
A Supplementary Material for A Geometric take on Metric Learning

The supplementary material contains proofs for the theorems found in the paper as well as further results
that were left out due to page constraints. When reading the proofs it can be convenient to remember the
dimensionality of the individual parts of the equations, which we briefly summarize here:

c(�) 2 RD⇥1
c

0
(�) 2 RD⇥1

c

0
(�)⌦ c

0
(�) 2 RD2⇥1

M(c(�)) 2 RD⇥D vec [M(c(�))] 2 RD2⇥1 @vec[M(c(�))]
@c(�) 2 RD2⇥D

A.1 Proof of Theorem 2

We remind the reader that we need to minimize curve length (eq. 4). Conveniently, these minima coincides
with those of the curve energy [11] defined as
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At times, we will find it useful to express L in terms of Kronecker products:
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where ⌦ denotes the Kronecker product and vec [·] unfolds a matrix to a vector by stacking its columns; see
the book by Magnus and Neudecker [13] for details on this notation.

We compute the derivative of this expression using the Euler-Lagrange equation
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We derive the individual terms of this equation below.
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Here ID denotes the D ⇥D identity matrix.

All this can be combined to give
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which concludes the proof.
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A.2 Proof of Theorem 3

First we consider the following general weighting scheme
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We will consider different choices of w̃r , but first we compute the derivative of the metric tensor wrt. c.

@vec [M(c)]

@c
=

RX

r=1

vec [Mr]
@wr

@c
(29)

@wr

@c
=

 
RX

j=1

w̃j

!�2 
@w̃r

@c

RX

j=1

w̃j � w̃r

RX

j=1

@w̃j

@c

!
. (30)

In the following we derive @vec[M(c)]
@c for two squared exponential schemes. Other schemes can easily be

derived as long as the chosen weights are smooth.
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where � is a metric tensor. The derivative is given as
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This gives the following derivative
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We can then compute the derivative as
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This gives the following derivative
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A.3 From 2

nd order to 1

st order

When computing geodesics we have to solve a system of 2nd order ODE’s, which we solve by rewriting it
as a system of 1

st order ODE’s. This is standard practice, but we briefly describe it here for the sake of
completeness.

We are interested in solving a system of the form
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We now let
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which is a system of 1st order equations.

A.4 Algorithmic Details

We use standard algorithms for doing statistics on manifolds. Specifically, we use the mean value estimator
from Pennec [18] and the standard PGA model from Fletcher et al. [16]. For completeness, these are presented
in Algorithm 1 and 2 respectively. The algorithm for regression is identical to the PGA algorithm, with the
exception that the PCA part is replaced by standard linear regression.

The algorithms rely on functions for computing geodesics and exponential maps on the manifold. We compute
these by setting up the boundary value problem in (10) and the initial value problem in (12). We solve these
numerically using standard off-the-shelf solver; specifically we use bvp4c and ode45 from Matlab.

input : Training data p

1:N ; and manifold structure in the form of metric tensors M
1:R and

their positions x
1:R

output: Mean value µ

// Compute initial mean:

µ
1

 1

N

PN
n=1

pn;

// Iteratively improve mean value estimate:

for i 2 . . . do
// Compute geodesics to the current mean estimate:

parallel for n 1 to N do
�n  compute geodesic(pn, µi�1

,M
1:R,x1:R);

ln  �0
n(0)

k�0
n(0)k

Length(�n) ;
end
// Compute tangent space mean:

µ̂i  1

N

PN
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ln;

// Map tangent space mean to the feature space:

µi  exponential map(µi�1

, µi,M1:R,x1:R);
end

Algorithm 1: Computing Karcher means.
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input : Training data p

1:N ; and manifold structure in the form of metric tensors M
1:R and

their positions x
1:R

output: Principal geodesics �
v1:D

// Compute mean value on manifold:

µ karcher mean(p

1:N ,M
1:R,x1:R);

// Compute geodesics to the mean:

parallel for n 1 to N do
�n  compute geodesic(pn, µ,M1:R,x1:R);
ln  �0

n(0)

k�0
n(0)k

Length(�n) ;
end
// Perform PCA in the tangent space:

v

1:D  PCA(l

1:N);
// Map results back to the feature space:

for d 1 to D do
�
vd  exponential map(µ,vd,M1:R,x1:R);

end
Algorithm 2: Principal Geodesic Analysis (PGA).

A.5 Further Results on Human Body Shapes

This section contains plots for the regression errors, when predicting body measurements from body shapes.
The experiments follow those in Sec. 4.1 of the paper, i.e.

1. First, we whiten the data to ensure that all changes in variance is due to the change of the metric.
2. We then sort the shape data according to the specific measurement (e.g. arm length) and split it in 5

equal-sized clusters.
3. For each cluster we learn a LMNN metric [5], which pushes the different clusters apart. This will

locally introduce variance in the directions that pushes the clusters apart. Globally, the learned metrics
stretches the feature space in the directions that are most important for the specific measurement.

4. We then construct a Riemannian metric according to (6) and compute the mean of the data according
to this metric (Algorithm 1).

5. We then compute geodesics between each data point and the mean, and map the data into the tangent
space at the mean using the logartihmic map (11).

6. In this Euclidean representation of the data, we perform linear regression to predict the measurement.
The measurement of an unseen point is predicted by mapping it into the tangent space and applying
the Euclidean model.
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A.6 MNIST Dimensionality Reduction Plots

In Sec. 4.2 we considered PGA on the MNIST data set, where we learned one metric per class using LMNN [5],
which we associated with the class center. Fig. 6 show the first two principal components of the digits 4, 7 and
9, computed according to the Euclidean metric and in the tangent space of the manifold implied by the local
metrics. As can be seen, the two representations are quite different, but it is not clear that one is better than the
other. To quantify the behavior we also perform a classification study.

We perform nearest neightbor classification of 60,000 data points from all ten classes, and test on 1,000 separate
data points. We learn one LMNN metric per class, which we associate with the mean of the class. From this
we construct a Riemannian manifold from (6), compute the mean value on the manifold, map the data to
the tangent space at the mean and perform ordinary PCA in the tangent space, i.e. PGA. To study the effect
of dimensionality reduction according to the learned metrics, we measure the classification error while we
gradually reduce the dimensionality of the data using both the learned metrics and, for comparison, the ordinary
Euclidean metric. The results are plotted in Fig. 6. As can be seen, the model using the learned metrics slightly
out-performs the baseline Euclidean metric. The interesting result is that this result holds as the dimensionality
is reduced, which shows that the Riemannian PGA captures the important parts of the learned metric.
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Euclidean PCA Tangent Space PCA (PGA) Classification Error

Figure 6: Left: The MNIST data expressed in first two principal components computed according
to the Euclidean metric. Center: The same data expressed in the first two principal components
computed in the tangent space of the manifold implied by the local LMNN metrics. Right: The
classification error as a function of the dimensionality of the Euclidean and the Riemannian models.
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