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1 Theoretical Analysis for Perfect Recovery using Equation (2)

The following discussion about the perfect recovery result using Eq. (2) comes from [3]]. We repeat
it in the supplementary document for the completeness of this study.

To discuss the perfect recovery result for using Eq. (2), we first need to make a few assumptions
about A* besides its low rank. Let A* be a low-rank matrix of rank r, with a singular value decomp-
sition A* = UXV'", where U = (uy,...,u,) € RY*"and V = (vq,...,v,) € RV*" are the left
and right eigenvectors of A*, satisfying the following incoherence assumptions.

e Al The row and column spaces of A* have coherence bounded above by some positive
number p, i.e.,
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some positive pq, i.e. |E; ;| < ,VY(i,5) € [N] x [N],
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where Py and Py denote the orthogonal projections on the column space and row space of A*,
respectively, i.e.
Py=UU", Py=VV'T

To state our theorem, we need to introduce a few notations. Let £(A’) and p1(A’) denote the low-rank
and sparsity incoherence of matrix A’ defined by [1I], i.e.
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where T'(A’) denotes the space spanned by the elements of the form uyy " and xv,|, for1 <k <r,
Q(A’) denotes the space of matrices that have the same support to A’, || - || denotes the spectral norm
and || - || denotes the largest entry in magnitude.

Lemma 1. Let A* € RNXN be q similarity matrix of rank r obeying the incoherence properties
(A1) and (A2), with p = max(ug, 11). Suppose we observe my entries of A* recorded in A



with locations sampled uniformly at random, denoted by S. Under the assumption that mq entries
randomly sampled from my observed entries are corrupted, denoted by ), i.e. Af; # A;j, (i,7) €

Q. Given Ps(A) = Ps(A* + E*), where E* corresponds to the corrupted entries in Q). With
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and C| is a constant, we have, with a probability at least 1 — N =3, the solution (A', E) = (A*, E*)
is the unique optimizer to (2) provided that
§AY) = (2r = DEAYu(E") 1= (4r+5)EA)u(E")
1=2(r + 1)&(A*)u(E*) (r+2)pu(E")

2  Proof of Theorem 1

To prove Theorem 1, we need the following theorem for matrix concentration.

Lemma 2. (Lemma 2 from [2|]) Let H be a Hilbert space and & be a random variable on (Z, p)
with values in H. Assume ||£|| < M < oo almost surely. Denote o2 (€) = E(||€]|?). Let {2}, be
independent random drawers of p. For any 0 < § < 1, with confidence 1 — 6,
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Using the assumption that |x|o < 1 and Lemma we have, with a probability 1 — n=3,
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and therefore
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Second, according to Lemma [, with a probability 1 — n~3, we have A = YYT and therefore

XAXT = XYYy X", Again, using the matrix concentration theory, we have, with a probability
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Finally, we rewrite | My — M|, as

”Ms - MSHZ

IN

+

-1
1 ~~
M, — (XXT + M) BB'Cy
m
2

-1
+

—1
(XXT + AI) BBTCx — (XXT + AI) BBT (XXT + AI)
m m m 5

(U@?T + )\I)
m

1 oo 1 Xy 1 oa -
< XX+ M) = BT < XXT+ /\I> — M,
m

m m

It is easy to see that with a probability 1 — 3n~3, each term on the right hand side of the above

inequality is bounded by 1/\221\’};, leading to the result of the theorem.
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