6 Conclusion

This paper presented lower bounds on the performance of derivative-free optimization for (i) an ora-
cle that provides noisy function evaluations and (ii) an oracle that provides probably correct boolean
comparisons between function evaluations. Our results were proven for the class of strongly convex
functions but because this class is a subset of all, possibly non-convex functions, our lower bounds
hold for much larger classes as well. Under both oracle models we showed that the expected error
decays like €2 ((n /T 2). Furthermore, for the class of strongly convex functions with Lipschitz

gradients, we proposed an algorithm that achieves a rate of 0] (n(n /T )1/ 2) for both oracle mod-
els which shows that the lower bounds are tight with respect to the dependence on the number of
iterations 7" and no more than a factor of n off in terms of the dimension.

A number of open questions still remain. In particular, one would like to resolve the gap between
the lower and upper bounds with respect to the dependence on the dimension. Due to real world
constraints, it is also desirable to extend the pairwise comparison algorithm to operate under the
conditions of constrained optimization where B is a convex, proper subset of R%. Also, while the
analysis of our algorithm relies heavily on the assumption that the function is strongly convex with
Lipschitz gradients, it is unclear whether these assumptions are necessary to achieve the same rates
of convergence. Developing a practical algorithm that achieves our lower bounds and does not suffer
from these limiting assumptions would be a significant contribution.

A Bounds on (x, y1, d) for some distributions

In this section we relate the function evaluation oracle to the function comparison oracle for some
common distributions. That is, if Ef(x) = f(z) + w for some random variable w, we lower
bound the probability n(y, z) := P(sign{E;(y) — Ef(z)} = sign{f(y) — f(z)}) in terms of the
parameterization of (1).

Lemma 3. Let w be a Gaussian random variable with mean zero and variance 2. Then
ny) > 3+ mind S 1) - f(0)]).

Proof. Notice that n(y,z) = P(Z + |f(y) — f(x)|/V202 > 0) where Z is a standard normal. The
result follows by lower bounding the density of Z by —7=1{|Z| < 1} and integrating where 1{-}

is equal to one when its arguments are true and zero otherwise. O

We say w is a 2-sided gamma distributed random variable if its density is given by
|J:\" Le=Blzl for 2 € [—00,00] and a, B > 0. Note that this distribution is unimodal only

2F(
for o € (0,1] and is equal to a Laplace distribution for & = 1. This distribution has variance

0% = a/p%

Lemma 4. Let w be a 2-sided gamma distributed random variable with parameters o € (0, 1] and
. a) 2o 2¢)2® a

B> 0. Thenn(y,x) > % + mln{m (;) ; 4§ér(a)2 |f(y) = f(2)]? }

Proof. Let Ef(y) = f(y) + w and Ef(x) = f(z) + w’ where w and w’ are i.i.d. 2-sided gamma
distributed random variables. If we lower bound e~?I*l with e=*1{|z| < a/f} and integrate we

find that P(—¢/2 < w < 0) > min{hl}(a) (%)a ’ z(i{‘ea) (t/2)> } And by the symmetry and

independence of w and w’ we have P(—t < w —w') > 1 + P(—t/2 <w < 0)P(—t/2 < w < 0).
O

While the bound in the lemma immediately above can be shown to be loose, these two lemmas are
sufficient to show that the entire range of x € (1, 2] is possible.
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B Upper Bounds - Extended

The algorithm that achieves the upper bound using a pairwise comparison oracle is a combination of
a few standard techniques and methods pulled from the convex optimization and statistical learning
literature. The algorithm can be summarized as follows. At each iteration the algorithm picks a
coordinate uniformly at random from the n possible dimensions and then performs an approximate
line search. By exploiting the fact that the function is strongly convex with Lipschitz gradients, one
guarantees using standard arguments that the approximate line search makes a sufficient decrease in
the objective function value in expectation [22, Ch.9.3]. If the pairwise comparison oracle made no
errors then the approximate line search is accomplished by a binary-search-like scheme that is known
in the literature as the golden section line-search algorithm [23]. However, when responses from the
oracle are only probably correct we make the line-search robust to errors by repeating the same
query until we can be confident about the true, uncorrupted direction of the pairwise comparison
using a standard procedure from the active learning literature [24].

B.1 Coordinate descent algorithm

n-dimensional Pairwise comparison algorithm
Input: zo € R", 7 >0
For k=0,1,2,. ..
Choose dj, = e; fori € {1,...,n} chosen uniformly at random
Obtain o, from a line-search such that
|ag — a*| < n where o* = argmin, f(xg + ady)
Thy1 = T + ogdy;
end

Figure 1: Algorithm to minimize a convex function in d dimensions. Here e; is understood to be a
vector of all zeros with a one in the ith position.

Theorem 7. Let f € F, 1 g with B =R". Foranyn > 0 assume the line search in the algorithm of
Figure 1 requires at most Ty(n) queries from the pairwise comparison oracle. If x i is an estimate
of ©* = argmin, f(z) after requesting no more than K pairwise comparisons, then

sup Elf(zx) — flz)] < AnLPy whenever K > L log (f(;fgn;f;f>> Ti(n)

T T
where the expectation is with respect to the random choice of dy, at each iteration.

Proof. First note that ||dy|| = 1 for all k& with probability 1. Because the gradients of f are Lipschitz
(L) we have from Taylor’s theorem
aiL
F@rsr) < flaw) +(Vf(zn), ondr) + ==
Note that the right-hand-side is convex in «, and is minimized by

Gy = V(@) di)
7 :

However, recalling how oy, is chosen, if o* = arg min,, f(x; + ady) then we have

L L L
Jf(op + ardy) — f(zp +ady) < §||(ak —a*)di||* = §|04k —af? < 5’72~
This implies
L
flzr + ardy) — f(or) < f(or +a*dy) — fzr) + 5772
. L
< fog + dundy) — f(zk) + 5772

<Vf(mk)7dk>2 L
Sttt
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Taking the expectation with respect to dj, we have

DN
E[f(zr1)] E[f(o)] —E W} + Ly
~ (sG] -5 [ [P o]+ 2
[V (i)l )
=E{f(xk)]—za_mk} v L

where we applied the law of iterated expectation. Let * = argmin, f(x) and note that z* is a
unique minimizer by strong convexity (7). Using the previous calculation we have

E [f(zi1) — F(@™)] — Ln? < E[f(m) — £)] — DLW < g [p() — £@)] (1 - 25)

where the second inequality follows from
(f(@x) = F@") <V (aw), o —2*))
7\ —1
<V @l Pl -2 1P < IV (5) () = ).

If we define py, := E [f(x) — f(2*)] then we equivalently have

2Ly - (17 T ) 2Ly - (17 T )k _ 2nL?p?
Pie+1 T - inL Pr T - anL po T

which completes the proof. O

This implies that if we wish sup; E[f(zx) — f(z.)] < e it suffices to take n = /4 7= so that at
most @ log (%) ) (, / 4222) pairwise comparisons are requested.

B.2 Line search

This section is concerned with minimizing a function f(xj + ady) over some o € R. Because we
are minimizing over a single variable, v, we will restart the indexing at 0 such that the line search
algorithm produces a sequence «g, a1,...,axs. This indexing should not be confused with the
indexing of the iterates x1, Ts, ..., Tx. We will first present an algorithm that assumes the pairwise
comparison oracle makes no errors and then extend the algorithm to account for the noise model
introduced in Section 2.

Consider the algorithm of Figure 2. At each iteration, one is guaranteed to eliminate at least 1/2
the search space at each iteration such that at least 1/4 the search space is discarded for every
pairwise comparison that is requested. However, with a slight modification to the algorithm, one
can guarantee a greater fraction of removal (see the golden section line-search algorithm). We use
this sub-optimal version for simplicity because it will help provide intuition for how the robust
version of the algorithm works.

Theorem 8. Let [ € F, 1 g with B = R" and let Cy be a function comparison oracle that makes
no errors. Let © € R™ be an initial position and let d € R™ be a search direction with ||d|| = 1. If
a is an estimate of o = argmin, f(x + da) that is output from the algorithm of Figure 2 after
requesting no more than K pairwise comparisons, then for any n > 0

256L (f(z) — flz + da*))) .

7-2172

lag —a®| <n whenever K > 2log, (

Pr?ff.' F(iirst note that if ave is output from the algorithm, we have §|ax — a*| < |aj —ayx| < 37,
as desired.

We will handle the cases when |a*| is greater than one and less than one separately. First assume that
|a*| > 1. Using the fact that f is strongly convex (7), it is straightforward to show that immediately
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One Dimensional Pairwise comparison algorithm
Input: z e R", d € R",n >0

Initialize: g = 0, ozar =ap+1l,00 =a0—1,k=0
If Ci(z,z+daf)>0and Cp(z,r+day) <0

043':0

end

If Cf(v,2+day)>0andCy(r,z+daf) <0
ag =0

end

While Cy(z,z+daj) <0
azﬂ :2a:,k:k—|—1
end
While Cy(z,z+da,) <0
Qi =2a,,k=k+1
end
o = (o +aff)
While o — a; | > n/2
if Cp(z+dag,z+d3(on+af)) <0
a1 = 3(ak +ay), O‘IH =af, A1 = %
elseif Cr(z+dag,z+di(ar+a;)) <0
apyr = gk + o), 0‘1:-5-1 =Qp, gy =0y
else
Qg1 = Qk, O‘:H = %(O‘k + oz,':), Qpiq = %(O‘k +ay)
end
end
Output: ay,

Figure 2: Algorithm to minimize a convex function in one dimension.

after exiting the initial while loops, (i) at most 2 + £ log, (2 (f(z) — f(z 4+ da*))) pairwise com-
parisons were requested, (ii) o € o, o], and (iid) oyt — oy | < (B (f(z) — f(z + da*)))1/2.

We also have that a, € [0, o] if . € [y, of] for all k. Thus, it follows that

- - - /8 ) 1/2
\akf+l—ak+l|:2 l|a;—ak|§2 l<7_(f(x)f(9:+da ))> .

(3(f (@)~ fatda))?
n/2
This brings the total number of pairwise comparison requests to no more than

2log, (32(f(r)ff(r+da*)))'

™

To make the right-hand-side less than or equal to 7/2, set I = log, (

Now assume that |a*| < 1. A straightforward calculation shows that the while loops will terminate
after requesting at most 2 + % log, (%) pairwise comparisons. And immediately after exiting the
while loops we have |04,;r — o, | < 2. It follows by the same arguments of above that if we want

|a;§+l — ap | < n/2 it suffices to set | = log, (%) This brings the total number of pairwise

comparison requests to no more than 2 log, (%) For sufficiently small 7 both cases are positive

and the result follows from adding the two. [

This implies that if the function comparison oracle makes no errors and it is given an
2 . _ . *
iterate xj, and direction dj, then Ty (\/75=) < 2log, <2048"L (f(ze)—f(zatds @ )))

TY€

which brings the total number of pairwise comparisons requested to at most
8nl g (f(IO)*f(!L’*)f) log, (2048nL2 maxy (f(zr) = f(@x+dr a*)))
p- .

€/2 T3€
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B.3 Proof of Theorem 2

We now introduce a line search algorithm that is robust to a function comparison oracle that makes
errors. Essentially, the algorithm consists of nothing more than repeatedly querying the same random
pairwise comparison. This strategy applied to active learning is well known because of its simplicity
and its ability to adapt to unknown noise conditions [24]. However, we mention that when used
in this way, this sampling procedure is known to be sub-optimal so in practice, one may want to
implement a more efficient approach like that of [21]. Consider the subroutine of Figure 3.

Repeated querying subroutine
Input: z,y € R", 6 >0
Initialize: S = 0,1 = —1
do

l=1+1

A, = /0D log(2/0)

S = Su{2'iid. draws of Cy(z,)}
while [$ Y, cgeil — A <0

return sign {>°, _ce;}.

Figure 3: Subroutine that estimates IE [C'¢(z, y)] by repeatedly querying the random variable.

Lemma 5. [24] For any x,y € R™ with P (Cy(z,y) = sign{f(y) — f(z)}) = p, then with proba-
bility at least 1 — § the algorithm of Figure 3 correctly identifies the sign of E [Cy(z,y)] and requests
no more than

log(2/6) log(2/6)
112 — pf2 %2 <41/2 —p|2>

pairwise comparisons.

It would be convenient if we could simply apply the result of Lemma 2 to the algorithm of Figure 2.
Unfortunately, if we do this there is no guarantee that | f(y) — f(z)| is bounded below so for the case
when > 1, it would be impossible to lower bound |1/2 — p| in the lemma. To account for this, we
will sample at four points per iteration as opposed to just two in the noiseless algorithm to ensure
that we can always lower bound |1/2 — p|. We will see that the algorithm and analysis naturally
adapts to when Kk = 1 or k > 1.

Consider the following modification to the algorithm of Figure 2. We discuss the sampling process
that takes place in [cv, am but it is understood that the same process is repeated symmetrically in
[, , ). We begin with the first two whi 1e loops. Instead of repeatedly sampling C'¢ (2, z+d o)
we will have two sampling procedures running in parallel that repeatedly compare oy, to a,j, and oy
to 20(,1’. As soon as the repeated sampling procedure terminates for one of them we terminate the
second sampling strategy and proceed with what the noiseless algorithm would do with a; assigned
to be the sampling location that finished first. Once we’re out of the initial while loops, instead of
comparing oy, to % (ay, + ;) repeatedly, we will repeatedly compare oy, to %(ak + o) and ay, to
2(ou + o ). Again, we will treat the location that finishes its sampling first as & (c, 4+ ;) in the
noiseless algorithm.

If we perform this procedure every iteration, then at each iteration we are guaranteed to remove at
least 1/3 the search space, as opposed to 1/2 in the noiseless case, so we realize that the number
of iterations of the robust algorithm is within a constant factor of the number of iterations of the
noiseless algorithm. However, unlike the noiseless case where at most two pairwise comparisons
were requested at each iteration, we must now apply Lemma 2 to determine the number of pairwise
comparisons that are requested per iteration.

Intuitively, the repeated sampling procedure requests the most pairwise comparisons when the dis-
tance between the two function evaluations being compared smallest. This corresponds to when
the distance between probe points is smallest, i.e. when 7/2 < |ag, — a*| < 5. By con-
sidering this worst case, we can bound the number of pairwise comparisons that are requested
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at any iteration. By strong convexity (7) we find through a straightforward calculation that
max {|f(z +dag) — f(zx+d5(ar + o), [f(z +day) = fz +d 5(x + )|} > Fn? for
all k. This implies [1/2 — p| > p (1778772)»@—1 so that on on any given call to the repeated querying
log(1/4) )

n2)2(r—1)

pairwise comparisons. However, because we want the total number of calls to the SL(leO)utine to
hold with probability 1 — §, not just one, we must union bound over 4 pairwise comparisons
per iteration times the number of iterations per line search times the number of line searches.
This brings the total number of calls to the repeated query subroutine to no more than 4 X

subroutine, with probability at least 1 — § the subroutine requests no more than 0] (

If we setn = (4;22)1/2 so that E[f(zx) — f(2*)] < € by Theorem 7, then the total number of

requested pairwise comparisons does not exceed

%) ("L (3)2(“_1) log? <w> log(n/6)> .

T €

By finding a T' > 0 that satisfies this bound for any € we see that this is equivalent to a rate of

0] (n log(n/d) (%) 2(“1*1’) for x > 1 and O (exp {—c, / W}) for k£ = 1, ignoring polylog

factors.
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