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Abstract

The representer theorem is a property that lies at the foundation of regularization
theory and kernel methods. A class of regularization functionals is said to admit
a linear representer theorem if every member of the class admits minimizers that
lie in the finite dimensional subspace spanned by the representers of the data.
A recent characterization states that certain classes of regularization functionals
with differentiable regularization term admit a linear representer theorem for any
choice of the data if and only if the regularization term is a radial nondecreasing
function. In this paper, we extend such result by weakening the assumptions on
the regularization term. In particular, the main result of this paper implies that,
for a sufficiently large family of regularization functionals, radial nondecreasing
functions are the only lower semicontinuous regularization terms that guarantee
existence of a representer theorem for any choice of the data.

1 Introduction

Regularization [1] is a popular and well-studied methodology to address ill-posed estimation prob-
lems [2] and learning from examples [3]. In this paper, we focus on regularization problems defined
over a real Hilbert space H. A Hilbert space is a vector space endowed with a inner product and a
norm that is complete1. Such setting is general enough to take into account a broad family of finite-
dimensional regularization techniques such as regularized least squares or support vector machines
(SVM) for classification or regression, kernel principal component analysis, as well as a variety of
methods based on regularization over reproducing kernel Hilbert spaces (RKHS).

The focus of our study is the general problem of minimizing an extended real-valued regularization
functional J : H → R ∪ {+∞} of the form

J(w) = f(L1w, . . . , L`w) + Ω(w), (1)
where L1, . . . , L` are bounded linear functionals on H. The functional J is the sum of an error
term f , which typically depends on empirical data, and a regularization term Ω that enforces certain
desirable properties on the solution. By allowing the error term f to take the value +∞, problems
with hard constraints on the values Liw (for instance, interpolation problems) are included in the
framework. Moreover, by allowing Ω to take the value +∞, regularization problems of the Ivanov
type are also taken into account.

In machine learning, the most common class of regularization problems concerns a situation where
a set of data pairs (xi, yi) is available, H is a space of real-valued functions, and the objective
functional to be minimized is of the form

J(w) = c ((x1, y1, w(x1)), · · · , (x`, y`, w(x`)) + Ω(w).

1Meaning that Cauchy sequences are convergent.
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It is easy to see that this setting is a particular case of (1), where the dependence on the data pairs
(xi, yi) can be absorbed into the definition of f , and Li are point-wise evaluation functionals, i.e.
such that Liw = w(xi). Several popular techniques can be cast in such regularization framework.
Example 1 (Regularized least squares). Also known as ridge regression when H is finite-
dimensional. Corresponds to the choice

c ((x1, y1, w(x1)), · · · , (x`, y`, w(x`)) = γ
∑̀
i=1

(yi − w(xi))
2,

and Ω(w) = ‖w‖2, where the complexity parameter γ ≥ 0 controls the trade-off between fitting of
training data and regularity of the solution.
Example 2 (Support vector machine). Given binary labels yi = ±1, the SVM classifier (without
bias) can be interpreted as a regularization method corresponding to the choice

c ((x1, y1, w(x1)), · · · , (x`, y`, w(x`)) = γ
∑̀
i=1

max{0, 1− yiw(xi)},

and Ω(w) = ‖w‖2. The hard-margin SVM can be recovered by letting γ → +∞.
Example 3 (Kernel principal component analysis). Kernel PCA can be shown to be equivalent to a
regularization problem where

c ((x1, y1, w(x1)), · · · , (x`, y`, w(x`)) =

{
0, 1

`

∑`
i=1

(
w(xi)− 1

`

∑`
j=1 w(xj)

)2

= 1

+∞, otherwise
,

and Ω is any strictly monotonically increasing function of the norm ‖w‖, see [4]. In this problem,
there are no labels yi, but the feature extractor function w is constrained to produce vectors with
unitary empirical variance.

The possibility of choosing general continuous linear functionals Li in (1) allows to consider a much
broader class of regularization problems. Some examples are the following.
Example 4 (Tikhonov deconvolution). Given a “input signal” u : X → R, assume that the convo-
lution u ∗ w is well-defined for any w ∈ H, and the point-wise evaluated convolution functionals

Liw = (u ∗ w)(xi) =

∫
X
u(s)w(xi − s)ds,

are continuous. A possible way to recover w from noisy measurements yi of the “output signal” is
to solve regularization problems such as

min
w∈H

(
γ
∑̀
i=1

(yi − (u ∗ w)(xi))
2

+ ‖w‖2
)
,

where the objective functional is of the form (1).
Example 5 (Learning from probability measures). In certain learning problems, it may be appropri-
ate to represent input data as probability distributions. Given a finite set of probability measures Pi
on a measurable space (X ,A), where A is a σ-algebra of subsets of X , introduce the expectations

Liw = EPi(w) =

∫
X
w(x)dPi(x).

Then, given output labels yi, one can learn a input-output relationship by solving regularization
problems of the form

min
w∈H

(
c ((y1, EP1

(w)), · · · , (y`, EP`
(w)) + ‖w‖2

)
.

If the expectations are bounded linear functionals, such regularization functional is of the form (1).
Example 6 (Ivanov regularization). By allowing the regularization term Ω to take the value +∞,
we can also take into account the whole class of Ivanov-type regularization problems of the form

min
w∈H

f(L1w, . . . , L`w), subject to φ(w) ≤ 1,

by reformulating them as the minimization of a functional of the type (1), where

Ω(w) =

{
0, φ(w) ≤ 1
+∞, otherwise .
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1.1 The representer theorem

Let’s now go back to the general formulation (1). By the Riesz representation theorem [5, 6], J can
be rewritten as

J(w) = f(〈w,w1〉, . . . , 〈w,w`〉) + Ω(w),

where wi is the representer of the linear functional Li with respect to the inner product. Consider
the following definition.
Definition 1. A family F of regularization functionals of the form (1) is said to admit a linear
representer theorem if, for any J ∈ F , and any choice of bounded linear functionals Li, there exists
a minimizer w∗ that can be written as a linear combination of the representers:

w∗ =
∑̀
i=1

ciwi.

If a linear representer theorem holds, the regularization problem under study can be reduced to a
`-dimensional optimization problem on the scalar coefficients ci, independently of the dimension
of H. This property is fundamental in practice: without a finite-dimensional parametrization, it
wouldn’t be possible to employ numerical optimization techniques to compute a solution. Suffi-
cient conditions under which a family of functionals admits a representer theorem have been widely
studied in the literature of statistics, inverse problems, and machine learning. The theorem also pro-
vides the foundations of learning techniques such as regularized kernel methods and support vector
machines, see [7, 8, 9] and references therein.

Representer theorems are of particular interest when H is a reproducing kernel Hilbert space
(RKHS) [10]. Given a non-empty set X , a RKHS is a space of functions w : X → R such that
point-wise evaluation functionals are bounded, namely, for any x ∈ X , there exists a non-negative
real number Cx such that

|w(x)| ≤ Cx‖w‖, ∀w ∈ H.
It can be shown that a RKHS can be uniquely associated to a positive-semidefinite kernel function
K : X × X → R (called reproducing kernel), such that the so-called reproducing property holds:

w(x) = 〈w,Kx〉, ∀ (x,w) ∈ X ×H,
where the kernel sections Kx are defined as

Kx(y) = K(x, y), ∀y ∈ X .
The reproducing property states that the representers of point-wise evaluation functionals coincide
with the kernel sections. Starting from the reproducing property, it is also easy to show that the
representer of any bounded linear functional L is given by a function KL ∈ H such that

KL(x) = LKx, ∀x ∈ X .
Therefore, in a RKHS, the representer of any bounded linear functional can be obtained explicitly
in terms of the reproducing kernel.

If the regularization functional (1) admits minimizers, and the regularization term Ω is a nondecreas-
ing function of the norm, i.e.

Ω(w) = h(‖w‖), with h : R→ R ∪ {+∞}, nondecreasing, (2)

the linear representer theorem follows easily from the Pythagorean identity. A proof that the con-
dition (2) is sufficient appeared in [11] in the case where H is a RKHS and Li are point-wise
evaluation functionals. Earlier instances of representer theorems can be found in [12, 13, 14]. More
recently, the question of whether condition (2) is also necessary for the existence of linear repre-
senter theorems has been investigated [15]. In particular, [15] shows that, if Ω is differentiable (and
certain technical existence conditions hold), then (2) is a necessary and sufficient condition for cer-
tain classes of regularization functionals to admit a representer theorem. The proof of [15] heavily
exploits differentiability of Ω, but the authors conjecture that the hypothesis can be relaxed. In the
following, we indeed show that (2) is necessary and sufficient for the family of regularization func-
tionals of the form (1) to admit a linear representer theorem, by merely assuming that Ω is lower
semicontinuous and satisfies basic conditions for the existence of minimizers. The proof is based on
a characterization of radial nondecreasing functions defined on a Hilbert space.
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2 A characterization of radial nondecreasing functions

In this section, we present a characterization of radial nondecreasing functions defined over Hilbert
spaces. We will make use of the following definition.

Definition 2. A subset S of a Hilbert spaceH is called star-shaped with respect to a point z ∈ H if

(1− λ)z + λx ∈ S, ∀x ∈ S, ∀λ ∈ [0, 1].

It is easy to verify that a convex set is star-shaped with respect to any point of the set, whereas a
star-shaped set does not have to be convex.

The following Theorem provides a geometric characterization of radial nondecreasing functions
defined on a Hilbert space that generalizes the analogous result of [15] for differentiable functions.

Theorem 1. LetH denote a Hilbert space such that dimH ≥ 2, and Ω : H → R ∪ {+∞} a lower
semicontinuous function. Then, (2) holds if and only if

Ω(x+ y) ≥ max{Ω(x),Ω(y)}, ∀x, y ∈ H : 〈x, y〉 = 0. (3)

Proof. Assume that (2) holds. Then, for any pair of orthogonal vectors x, y ∈ H, we have

Ω(x+ y) = h (‖x+ y‖) = h
(√
‖x‖2 + ‖y‖2

)
≥ max{h (‖x‖) , h (‖y‖)}

= max{Ω(x),Ω(y)}.

Conversely, assume that condition (3) holds. Since dimH ≥ 2, by fixing a generic vector x ∈
X \ {0} and a number λ ∈ [0, 1], there exists a vector y such that ‖y‖ = 1 and

λ = 1− cos2 θ,

where

cos θ =
〈x, y〉
‖x‖‖y‖

.

In view of (3), we have

Ω(x) = Ω(x− 〈x, y〉y + 〈x, y〉y)

≥ Ω(x− 〈x, y〉y) = Ω
(
x− cos2 θx+ cos2 θx− 〈x, y〉y

)
≥ Ω (λx) .

Since the last inequality trivially holds also when x = 0, we conclude that

Ω(x) ≥ Ω(λx), ∀x ∈ H, ∀λ ∈ [0, 1], (4)

so that Ω is nondecreasing along all the rays passing through the origin. In particular, the minimum
of Ω is attained at x = 0.

Now, for any c ≥ Ω(0), consider the sublevel sets

Sc = {x ∈ H : Ω(x) ≤ c} .

From (4), it follows that Sc is not empty and star-shaped with respect to the origin. In addition, since
Ω is lower semicontinuous, Sc is also closed. We now show that Sc is either a closed ball centered
at the origin, or the whole space. To this end, we show that, for any x ∈ Sc, the whole ball

B = {y ∈ H : ‖y‖ ≤ ‖x‖},

is contained in Sc. First, take any y ∈ int(B) \ span{x}, where int denotes the interior. Then, y has
norm strictly less than ‖x‖, that is

0 < ‖y‖ < ‖x‖,
and is not aligned with x, i.e.

y 6= λx, ∀λ ∈ R.
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Let θ ∈ R denote the angle between x and y. Now, construct a sequence of points xk as follows:{
x0 = y,
xk+1 = xk + akuk,

where

ak = ‖xk‖ tan

(
θ

n

)
, n ∈ N

and uk is the unique unitary vector that is orthogonal to xk, belongs to the two-dimensional subspace
span{x, y}, and is such that 〈uk, x〉 > 0, that is

uk ∈ span{x, y}, ‖uk‖ = 1, 〈uk, xk〉 = 0, 〈uk, x〉 > 0.

See Figure 1 for a geometrical illustration of the sequence xk.

By orthogonality, we have

‖xk+1‖2 = ‖xk‖2 + a2
k = ‖xk‖2

(
1 + tan2

(
θ

n

))
= ‖y‖2

(
1 + tan2

(
θ

n

))k+1

. (5)

In addition, the angle between xk+1 and xk is given by

θk = arctan

(
ak
‖xk‖

)
=
θ

n
,

so that the total angle between y and xn is given by

n−1∑
k=0

θk = θ.

Since all the points xk belong to the subspace spanned by x and y, and the angle between x and xn
is zero, we have that xn is positively aligned with x, that is

xn = λx, λ ≥ 0.

Now, we show that n can be chosen in such a way that λ ≤ 1. Indeed, from (5) we have

λ2 =

(
‖xn‖
‖x‖

)2

=

(
‖y‖
‖x‖

)2(
1 + tan2

(
θ

n

))n
,

and it can be verified that

lim
n→+∞

(
1 + tan2

(
θ

n

))n
= 1,

therefore λ ≤ 1 for a sufficiently large n. Now, write the difference vector in the form

λx− y =

n−1∑
k=0

(xk+1 − xk),

and observe that
〈xk+1 − xk, xk〉 = 0.

By using (4) and proceeding by induction, we have

c ≥ Ω(λx) = Ω (xn − xn−1 + xn−1) ≥ Ω(xn−1) ≥ · · · ≥ Ω(x0) = Ω(y),

so that y ∈ Sc. Since Sc is closed and the closure of int(B) \ span{x} is the whole ball B, every
point y ∈ B is also included in Sc. This proves that Sc is either a closed ball centered at the origin,
or the whole spaceH.

Finally, for any pair of points such that ‖x‖ = ‖y‖, we have x ∈ SΩ(y), and y ∈ SΩ(x), so that

Ω(x) = Ω(y).
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Figure 1: The sequence xk constructed in the proof of Theorem 1 is associated with a geometrical
construction known as spiral of Theodorus. Starting from any y in the interior of the ball (excluding
points aligned with x), a point of the type λx (with 0 ≤ λ ≤ 1) can be reached by using a finite
number of right triangles.

3 Representer theorem: a necessary and sufficient condition

In this section, we prove that condition (2) is necessary and sufficient for suitable families of regu-
larization functionals of the type (1) to admit a linear representer theorem.
Theorem 2. Let H denote a Hilbert space of dimension at least 2. Let F denote a family of func-
tionals J : H → R ∪ {+∞} of the form (1) that admit minimizers, and assume that F contains a
set of functionals of the form

Jγp (w) = γf (〈w, p〉) + Ω (w) , ∀p ∈ H, ∀γ ∈ R+, (6)

where f(z) is uniquely minimized at z = 1. Then, for any lower semicontinuous Ω, the family F
admits a linear representer theorem if and only if (2) holds.

Proof. The first part of the theorem (sufficiency) follows from an orthogonality argument. Take any
functional J ∈ F . Let R = span{w1, . . . , w`} and let R⊥ denote its orthogonal complement. Any
minimizer w∗ of J can be uniquely decomposed as

w∗ = u+ v, u ∈ R, v ∈ R⊥.
If (2) holds, then we have

J(w∗)− J(u) = h(‖w∗‖)− h(‖u‖) ≥ 0,

so that u ∈ R is also a minimizer.

Now, let’s prove the second part of the theorem (necessity). First of all, observe that the functional
Jγ0 (w) = γf(0) + Ω(w),

obtained by setting p = 0 in (6), belongs to F . By hypothesis, Jγ0 admits minimizers. In addition,
by the representer theorem, the only admissible minimizer of J0 is the origin, that is

Ω(y) ≥ Ω(0), ∀y ∈ H. (7)

Now take any x ∈ H \ {0} and let
p =

x

‖x‖2
.

By the representer theorem, the functional Jγp of the form (6) admits a minimizer of the type

w = λ(γ)x.

Now, take any y ∈ H such that 〈x, y〉 = 0. By using the fact that f(z) is minimized at z = 1, and
the linear representer theorem, we have
γf(1) + Ω (λ(γ)x) ≤ γf(λ(γ)) + Ω (λ(γ)x) = Jγp (λ(γ)x) ≤ Jγp (x+ y) = γf(1) + Ω (x+ y) .

By combining this last inequality with (7), we conclude that
Ω (x+ y) ≥ Ω (λ(γ)x) , ∀x, y ∈ H : 〈x, y〉 = 0, ∀γ ∈ R+. (8)

Now, there are two cases:
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• Ω (x+ y) = +∞

• Ω (x+ y) = C < +∞.

In the first case, we trivially have
Ω (x+ y) ≥ Ω(x).

In the second case, using (7) and (8), we obtain

0 ≤ γ (f(λ(γ))− f(1)) ≤ Ω (x+ y)− Ω (λ(γ)x) ≤ C − Ω(0) < +∞, ∀γ ∈ R+. (9)

Let γk denote a sequence such that limk→+∞ γk = +∞, and consider the sequence

ak = γk (f(λ(γk))− f(1)) .

From (9), it follows that ak is bounded. Since z = 1 is the only minimizer of f(z), the sequence ak
can remain bounded only if

lim
k→+∞

λ(γk) = 1.

By taking the limit inferior in (8) for γ → +∞, and using the fact that Ω is lower semicontinuous, we
obtain condition (3). It follows that Ω satisfies the hypotheses of Theorem 1, therefore (2) holds.

The second part of Theorem 2 states that any lower semicontinuous regularization term Ω has to be
of the form (2) in order for the family F to admit a linear representer theorem. Observe that Ω is not
required to be differentiable or even continuous. Moreover, it needs not to have bounded lower level
sets. For the necessary condition to hold, the family F has to be broad enough to contain at least
a set of regularization functionals of the form (6). The following examples show how to apply the
necessary condition of Theorem 2 to classes of regularization problems with standard loss functions.

• Let L : R2 → R ∪ {+∞} denote any loss function of the type

L(y, z) = L̃(y − z),

such that L̃(t) is uniquely minimized at t = 0. Then, for any lower semicontinuous regula-
ration term Ω, the family of regularization functionals of the form

J(w) = γ
∑̀
i=1

L (yi, 〈w,wi〉) + Ω(w),

admits a linear representer theorem if and only if (2) holds. To see that the hypotheses of
Theorem 2 are satisfied, it is sufficient to consider the subset of functionals with ` = 1,
y1 = 1, and w1 = p ∈ H. These functionals can be written in the form (6) with

f(z) = L(1, z).

• The class of regularization problems with the hinge (SVM) loss of the form

J(w) = γ
∑̀
i=1

max{0, 1− yi〈w,wi〉}+ Ω(w),

with Ω lower semicontinuous, admits a linear representer theorem if and only if Ω satisfy
(2). For instance, by choosing ` = 2, and

(y1, w1) = (1, p), (y2, w2) = (−1, p/2),

we obtain regularization functionals of the form (6) with

f(z) = max{0, 1− z}+ max{0, 1 + z/2},

and it is easy to verify that f is uniquely minimized at z = 1.
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4 Conclusions

Sufficiently broad families of regularization functionals defined over a Hilbert space with lower
semicontinuous regularization term admit a linear representer theorem if and only if the regulariza-
tion term is a radial nondecreasing function. More precisely, the main result of this paper (Theorem
2) implies that, for any sufficiently large family of regularization functionals, nondecreasing func-
tions of the norm are the only lower semicontinuous (extended-real valued) regularization terms that
guarantee existence of a representer theorem for any choice of the data functionals Li.

As a concluding remark, it is important to observe that other types of regularization terms are possi-
ble if the representer theorem is only required to hold for a restricted subset of the data functionals.
Exploring necessary conditions for the existence of representer theorems under different types of
restrictions on the data functionals is an interesting future research direction.
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