploits parallel documents.But different from these methods which
apply operations such as LSI, KCCA, and OPCA directly on the original concatenated document-
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term matrix, our method first fills the missing entries of the document-term matrix using matrix
completion, and then performs LSI over the recovered low-rank matrix.

3 Approach

In this section, we present the proposed two-step learning method for learning cross-lingual docu-
ment representations. We assume a subset of unlabeled parallel documents from the two languages
are given, which can be used to capture the co-occurrence of terms across languages and build con-
nections between the vocabulary sets of the two languages. We first construct a unified document-
term matrix for all documents from the auxiliary source language domain and the target language
domain, whose columns correspond to the word features from the unified vocabulary set of the two
languages. In this matrix, each pair of parallel documents is represented as a fully observed row
vector, and each non-parallel document is represented as a partially observed row vector where only
entries corresponding to words in its own language vocabulary are observed. Instead of learning a
low-dimensional cross-lingual document representation from this matrix directly, we perform a two-
step learning procedure: First we learn a low-rank document-term matrix by automatically filling the
missing entries via matrix completion. Next we produce cross-lingual representations by applying
the latent semantic indexing method over the learned matrix.

LetM0 ∈ R
t×d be the unified document-term matrix, which is partially filled with observed nonneg-

ative feature values, wheret is the number of documents andd is the size of the unified vocabulary.
We useΩ to denote the index set of the observed features inM0, such that(i, j) ∈ Ω if only if M0

ij

is observed; and usêΩ to denote the index set of the missing features inM0, such that(i, j) ∈ Ω̂
if only if M0

ij is unobserved. For thei-th document in the data set from one language, if the doc-
ument does not have a parallel translation in the other language, then all the features in rowM0

i:
corresponding to the words in the vocabulary of the other language are viewed as missing features.

3.1 Matrix Completion

Note that the document-term matrixM0 has a large fraction of missing features and the only bridge
between the vocabulary sets of the two languages is the smallset of parallel bilingual documents.
Learning from this partially observed matrix directly by treating missing features as zeros certainly
will lose a lot of information. On the other hand, a fully observed document-term matrix is naturally
low-rank and sparse, as the vocabulary set is typically verylarge and each document only contains
a small fraction of the words in the vocabulary. Thus we propose to automatically fill the missing
entries ofM0 based on the feature co-occurrence information expressed in the observed data, by
conducting matrix completion to recover a low-rank and sparse matrix. Specifically, we formulate
the matrix completion as the following optimization problem

min
M

rank(M) + µ‖M‖1 subject toMij = M0
ij , ∀(i, j) ∈ Ω; Mij ≥ 0, ∀(i, j) ∈ Ω̂ (1)

where‖ · ‖1 denotes aℓ1 norm and is used to enforce sparsity. The rank function however is non-
convex and difficult to optimize. We can relax it to its convexenvelope, a convex trace norm‖M‖∗.
Moreover, instead of using the equality constraints in (1),we propose to minimize a regulariza-
tion loss function,c(Mij ,M

0
ij), to cope with observation noise for all the observed featureentries.

Meanwhile, we also add regularization terms over the missing features,c(Mij , 0), ∀(i, j) ∈ Ω̂, to
avoid overfitting. In particular, we use the least squared loss functionc(x, y) = 1

2‖x − y‖2. Hence
we obtain the following relaxed convex optimization problem for matrix completion

min
M

γ‖M‖∗ + µ‖M‖1 +
∑

(i,j)∈Ω

c(Mij ,M
0
ij) + ρ

∑

(i,j)∈Ω̂

c(Mij , 0) subject toM ≥ 0 (2)

With nonnegativity constraintsM ≥ 0, the non-smoothℓ1 norm regularizer in the objective function
of (2) is equivalent to a smooth linear function‖M‖1 =

∑
ij Mij . Nevertheless, with the non-

smooth trace norm‖M‖∗, the optimization problem (2) remains to be convex but non-smooth.
Moreover, the matrixM in cross-language learning tasks is typically very large, and thus a scalable
optimization algorithm needs to be developed to conduct efficient optimization. In next section, we
will present a scalable projected gradient descent algorithm to solve this minimization problem.
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Algorithm 1 Projected Gradient Descent Algorithm

Input: M0, γ, ρ ≤ 1, 0 < τ < min(2, 2
ρ
), µ.

InitializeM as the nonnegative projection of the rank-1 approximation of M0.
while not convergeddo

1. gradient descent:M = M − τ∇g(M).
2. shrink:M = Sτγ(M).
3. project onto feasible set:M = max(M, 0).

end while

3.2 Latent Semantic Indexing

After solving (2) for an optimal low-rank solutionM∗, we can use each row of the sparse matrix
M∗ as a vector representation for each document in the concatenated vocabulary space of the two
languages. However exploiting such a matrix representation directly for cross language text clas-
sification lacks sufficient capacity of handling feature noise and sparseness, as each document is
represented using a very small set of words in the vocabularyset. We thus propose to apply a latent
semantic indexing (LSI) method onM∗ to produce a low-dimensional semantic representation of
the data. LSI uses singular value decomposition to discoverthe important associative relationships
of word features [10], and create a reduced-dimension feature space. Specifically, we first perform
singular value decomposition overM∗, M∗ = USV ⊤, and then obtain a low dimensional represen-
tation matrixZ via a projectionZ = M∗Vk, whereVk contains the topk right singular vectors of
M∗. Cross-language text classification can then be conducted overZ using monolingual classifiers.

4 Optimization Algorithm

4.1 Projected Gradient Descent Algorithm

A number of algorithms have been developed to solve matrix completion problems in the litera-
ture [4, 11]. We use a projected gradient descent algorithm to solve the non-smooth convex opti-
mization problem in (2). This algorithm takes the objectivefunctionf(M) in (2) as a composition
of a non-smooth term and a convex smooth term such asf(M) = γ‖M‖∗ + g(M) where

g(M) = µ‖M‖1 +
∑

(i,j)∈Ω

c(Mij ,M
0
ij) + ρ

∑

(i,j)∈Ω̂

c(Mij , 0). (3)

It first initializesM as the nonnegative projection of the rank-1 approximation of M0, and then
iteratively updatesM using a projected gradient descent procedure. In each iteration, we perform
three steps to updateM . First, we take a gradient descent stepM = M − τ∇g(M) with stepsizeτ
and gradient function

∇g(M) = µE + (M −M0) ◦ Y + ρM ◦ Ŷ (4)

whereE is a t × d matrix with all 1s; Y and Ŷ aret × d indicator matrices such thatYij = 1 if
and only if(i, j) ∈ Ω andŶ = E − Y ; and “◦” denotes the Hadamard product. Next we perform a
shrinkage operationM = Sν(M) over the resulting matrix from the first step to minimize its rank.
The shrinkage operator is based on singular value decomposition

Sν(M) = UΣ(ν)V
⊤, M = UΣV ⊤, Σ(ν) = max(Σ− ν, 0), (5)

whereν = τγ. Finally we project the resulting matrix into the nonnegative feasible set byM =
max(M, 0). This update procedure provably converges to an optimal solution. The overall algorithm
is given in Algorithm 1.

4.2 Convergence Analysis

Let h(·) = I(·) − τ∇g(·) be the gradient descent operator used in the gradient descent step, and
let PC(·) = max(·, 0) be the projection operator, whileSν(·) is the shrinkage operator. Below we
prove the convergence of the projected gradient descent algorithm.
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Lemma 1. Let E be a t×d matrix with all 1s, and Q = E−τ(Y +ρŶ ). For τ ∈ (0,min(2, 2
ρ
)), the

operator h(·) is non-expansive, i.e., for any M and M ′ ∈ R
t×d, ‖h(M)−h(M ′)‖F ≤ ‖M−M ′‖F .

Moreover, ‖h(M)− h(M ′)‖F = ‖M −M ′‖F if and only if h(M)− h(M ′) = M −M ′.

Proof. Note that forτ ∈ (0,min(2, 2
ρ
)), we have−1 < Qij < 1, ∀(i, j). Then following the

gradient definition in (4), we have

‖h(M)− h(M ′)‖F =
∥∥(M −M ′) ◦Q‖F = (

∑

ij

(Mij −M ′
ij)

2Q2
ij)

1

2 ≤ ‖M −M ′‖F

The inequalities become equalities if only ifh(M)− h(M ′) = M −M ′.

Lemma 2. [11, Lemma 1] The shrinkage operator Sν(·) is non-expansive, i.e., for any M and
M ′ ∈ R

t×d, ‖Sν(M)−Sν(M
′)‖F ≤ ‖M−M ′‖F . Moreover, ‖Sν(M)−Sν(M

′)‖F = ‖M−M ′‖F
if and only if Sν(M)− Sν(M

′) = M −M ′.

Lemma 3. The projection operator PC(·) is non-expansive, i.e., ‖PC(M) − PC(M
′)‖F ≤ ‖M −

M ′‖F . Moreover, ‖PC(M)−PC(M
′)‖F = ‖M−M ′‖F if and only if PC(M)−PC(M

′) = M−M ′.

Proof. For any given entry index(i, j), there are four cases:

• Case 1:Mij ≥ 0,M ′
ij ≥ 0. We have(PC(Mij)− PC(M

′
ij))

2 = (Mij −M ′
ij)

2.

• Case 2:Mij ≥ 0,M ′
ij < 0. We have(PC(Mij)− PC(M

′
ij))

2 = M2
ij < (Mij −M ′

ij)
2.

• Case 3:Mij < 0,M ′
ij ≥ 0. We have(PC(Mij)− PC(M

′
ij))

2 = M ′2
ij < (Mij −M ′

ij)
2.

• Case 4:Mij < 0,M ′
ij < 0. We have(PC(Mij)− PC(M

′
ij))

2 = 0 ≤ (Mij −M ′
ij)

2.

Therefore,

‖PC(M)− PC(M
′)‖F =

(∑

ij

(PC(Mij)− PC(M
′
ij))

2
) 1

2 ≤
(∑

ij

(Mij −M ′
ij)

2
) 1

2 = ‖M −M ′‖F

and‖PC(M)− PC(M
′)‖F = ‖M −M ′‖F if only if PC(M)− PC(M

′) = M −M ′.

Theorem 1. The sequence {Mk} generated by the projected gradient descent iterations in Algo-
rithm 1 with 0 < τ < min(2, 2

ρ
) converges to M∗, which is an optimal solution of (2).

Proof. Sinceh(·), Sν(·) andPC(·) are all non-expansive, the composite operatorPC(Sν(h(·))) is
non-expansive as well. This theorem can then be proved following [11, Theorem 4].

5 Experiments

In this section, we evaluate the proposed two-step learningmethod by conducting extensive cross
language sentiment classification experiments on multilingual Amazon product reviews.

5.1 Experimental Setting

Dataset We used the multilingual Amazon product reviews dataset [16], which contains three
categories (Books (B), DVD (D), Music (M)) of product reviews in four different languages (English
(E), French (F), German (G), Japanese (J)). For each category of the product reviews, there are 2000
positive and 2000 negative English reviews, and 1000 positive and 1000 negative reviews for each
of the other three languages. In addition, there are another2000 unlabeled parallel reviews between
English and each of the other three languages. Each review ispreprocessed into a unigram bag-of-
word feature vector with TF-IDF values. We focused on cross-lingual learning between English and
the other three languages and constructed 18 cross languagesentiment classification tasks (EFB,
FEB, EFD, FED, EFM, FEM, EGB, GEB, EGD, GED, EGM, GEM, EJB, JEB, EJD, JED, EJM,
JEM), each for one combination of selected source language,target language and category. For
example, the taskEFB usesEnglish Books reviews as the source language data and usesFrench
Books reviews as the target language data.
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Table 1: Average classification accuracies (%) and standarddeviations (%) over 10 runs for the 18
cross language sentiment classification tasks.

TASK TBOW CL-LSI CL-KCCA CL-OPCA TSL
EFB 67.31±0.96 79.56±0.21 77.56±0.14 76.55±0.31 81.92±0.20
FEB 66.82±0.43 76.66±0.34 73.45±0.13 74.43±0.53 79.51±0.21
EFD 67.80±0.94 77.82±0.66 78.19±0.09 70.54±0.41 81.97±0.33
FED 66.15±0.65 76.61±0.25 74.93±0.07 72.49±0.47 78.09±0.32
EFM 67.84±0.43 75.39±0.40 78.24±0.12 73.69±0.49 79.30±0.30
FEM 66.08±0.52 76.33±0.27 73.38±0.12 73.46±0.50 78.53±0.46
EGB 67.23±0.68 77.59±0.21 79.14±0.12 74.72±0.54 79.22±0.31
GEB 67.16±0.55 77.64±0.19 74.15±0.09 74.78±0.39 78.65±0.23
EGD 66.79±0.80 79.22±0.22 76.73±0.10 74.59±0.66 81.34±0.24
GED 66.27±0.69 77.78±0.26 74.26±0.08 74.83±0.45 79.34±0.23
EGM 67.65±0.45 73.81±0.49 79.18±0.05 74.45±0.59 79.39±0.39
GEM 66.74±0.55 77.28±0.51 72.31±0.08 74.15±0.42 79.02±0.34
EJB 63.15±0.69 72.68±0.35 69.46±0.11 71.41±0.48 72.57±0.52
JEB 66.85±0.68 74.63±0.42 67.99±0.18 73.41±0.41 77.17±0.36
EJD 65.47±0.50 72.55±0.28 74.79±0.11 71.84±0.41 76.60±0.49
JED 66.42±0.55 75.18±0.27 72.44±0.16 75.42±0.52 79.01±0.50
EJM 67.62±0.75 73.44±0.50 73.54±0.11 74.96±0.86 76.21±0.40
JEM 66.51±0.51 72.38±0.50 70.00±0.18 72.64±0.66 77.15±0.58

Approaches We compared the proposed two-step learning (TSL) method with the following four
methods: TBOW, CL-LSI, CL-OPCA and CL-KCCA. The Target Bag-Of-Word (TBOW) baseline
method trains a supervised monolingual classifier in the original bag-of-word feature space with the
labeled training data from the target language domain. The Cross-Lingual Latent Semantic Indexing
(CL-LSI) method [10] and the Cross-Lingual Oriented Principal Component Analysis (CL-OPCA)
method [15] first learn cross-lingual representations withall data from both language domains by
performing LSI or OPCA and then train a monolingual classifier with labeled data from both lan-
guage domains in the induced low-dimensional feature space. The Cross-Lingual Kernel Canonical
Component Analysis (CL-KCCA) method [20] first induces two language projections by usingun-
labeled parallel data and then trains a monolingual classifier on labeled data from both language
domains in the projected low-dimensional space. For all experiments, we used linear support vector
machine (SVM) as the monolingual classification model. For implementation, we used the libsvm
package [5] with default parameter setting.

5.2 Classification Accuracy

For each of the 18 cross language sentiment classification tasks, we used all documents from the two
languages and the additional 2000 unlabeled parallel documents for representation learning. Then
we used all documents in the auxiliary source language and randomly chose 100 documents from
the target language as labeled data for classification modeltraining, and used the remaining data in
the target language as test data. For the proposed method, TSL, we setµ = 10−6 andτ = 1, chose
γ value from{0.01, 0.1, 1, 10}, choseρ value from{10−5, 10−4, 10−3, 10−2, 10−1, 1}, and chose
the dimensionk value from{20, 50, 100, 200, 500}. We used the first task EFB to perform model
parameter selection by running the algorithm 3 times based on random selections of 100 labeled
target training data. This gave us the following parameter setting: γ = 0.1, ρ = 10−4, k = 50. We
used the same procedure to select the dimensionality of the learned semantic representations for the
other three approaches, CL-LSI, CL-OPCA and CL-KCCA, whichproducedk = 50 for CL-LSI
and CL-OPCA, andk = 100 for CL-KCCA. We then used the selected model parameters for all
the 18 tasks and ran each experiment for 10 times based on random selections of 100 labeled target
documents. The average classification accuracies and standard deviations are reported in Table 1.

We can see that the proposed two-step learning method, TSL, outperforms all other four comparison
methods in general. The target baseline TBOW performs poorly on all the 18 tasks, which implies
that 100 labeled target training documents are far from enough to obtain a robust sentiment classifier
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Figure 1: Average test classification accuracies (%) and standard deviations (%) over 10 runs with
different numbers of unlabeled parallel documents for adapting a classification system from English
to French, German and Japanese.

in the target language domain. All the other three cross-lingual representation learning methods,
CL-LSI, CL-KCCA and CL-OPCA, consistently outperform thisbaseline method across all the
18 tasks, which demonstrates that the labeled training datafrom the source language domain is
useful for classifying the target language data under a unified data representation. Nevertheless, the
improvements achieved by these three methods over the baseline are much smaller than the proposed
TSL method. Across all the 18 tasks, TSL increases the average test accuracy over the baseline
TBOW method by at least 8.59 (%) on the EJM task and up to 14.61 (%) on the EFB task. Moreover,
TSL also outperforms both CL-KCCA and CL-OPCA across all the18 tasks, outperforms CL-LSI
on 17 out of the 18 tasks and achieves comparable performancewith CL-LSI on the remaining
one task (EJB). All these results demonstrate the efficacy and robustness of the proposed two-step
representation learning method for cross language text classification.

5.3 Impact of the Size of Unlabeled Parallel Data

All the four cross-lingual adaptation learning methods, CL-LSI, CL-KCCA, CL-OPCA and TSL,
exploit unlabeled parallel reviews for learning cross-lingual representations. Next we investigated
the performance of these methods with respect to different numbers of unlabeled parallel reviews.
We tested a set of different numbers,np ∈ {200, 500, 1000, 2000}. For each numbernp in the set,
we randomly chosenp parallel documents from all the 2000 unlabeled parallel reviews to conduct
experiments using the same setting from the previous experiments. Each experiment was repeated
10 times based on random selections of labeled target training data. The average test classification
accuracies and standard deviations are plotted in Figure 1 and Figure 2. Figure 1 presents the results
for the 9 cross-lingual classification tasks that adapt classification systems from English to French,
German and Japanese, while Figure 2 presents the results forthe other 9 cross-lingual classification
tasks that adapt classification systems from French, Germanand Japanese to English.
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Figure 2: Average test classification accuracies and standard deviations over 10 runs with different
numbers of unlabeled parallel documents for adapting a classification system from French, German
and Japanese to English.

From these results, we can see that the performance of all four methods in general improves with the
increase of the unlabeled parallel data. The proposed method, TSL, nevertheless outperforms the
other three cross-lingual adaptation learning methods across the range of differentnp values for 16
out of the 18 cross language sentiment classification tasks.For the remaining two tasks, EFM and
EGM, it has similar performance with the CL-KCCA method while significantly outperforming the
other two methods. Moreover, for the 9 tasks that make adaptation from English to the other three
languages, the TSL method achieves great performance with only 200 unlabeled parallel documents,
while the performance of the other three methods decreases significantly with the decrease of the
number of unlabeled parallel documents. These results demonstrate the robustness and efficacy of
the proposed method, comparing to other methods.

6 Conclusion

In this paper, we developed a novel two-step method to learn cross-lingual semantic data representa-
tions for cross language text classification by exploiting unlabeled parallel bilingual documents. We
first formulated a matrix completion problem to infer unobserved feature values of the concatenated
document-term matrix in the space of unified vocabulary set from the source and target languages.
Then we performed latent semantic indexing over the completed low-rank document-term matrix to
produce a low-dimensional cross-lingual representation of the documents. Monolingual classifiers
were then used to conduct cross language text classificationbased on the learned document repre-
sentation. To investigate the effectiveness of the proposed learning method, we conducted extensive
experiments with tasks of cross language sentiment classification on Amazon product reviews. Our
experimental results demonstrated that the proposed two-step learning method significantly out-
performs the other four comparison methods. Moreover, the proposed approach needs much less
parallel documents to produce a good cross language text classification system.
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